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Abstract: Defects in transition metal dichalcogenides play important roles in the field of the catalytic
hydrogen evolution reaction (HER). However, the use of defective MoS2 as HER catalysts remains
controversial because the types of defects are various, including zero-dimensional point defects, one-
dimensional linear defects, and two-dimensional plane defects. Recently, novel structures of linear
defects have drawn more and more attention, and it is necessary to explore their unique properties.
This review focuses on the formation mechanism, fabrication method, accurate atomic structure, and
catalytic hydrogen evolution mechanism of sulfur line vacancies in MoS2 as electrocatalysts. The
structure–activity relationship between line defects and catalytic performance is discussed in detail.
This will provide a route for the design of excellent catalysts by engineering line defects.
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1. Introduction

The development and utilization of new energy is the key to realizing the double
carbon strategy, the core of which is the design and preparation of catalytic materials with
high performance [1–5]. Hydrogen energy, as a form of high-efficiency, zero-emission, and
renewable clean energy, is a new option for optimizing the energy structure and ensuring
the national energy supply, and the electrocatalyst is the core of hydrogen for hