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Abstract: Taking the combustion tear gas mixture as the research object, the system formula was opti-
mized by adding a different mass fraction of 5-amino-1H-tetrazole(5AT). TG-DSC, a thermocouple,
and a laser smoke test system were used to characterize the characteristic combustion parameters such
as combustion temperature and velocity, as well as the end-point effects such as smoke concentration
and particle size. Starink’s method, the Flynn–Wall–Ozawa method, and the Coats–Redfern method
were used to evaluate the pyrolysis kinetic parameters of the samples. The results show that when the
mass fraction of 5-amino-1H-tetrazole in the system is 10%, the maximum combustion temperature
of the sample decreases by nearly 70 ◦C and the smoke concentration increases by 12.81%. The
kinetic study also found that with a different mass fraction of 5-amino-1H-tetrazole in the system, the
main reaction model of the mixed agent in the first, third, and fourth stages of pyrolysis changed
significantly, but for the second stage of sample pyrolysis, the main reaction model (the A4 model)
showed a high degree of consistency, which can be considered as the thermal diffusion stage of the
tear agent capsicum oleoresin (OC) (the temperature range is 220~350 ◦C), which is highly consistent
with the results of the TG-DSC analysis. It was also confirmed that OC’s thermal diffusion is mainly
concentrated in this stage. The results of this study show that adding an appropriate amount of
the combustible agent 5-amino-1H-tetrazole to the combustion tear gas mixture can improve its
combustion performance and smoking performance, which provides an important, new idea for the
development of a new generation of safe, efficient, and environmentally friendly tear gas mixtures.

Keywords: 5-amino-1H-tetrazole; tear gas mixture; combustible agent; combustion pyrolysis
characteristics; dynamics research

1. Introduction

As the main charge of combustion tear gas, the combustion tear gas mixture plays an
important role in dealing with sudden mass incidents and preventing and dealing with
terrorist activities [1,2]. At present, potassium chlorate (KClO3) is used as an oxidant,
sucrose (C12H22O11) is used as the combustible agent, and capsicum oleoresin (OC) is used
as the tear agent in the formulation of this kind of mixed agent. The redox reaction of
the oxidant and the combustible agent provides energy for the sublimation of the tear
agent. However, due to the relatively poor thermal stability of OC, in order to maximize
the functional efficiency of the tear agent in the mixed agent and improve its effective
utilization rate, the energy released during the combustion of the mixed agent must be
controlled. If the energy is too great, the combustion temperature will be too high, which
will lead to the thermal decomposition of the tear agent in the process of heat release. On
the other hand, if the energy is too small, it will delay the heat release efficiency of the
tear agents in the system and even cause the release velocity to be too slow, making it
difficult to reach the combat concentration in a short time, which will greatly reduce the
technical and combat effectiveness of this kind of ammunition [3–7]. At the same time, the
products formed by incomplete thermal diffusion will also aggravate the burden on the
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environment. Therefore, it is very important to study the combustion characteristics of its
formula in order to improve the effective utilization of the lacrimal agent OC in the system
and improve the action efficiency of this kind of mixed agent [8].

Through a literature review [9–11], it was found that 5-amino-1h-tetrazole (5AT), as
an environmentally friendly combustible agent, has been greatly developed as a solid
propellant and in other fields. Its greatest advantage is that, compared with other nitrogen-
containing compounds, its nitrogen mass fraction is as high as 82.3%, and the combustion
product is harmless N2, with high gas production, which is more conducive to the diffusion
of the functional elements in the mixture. 5AT is considered to be an ideal fuel in gas
generators with a low combustion temperature. The latest research results have shown that
adding an appropriate amount of 5AT instead of a sugar compound as the combustible
agent in the formula of colored smoke pyrotechnic agents can significantly improve the
smoke’s performance in action efficiency and durability [12–15].

However, no attempt has been made to improve the formula of combustion-type tear
gas mixtures. Based on the similar principle of action between combustion-type colored
smoke agents and combustion-type tear gas mixtures [16], on the basis of an unchanged
oxygen mass fraction coefficient (OB), this study attempted to introduce 5AT in different
proportions such as 0%, 5%, 10%, 15%, and 20% into the system as the second combustible
agent to obtain five groups of different formulas. TG-DSC, a thermocouple, and a laser
smoke test system were used to characterize the characteristic parameters of combustion,
such as the combustion temperature and velocity, as well as the end-point effects such as
smoke concentration and particle size. The apparent activation energy, pre-exponential
factor, and other thermodynamic parameters in the pyrolysis process were obtained by
Starink’s method and the Flynn–Wall–Ozawa method. At the same time, in order to
further explore the pyrolysis mechanism of combustion, the possible reaction models in the
pyrolysis process of the different formulations were deduced by the Coats–Redfern model-
fitting method. The study provides valuable guidance for improving the performance and
combustion mechanism of this kind of mixture.

2. Experiment and Method
2.1. Materials and Main Experimental Equipment

The main raw materials were chemically pure capsicum oleoresin, OC for short
(C18H27NO3) from Aldrich, St. Louis, MO, USA, and potassium chlorate (KClO3), lactose
(C12H22O11), 5-amino-1h-tetrazole (CH3N5), phenolic resin ((C8H6O2)n) and basic mag-
nesium carbonate ((MgCO3)4·Mg(OH)2·5H2O), all of which were analytically pure and
purchased from Aladdin Biochemical Technology Co., Ltd., Shanghai, China.

The main test equipment was an HS-STA-002 synchronous thermal analyzer (sensi-
tivity: 0.01 mg) produced by Hesheng Instrument Technology Co., Ltd., Shanghai, China,
with a resolution of 0.06 mV, a test temperature range of room temperature to ~1000 ◦C, a
temperature test accuracy of ±0.05 ◦C, and a calorimetric sensitivity of ±0.5%.

Other equipment included an analytical balance (BSA224S-CW) produced by Saidoris
Instrument System Co., Ltd., Gottingen, Germany; a K-type thermocouple (FLUKE53-2B)
produced by Fluke company, Everett, America; an intelligent digital display vacuum drying
oven (DHG-9140) produced by Donglu Instrument and Equipment Company, Shanghai,
China; a high-speed camera (X8PRO) produced by Mingce Electronic Technology Company,
Shanghai, China; and a smoke concentration test system (JCY-80e) produced by Chuangyi
Environmental Testing Equipment Co., Ltd., Qingdao, China.

The samples were prepared according to different formulations designed by a uniform
design method, as shown in Table 1. Figure 1 shows the sample preparation flowchart, and
Figure 2 shows five different prepared samples.
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Table 1. Formula of the mixed agents at OB = −0.18 based on a uniform design method.

Component
Formula

Oxidant Combustible Agent Coolant Adhesive Tear Agent

KClO3
(wt%)

C12H22O11
(wt%) CH3N5 (wt%) (MgCO3)4·Mg(OH)2

·5H2O (wt%)
(C8H6O2)n

(wt%)
OC

(wt%)

P1 32.0 27.2 0 7.1 6.3 27.4
P2 30.4 23.8 5.0 7.1 6.3 27.4
P3 28.9 20.3 10.0 7.1 6.3 27.4
P4 27.3 16.9 15.0 7.1 6.3 27.4
P5 25.8 13.4 20.0 7.1 6.3 27.4
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2.2. Test of Combustion Characteristics
2.2.1. Combustion Temperature Test

In order to reduce the influence of the oxygen concentration in the external environ-
ment on the combustion environment of the sample, the test ignited each sample in an
N2 environment, measured the temperature with a K-type thermocouple, and recorded
the whole process with a high-speed camera. Three groups of tests were conducted for
each group of samples, and the average value of the three groups of data was taken as the
measurement result [17].

2.2.2. Burning Rate Test

The burning rate is also one of the important indexes used to measure the combat
effectiveness of combustion tear gas mixtures. The burning rate can have a direct impact
on the smoke effect of the agent. Linear velocity or mass velocity is usually used for
pyrotechnic agents. In general, the burning rate generally refers to the linear burning rate,
which refers to the displacement of the combustion wave in front of the mixed grain along
its normal direction in units of time [18], and it is expressed as:

v =
dl
dt
(mm/s) (1)

where v is the linear burning rate of the mixed grain, and dl is the displacement of the
combustion wave of mixed grain along its normal direction in time dt (unit: mm/s). During
the test, an electric igniter was used to ignite the grain, and the test was carried out in the
smoke box in an N2 environment.
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2.3. Test of Combustion Smoke Characteristics

In order to characterize the combustion smoke concentration and particle size dis-
tribution of the sample, a laser smoke concentration tester was used for testing, and the
data were collected and analyzed with software. Its principle is shown in Figure 3. The
samples’ specifications are cylinders with a diameter of 15 mm and a height of 20 mm. The
specifications of the smoke collection box are 50 cm × 50 cm × 50 cm.
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2.4. Thermal Behavior Analysis

In order to study the thermal behavior of the sample, an synchronous thermal analyzer
was used. Before the test, we first calibrated the differential thermal analysis baseline and
temperature of the synchronous thermal analyzer and then placed about 8–10 mg of the
different samples into the ceramic crucible and heated the samples from 30 ◦C to 600 ◦C
at a heating rate of 5, 10, 15, and 20 ◦C·min−1. In order to avoid environmental impact,
the whole test process was carried out in an N2 atmosphere, and the ventilation rate was
40 mL·min−1.

2.5. Pyrolysis Kinetics

In order to further explore the reaction mechanism of each stage in the combustion
process of the combustion tear gas mixture, Starink’s method and the Flynn–Wall–Ozawa
method with high accuracy were selected to calculate the corresponding thermal decompo-
sition kinetic parameters [19–22] and the Coats–Redfern equation was used to predict the
pyrolysis reaction model of each stage of the sample and to thus determine the reaction
type of each stage so as to provide a certain theoretical basis for an in-depth study and
improvement of its combustion environment.

The equation of Starink’s method [23] is:

ln
β

T1.8 = −1.008 · Ea

RT
+ C (2)

The equation of the Flynn–Wall–Ozawa method [24,25] is:

ln β + 0.4567
Ea

RT
= C (3)

The Coats–Redfern method equation [26] is:

ln
g(α)
T2 = ln

[
AR
βEa

(
1− 2RT

Ea

)]
− Ea

RT
(4)

where β is the heating rate, T is the characteristic temperature, Eα is the activation energy of
the reaction, R is the molar gas constant, and A is the pre-exponential factor of the reaction.

By combining 17 common g(α) substitutes into Equation (4), we can solve the linear
correlation coefficient between ln[g(α)/T2] and 1/T. When the calculated linear correlation
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coefficient reaches the maximum, the corresponding reaction model of the selected g(α) is
the reaction model of the sample at this stage. The 17 commonly used reaction models are
shown in Table 2 [27].

Table 2. Thermal decomposition reaction models of 17 common solid substances.

Reaction Model g(α) f(α) Abbreviation

Power law α 1 P1
Power law α1/2 2α1/2 P2
Power law α1/3 3α2/3 P3
Power law α1/4 4α3/4 P4
Power law α3/2 2/3α1/2 P2/3

Avrami–Erofeev [−ln(1−α)]1/2 2(1−α) (−ln(1−α))1/2 A2
Avrami–Erofeev [−ln(1−α)]1/3 3(1−α) (−ln(1−α))2/3 A3
Avrami–Erofeev [−ln(1−α)]1/4 4(1−α) (−ln(1−α))3/4 A4
One-dimensional α2 1/2α D1
Two-dimensional (1−α)ln(1−α) + α [−ln(1−α)]−1 D2

Three-dimensional [1−(1−α)1/3]2 3/2(1−α)2/3[1−(1−α)1/3] D3
Ginstling-Brounshtein 1−(2α/3)−(1−α)2/3 3/2[(1−α)−1/3-1]−1 G-B

First-order −ln(1−α) 1−α F1
Second-order (1-α)−1-1 (1−α)2 F2
Third-order [(1−α)−2−1]/2 (1−α)3 F3

Contracting area 1−(1−α)1/2 2(1−α)1/2 C2
Contracting volume 1−(1−α)1/3 3(1−α)2/3 C3

3. Results and Discussion
3.1. Analysis of the Combustion Characteristics
3.1.1. Combustion Temperature Analysis

Figure 4 shows the combustion temperature-time distribution of Samples P1–P5
measured by the thermocouple method. It can be seen that the order of the maximum
combustion temperature (Tmax) of the samples is Tmax (P5) > Tmax (P1) > Tmax (P4) > Tmax
(P2) > Tmax (P3). At the same time, it is not difficult to see that when the mass fraction of
5AT is 10%, the combustion temperature of the sample is the lowest (588 ◦C), but when
the mass fraction of 5AT is 20%, the combustion temperature of the sample is the highest
(676 ◦C); the difference between them is nearly 90 ◦C. This shows that 5AT has a great
influence on the combustion temperature of the system.
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Figure 4. Combustion temperature-time distribution of Samples P1–P5 measured by a thermocouple.

Figure 5 shows the variation trend of the maximum combustion temperature of
samples with different 5AT mass fractions in the system. It was found that with an increase
in the 5AT mass fraction, the maximum combustion temperature first decreases and then
increases. When the mass fraction of 5AT is less than 10%, the combustion temperature
of the system decreases with an increase in the 5AT mass fraction, but when the mass
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fraction of 5AT is more than 10%, the combustion temperature of the system increases with
an increase in the 5AT mass fraction. This is mainly related to the redox reaction of 5AT
with the oxidant KClO3 and its own pyrolysis reaction. Among these, the former is an
exothermic reaction and the latter is an endothermic reaction. When the mass fraction of
5AT in the system is less than 10%, the heat released by 5AT participating in the redox
reaction in the system is less than the heat absorption required for its own pyrolysis, so the
overall combustion temperature of the system decreases. When the mass fraction of 5AT
in the system is higher than 10%, the heat release of 5AT participating in the reaction is
greater than the heat absorption required for its own pyrolysis, so the overall combustion
temperature of the system will rise.
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Figure 5. Variation trend of the maximum combustion temperature of samples with different 5AT
mass fractions in the system.

3.1.2. Analysis of Burning Rate

Table 3 shows the burning rate of Samples P1–P5 in the same nitrogen atmosphere,
with an air pressure of 0.1 MPa, room temperature T = 20 ◦C, and relative humidity
RH = 30%. The results show that under the same atmospheric conditions, the burning rates
of samples with different formulas show little difference. The maximum is 1.08 mm·s−1,
the minimum is 1.03 mm·s−1, and the difference is only 0.05 mm·s−1, which is basically
the same level of burning rate. This shows that when all the other conditions are the same,
the addition of 5AT to the system does not affect the overall combustion rate of this kind
of mixture.

Table 3. Test results of the burning rate of samples.

Sample Burning Rate I
(mm·s−1)

Burning Rate II
(mm·s−1)

Burning Rate III
(mm·s−1)

Average Burning
Rate (mm·s−1) Standard Deviation (σ)

P1 1.05 1.08 1.08 1.07 0.0173
P2 1.07 1.09 1.08 1.08 0.01
P3 1.03 1.06 1.09 1.06 0.03
P4 1.03 1.05 1.07 1.05 0.02
P5 1.01 1.03 1.05 1.03 0.02

3.2. Smoke Characteristic Analysis

In order to evaluate the effect of 5AT on the thermal diffusion effect of the tear agent in
combustion tear gas mixtures, the smoke concentration and particle size distribution of the
samples were characterized; the results are shown in Figures 6 and 7. Figure 6 shows the
particle size distribution of the combustion smoke of Samples P1–P5. It can be seen from the
figure that the average particle size of the combustion smoke of Samples P1–P5 is mainly
distributed between 833.4–839.8 µm. The relationship between the smoke concentration
and average particle size of different samples and the mass fraction of 5AT in the system
is shown in Figure 7. It is not difficult to see that when the mass fraction of 5AT in the
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system is less than 10%, the smoke concentration (C) and average particle size (AP) show
an increasing trend. When the amount of 5AT in the system is 10%, the C and AP values of
smoke reach the maximum, which are 68.59% and 839.8 µm, respectively. When the mass
fraction of 5AT in the system is greater than 10%, the C and AP values of the sample smoke
show a decreasing trend. When the mass fraction of 5AT in the system is 20%, the C and
AP values of the smoke are the smallest: 53.58% and 833.4 µm, respectively.
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Figure 6. Particle size distribution of the combustion smoke of Samples P1–P5.
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Figure 7. Variation trend of the smoke concentration and average particle size of samples with
different 5AT mass fractions in the system.

Compared with the ranking of the maximum combustion temperature (Tmax) of the
different formulations measured above, the rankings for smoke concentration and the
average particle size of different samples were just the opposite; that is, the higher the Tmax,
the smaller the corresponding C and AP values. On the contrary, the lower Tmax, the greater
the corresponding C and AP values. This may be related to the thermal decomposition of the
tear agent OC during the combustion process of the system; that is, when the combustion
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temperature is higher, the amount of OC will increase, and the corresponding C value will
decrease. With the thermal decomposition of the tear agent OC, the corresponding smoke
AP value will decrease.

3.3. Pyrolysis Behavior Analysis and Related Kinetic Analysis
3.3.1. Thermal Behavior Analysis of Individual Components

Figure 8 shows the distribution of each individual component in the mixed reagent
system as the TG-DSC-DTG curve at β = 10 ◦C·min−1. According to the TG curve, compared
with other components in the system, the temperature at which the oxidant KClO3 begins
thermal decomposition is higher. Near 400 ◦C, the decomposition process is mainly one
stage, and the weight loss ratio is about 30%.
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Figure 8. TG-DSC-DTG curve of each individual component in mixed reagent sample at
β = 10 ◦C·min−1.

The temperature of the thermal decomposition of 5AT is the lowest, which starts near
200 ◦C. There is an obvious endothermic peak in the weight loss process of thermal decom-
position, indicating that its thermal decomposition is mainly an endothermic process [28].
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According to the weight loss trend of the TG curve, the weight loss process is mainly
divided into three stages, for which the weight loss ratio is about 40%, 10%, and 30%.

Compared with sucrose, which is also a combustible agent, the temperature when
sucrose starts thermal decomposition is slightly higher than that of 5AT; the weight loss
begins near 210 ◦C, and there is an exothermic peak in the thermal decomposition pro-
cess [29], indicating that the thermal decomposition of sucrose is mainly an exothermic
process. According to the weight loss trend of the TG curve, the weight loss process is
mainly divided into two stages: the weight loss ratio of the first stage is about 70%, and the
weight loss ratio of the second stage is about 30%.

According to the TG-DSC-DTG curve of the lacrimal agent OC and previous re-
search [8,30], the endothermic peak near 58 ◦C corresponds to its melting point. The weight
loss phenomenon begins at around 230 ◦C, and the weak exothermic phenomenon does
not appear until near 340 ◦C. In this temperature range, the DTG curve corresponds to an
obvious pyrolysis weight loss peak, which is mainly considered to be the thermal diffu-
sion process of OC. The second exothermic peak near 500 ◦C corresponds to the thermal
decomposition of OC, and the weight loss ratio in this stage is about 10%.

According to the TG-DSC-DTG curve of the basic coolant magnesium carbonate
and previous studies [31], the pyrolysis process is mainly divided into two stages. The
temperature range of the first stage is 220–360 ◦C, and the weight loss ratio is about 16%.
This is considered to mainly be the loss process of crystal water. The temperature range of
the second stage is 360–500 ◦C, and the weight loss ratio is about 55%, which is basically
consistent with the theory of complete pyrolysis to produce carbon dioxide, magnesium
oxide, and water.

3.3.2. Thermal Behavior Analysis of the Samples
DSC Analysis of the Samples

Figure 9 shows the TG-DSC curve of Samples P1–P5 at a heating rate of β = 10 ◦C·min−1.
According to the DSC curve, in the temperature range of 30–600 ◦C, the formulae of Samples
P1–P4 mainly correspond to four thermal behaviors, which are the primary endothermic
phenomenon and the tertiary exothermic phenomenon successively (the corresponding
peak temperatures are T1, T2, T3, and T4).
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Figure 9. The TG-DSC curve of Samples P1–P5 at β = 10 ◦C·min−1.
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However, P5 corresponds to five thermal behaviors, namely the primary endothermic
phenomenon and four exothermic phenomena (the corresponding peak temperatures are
T5-1, T5-2, T5-3, T5-4, and T5-5), as shown in Table 4.

Table 4. Characteristic peak temperatures of samples P1–P5 corresponding to the DSC curve at
β = 10 ◦C·min−1.

Peak Temperature Formula T1 (◦C) T2 (◦C) T3 (◦C) T4 (◦C) T5 (◦C)

P1 60.61 171.72 330.81 443.92 –
P2 59.32 160.81 332.03 462.94 –
P3 58.61 158.33 332.21 473.61 –
P4 58.22 157.63 330.04 506.73 –
P5 62.02 162.22 276.05 327.34 516.82

It can be seen from the characteristic peak temperatures in Table 4 that the thermal
behavior of the formulae of Samples P1–P4 is basically the same. From P1 to P4, with
the increase in 5AT mass fraction in the formula, the first exothermic peak T2 gradually
decreases and the third exothermic peak T4 gradually increases, while the endothermic
peak T1 and the second exothermic peak T3 have no obvious change. In combination with
the TG-DSC-DTG curve of individual components in the previous section, it can be seen
that the endothermic peak T1 and the second exothermic peak T3 of P1–P4 correspond to
the melting point of OC in the system and the temperature at which pyrolysis begins. The
first exothermic peak, T2, is mainly caused by the exothermic oxidation–reduction reaction
of the oxidant KClO3, combustible C12H22O11, and 5AT. With an increase in 5AT, the initial
temperature of the reaction at this stage moves to the left, and the peak’s shape gradually
becomes gentle, which indicates that the addition of 5AT can slow down the intensity of the
reaction, which may be related to the need to absorb some heat for the decomposition of
5AT [32,33]. Compared with P1–P4, P5 also has a weak exothermic peak in the temperature
range of 200–300 ◦C. In combination with the changes in the components in the formula
and the pyrolysis curve of each individual component, it is considered that the exothermic
phenomenon is related to the fact that the heat released by 5AT participating in the reaction
in the system begins to be greater than the heat absorbed by its own pyrolysis.

The exothermic peak of Samples P1–P5 near 330 ◦C mainly corresponds to the initial
thermal decomposition of OC in the system. The exothermic enthalpy corresponding to
each exothermic peak is shown in Table 5. It can be seen that with an increase in the
5AT mass fraction in the system, the exothermic enthalpy at the corresponding position
first decreases and then increases. The corresponding exothermic enthalpy of P3 is the
smallest, which indicates that the amount of thermal decomposition of OC in P3 is the
smallest, which is the same as the smoke concentration of P3 measured above. The results
are basically consistent with those of the largest average particle size.

Table 5. Exothermic enthalpy corresponding to the exothermic peak of Samples P1–P5 near 340 ◦C.

Formula P1 P2 P3 P4 P5

Exothermic enthalpy (∆H) 4.61 J/g 4.48 J/g 3.54 J/g 4.51 J/g 4.79 J/g

TG-DTG Analysis of the Samples

Figure 10 shows the TG-DTG curve of Samples P1–P5 at β = 10 ◦C·min−1. In the DTG
curve of the samples, the thermogravimetric process of the samples can be divided into
several different stages according to the peak value corresponding to the mass loss rate of
the samples.
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Figure 10. The TG-DTG curve of Samples P1–P5 at β = 10 ◦C·min−1.

Table 6 shows the characteristic values such as the initial temperature, the temperature
corresponding to the DTG peak value, and the thermal weight loss ratio at each stage. From
the TG-DTG curve, it can be seen that the pyrolysis weight loss process of P1–P5 is mainly
divided into four stages in the temperature range of 30–600 ◦C. Combined with the curve
in Figure 10, the first weight-loss stage is 150–220 ◦C, and an obvious DTG peak can be
observed at this stage, in which the peak shape of P1 is the sharpest, indicating that the
reaction is violent, and the peak value of the corresponding curve is 0.71% ◦C−1. With an
increase in the 5AT mass fraction in the system, the exothermic peak tends to be gentle. The
peak values of the corresponding curves of P2–P5 are 0.4% ◦C−1, 0.14% ◦C−1, 0.19% ◦C−1,
and 0.31% ◦C−1, respectively. Compared with P1, the DTG peak in the corresponding
stages decreases significantly. According to Table 6, the thermal weight loss ratio ML1
corresponding to P1 at this stage is the largest. In combination with the previous research
results of this kind of mixed agent [34], it can be considered that the redox reaction between
the combustible agent and the oxidant has occurred in this stage. The peak value of P1′s
curve is the largest, and the thermal weight loss ratio is the largest, which is caused by the
violent reaction between the combustible C12H22O11 and the oxidant KClO3 at this stage.

The temperature range of the second stage is 190–320 ◦C. At this stage, except for
P5, which corresponds to a weak exothermic peak, the other formulae have no obvious
heat absorption and exothermic phenomena. The DTG curve of this stage corresponds
to an obvious peak, indicating that the thermal weight loss at this stage is obvious. In
combination with the properties of each component in the mixed agent and relevant
research results, it can be determined that this mainly corresponds to the thermal diffusion
process of OC in the mixed agent; that is, the greater the weight loss ratio at this stage, the
greater the amount of OC for effective thermal diffusion. When the heating rate of Samples
P1–P5 is 10 ◦C min−1, the thermal weight loss ratio of this stage is 26.7%, 27.5%, 28.9%,
27.1%, and 24.8%, respectively. It can be seen that the weight loss ratio of P3 is the largest,
while the weight loss ratio of P5 is the smallest. The corresponding order is consistent with
the concentration of each sample measured above. Therefore, appropriately increasing the
mass fraction of 5AT in the system can improve the effective utilization rate of the lacrimal
agent OC in the system.
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Table 6. Starting and ending temperatures and corresponding characteristic values of Samples P1–P5
at each stage, based on the DTG curve.

(a) Eigenvalues corresponding to the first stage.

Formula
β

P1 P2 P3 P4 P5
To Tp Tf ML To Tp Tf ML To Tp Tf ML To Tp Tf ML To Tp Tf ML

5 160.81 170.04 191.02 19.2% 136.51 164.51 191.93 18.5% 139.21 159.42 179.22 15.2% 134.22 162.41 178.81 15% 138.52 154.82 190.43 16.5%
10 152.92 176.33 194.71 15.7% 148.13 168.23 198.91 15.6% 144.03 172.83 194.13 10.1% 142.63 171.62 190.02 10% 147.03 165.81 203.42 14%
15 161.83 184.42 200.62 13.2% 150.42 181.54 201.14 11.7% 142.04 173.31 199.24 14% 147.02 174.11 205.03 14.3% 140.54 172.43 214.62 18.9%
20 158.93 189.33 209.83 17.4% 151.02 183.52 208.02 16.4% 144.91 178.94 214.03 17% 150.04 189.02 211.03 9.7% 148.04 182.22 219.13 16.1%

(b) Eigenvalues corresponding to the second stage.

Formula
β

P1 P2 P3 P4 P5
To Tp Tf ML To Tp Tf ML To Tp Tf ML To Tp Tf ML To Tp Tf ML

5 191.02 258.82 270.02 28.4% 191.92 251.62 274.81 27.8% 179.22 250.52 273.12 35.7% 178.81 245.63 271.21 27.5% 190.42 253.62 278.02 24.2%
10 194.71 275.63 291.41 26.7% 198.93 273.04 294.22 27.5% 194.13 268.13 285.63 28.9% 190.02 264.42 284.42 27.1% 203.43 267.72 296.42 24.8%
15 200.62 279.22 303.32 27.5% 201.12 276.33 309.73 31.9% 199.22 276.54 307.42 32.6% 205.04 276.31 302.73 30.6% 214.61 283.53 307.23 25.4%
20 209.81 286.33 312.04 26.4% 208.03 283.14 311.02 29.9% 214.03 289.72 317.44 33.6% 211.05 280.82 314.01 28.71% 219.12 288.81 313.82 23%

(c) Eigenvalues corresponding to the third stage.

Formula
β

P1 P2 P3 P4 P5
To Tp Tf ML To Tp Tf ML To Tp Tf ML To Tp Tf ML To Tp Tf ML

5 270.02 334.32 374.03 14.5% 274.82 329.72 391.04 11.8% 273.13 331.91 382.13 15.8% 271.21 329.62 389.23 11.2% 278.03 328.52 392.63 11.5%
10 291.43 336.43 397.31 10.9% 294.22 339.23 410.05 10.4% 285.62 334.82 390.62 9.1% 284.42 332.93 398.32 7% 296.42 329.83 410.82 13.2%
15 303.32 349.03 423.52 10.9% 309.71 340.11 414.61 9.2% 307.44 340.04 407.03 8.4% 302.71 334.72 413.23 7.6% 307.23 330.14 413.13 10.5%
20 312.01 350.92 426.04 11.5% 311.03 343.04 419.04 11.2% 317.45 341.03 414.82 8.3% 314.02 336.02 440.72 6.9% 313.81 332.51 422.05 10.6%

(d) Eigenvalues corresponding to the fourth stage.

Formula
β

P1 P2 P3 P4 P5
To Tp Tf ML To Tp Tf ML To Tp Tf ML To Tp Tf ML To Tp Tf ML

5 374.03 421.62 465.05 23.5% 391.03 438.53 482.03 20.7% 382.12 456.32 486.62 26.2% 389.23 486.04 499.92 26.3% 392.61 512.32 532.21 28.5%
10 397.32 444.93 499.03 21.6% 410.01 462.52 501.72 20.6% 390.63 472.43 502.13 19.5% 398.32 496.92 512.73 19.1% 410.82 513.21 540.32 28.3%
15 423.52 453.71 512.03 17.3% 414.62 469.51 513.71 21.6% 407.04 499.04 531.03 21.3% 413.23 514.83 544.64 22.7% 413.11 529.43 573.02 28%
20 426.04 465.74 523.02 20.1% 419.03 480.24 530.04 22.2% 414.82 500.82 554.02 22.1% 440.73 526.91 562.03 19% 422.03 536.44 581.04 25.7%

Note: To is the initial temperature; TP is the peak temperature; Tf is the cut-off temperature; ML refers to the mass
ratio of thermal weight loss in this stage; To, TP, Tf unit: ◦C; ML unit: %.

The temperature range of the third stage is 270–440 ◦C. A weak exothermic peak can
be observed at this stage, and the temperature of this exothermic peak is consistent with
the corresponding exothermic peak in the TG-DTG curve of the individual component
OC. Therefore, it can be determined that this exothermic peak is related to the exothermic
pyrolysis of OC.

3.3.3. Analysis of the Pyrolysis Kinetics of the Samples

In order to further explore the thermal decomposition mechanism of Samples P1–P5
and to calculate the kinetic parameters of each stage of the reaction, Starink’s method and
the Flynn–Wall–Ozawa method were used [35–37]. The TG-DTG curve of Samples P1–P5
at different heating rates is shown in Figure 11. The corresponding characteristic peak
temperature of each stage at different heating rates for each sample is shown in Table 6.

Starink’s Method

Based on the measured TG-DTG curves of P1–P5 at different heating rates, combined
with the characteristic peak temperatures of the four stages in Table 6, the value of ln(β/TP

1.8)
and 1/TP can be obtained for the sample across the four pyrolysis stages [23]. Taking 1/TP
as the independent variable and ln(β/TP

1.8) as the dependent variable, we then carried out
linear fitting to obtain the slope of the fitting line and substituted it into Equation (2) to
obtain the activation energy Ea at this stage.
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Figure 11. TG-DTG curve of Samples P1–P5 at different heating rates.

The linear fitting results of ln(β/TP
1.8) and 1/TP are shown in Figure 12, and the results

of calculating the activation energy Ea for each stage are shown in Table 7. The correlation
coefficient R2 represents the accuracy of the fitting results, and the closer it is to 1, the
higher the reliability.
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Figure 12. Activation energy curve of Samples P1–P5 at each stage of pyrolysis calculated via
Starink’s method.
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Table 7. Reaction kinetic parameters of Samples P1–P5 at each stage of pyrolysis calculated via
Starink’s method.

Stage Stage 1 Stage 2 Stage 3 Stage 4

Formula Ea (kJ/mol) R2 Ea (kJ/mol) R2 Ea (kJ/mol) R2 Ea (kJ/mol) R2

P1 110 ± 7 0.98223 116 ± 7 0.98417 193 ± 9 0.91128 124 ± 6 0.99518
P2 91 ± 8 0.93143 95 ± 7 0.97126 299 ± 9 0.96533 137 ± 7 0.99147
P3 106 ± 8 0.96432 80 ± 5 0.99133 406 ± 8 0.97029 115 ± 8 0.96539
P4 78 ± 5 0.96847 82 ± 7 0.99545 646 ± 7 0.99846 148 ± 6 0.96738
P5 76 ± 6 0.98638 83 ± 5 0.98949 659 ± 8 0.91439 164 ± 8 0.90127

Flynn–Wall–Ozawa method.

It can be seen from the results that with the same OB, with the addition of 5AT to
the mass fraction, the activation energy of the first and second stages of P2–P5 shows a
decreasing trend compared with P1, which confirms that the starting temperature of the
component reaction after the addition of 5AT mentioned in the pyrolysis behavior analysis
is significantly lower, which plays a certain role in promoting the reaction at this stage.
In addition, if we compare the activation energies of the first and second stages of each
formula, it can also be seen that only the activation energy of P3 in the second stage is
significantly lower than that of the first stage, indicating that P3 can spontaneously carry
out the second stage reaction after the first-stage reaction, which again confirms the reason
why the weight loss ratio of P3 in the second stage is significantly higher than that of
other samples. The activation energy of the third stage of P2–P5 increases significantly
compared with that of P1, which may be related to a large amount of heat absorbed by
the pyrolysis of 5AT. With a continual increase in the mass fraction of 5AT, the activation
energy corresponding to this stage also increases accordingly.

Based on the measured TG-DTG curve data (Table 6), the corresponding temperature
value 1/T at the same value of conversion α is an independent variable and lnβ is a
dependent variable. The obtained data points were linearly fitted, then the slope of
the straight line was obtained. By substitution in Formula (3), the activation energy Eα
corresponding to the reaction conversion α can be obtained at this stage [24,25]. Figure 13
shows the activation energy curve of Samples P1–P5 at each stage obtained via the Flynn–
Wall–Ozawa method.

The activation energy of each stage for P1–P5 obtained by the Flynn–Wall–Ozawa
method (Figure 13) is basically consistent with the activation energy of each stage obtained
by Starink’s method (Table 7), which further verifies the reliability of the kinetic parameters
obtained by this method.

In addition, according to the activation energy curve of each stage of the mixed reagent
obtained by the Flynn–Wall–Ozawa method, the reaction activation energy at the first, third,
and fourth stages of thermal decomposition of Samples P1–P5 varies with α. This shows
that the three-stage reaction process is a multi-step reaction, which is basically consistent
with the results of the pyrolysis analysis. In the second stage of thermal decomposition,
when α > 0.3, there is an independent linear relationship between the corresponding
reaction activation energy and the conversion α. This shows that the thermal decomposition
process of the sample at this stage is mainly a one-step reaction, which confirms that this
stage is mainly the thermal diffusion process of the tear agent OC in the analysis of the
pyrolytic behavior.
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Figure 13. Activation energy curve of Samples P1–P5 at each stage obtained via the Flynn–Wall–
Ozawa method.

Prediction of the Reaction Model of Samples P1–P5

In order to further explore the reaction mechanism of the thermal decomposition
process of the main charge mixture, the Coats–Redfern method [26,38] was used to predict
the most likely reaction model at each stage. According to 17 common reaction mechanism
functions (Table 3), the linear fitting results of ln[g(α)/T2] and 1/T corresponding to the
pyrolysis reaction at different stages are shown in Figure 14 (the maximum correlation
coefficient has been marked in red in the figure). Table 8 shows the reaction models of
four stages in the pyrolysis process of Samples P1–P5. In Figure 14 and Table 8, we can see
the correlation coefficient obtained by fitting the data based on each reaction mechanism
function and the most likely model of each stage of Samples P1–P5.

Table 8. Reaction model of four stages during the pyrolysis of Samples P1–P5.

Stage
Stage 1 Stage 2 Stage 3 Stage 4

Formula

P1 A3 A4 F3 F1
P2 F2 A4 F3 F1
P3 D3 A4 F3 D2
P4 D3 A4 F2 P2/3
P5 F3 A4 F2 D2

From these results, it can be seen that the reaction models of the first, third, and fourth
stages of the sample change significantly when different amounts of 5AT are added to the
sample, which shows that the reaction models of each stage can be effectively changed by
adding 5AT. At the same time, it also further explains the relevant mechanism of Samples
P1–P5 corresponding to their different combustion characteristics. In addition, for the
second stage, which is most suitable for OC’s thermal diffusion temperature range, the
reaction model maintains a high degree of consistency, which further verifies the correctness
of the physical thermal diffusion weight loss theory of OC in the second stage of pyrolysis
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weight loss. The discovery of this theory is of great significance for studying and improving
the smoke characteristics of combustion tear gas mixtures.
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Figure 14. Fitting curve of the most likely reaction mechanism model of Samples P1–P5 formula ob-
tained via the Coats–Redfern method. (a) Fitting curve of P1′s reaction mechanism model. (b) Fitting
curve of P2′s reaction mechanism model. (c) Fitting curve of P3′s reaction mechanism model. (d) Fit-
ting curve of P4′s reaction mechanism model. (e) Fitting curve of P5′s reaction mechanism model.

4. Conclusions

The conclusions regarding the combustion pyrolysis characteristics and kinetic analy-
sis of a combustion-type tear gas mixture based on 5AT are as follows:

1. Through a comparison of the maximum combustion temperature and the linear
combustion rate of Samples P1–P5 with different amounts of 5AT, it was found that
when the amount of 5AT is 10%, the maximum combustion temperature of the sample
can be reduced by nearly 70 ◦C under the condition that the linear combustion rate is
basically unchanged, thus improving the combustion environment of the mixture.
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2. If we compare the Tmax of Samples P1–P5, and the C and AP of smoke, it can be seen
that the C and AP of smoke are inversely proportional to the Tmax of the sample. The
higher the Tmax of the mixture, the smaller the C and AP values of the corresponding
tear gas. As the combustion temperature of the mixed agent is higher, the amount
of the pyrolytic tear agent OC in the agent will be greater, and the concentration
and particle size of the smoke will be reduced. Combined with the exothermic
enthalpy near 340 ◦C of the DSC curve and the weight loss ratio at the second stage of
pyrolysis of Samples P1–P5, this observation is again confirmed. Therefore, adding
an appropriate amount of 5AT is of great significance for improving the smoke
characteristics of combustion tear gas mixtures.

3. The results of calculating the activation energy of Samples P1–P5 at each stage via
Starink’s method and the Flynn–Wall–Ozawa method are basically the same, which
further verifies that the kinetic parameters obtained by these methods have high
reliability. When the OB value in the formula’s design is fixed, with the addition of
the 5AT mass fraction, the activation energy of the first and second stages of Samples
P2–P5 shows a decreasing trend compared with P1, which confirms that the reaction’s
starting temperature of the components after the addition of 5AT, as mentioned in the
pyrolysis behavior analysis, is significantly lower, which plays a role in promoting the
reaction at this stage.

4. According to the Coats–Redfern method, the most likely reaction models of the
different formulations at each stage were predicted. It can be concluded that with
different amounts of 5AT in the formulation, the reaction models of mixed agents in
the first, third, and fourth stages changed significantly, indicating that the addition
of 5AT can affect the reaction mechanism at some stages. In addition, for Samples
P1–P5, the reaction model at the second stage of pyrolysis is the nucleation model A4,
which maintains a high degree of consistency and further verifies the correctness of
the physical thermal diffusion weight loss theory of the sample at the second stage of
pyrolysis weight loss, which mainly corresponds to OC.
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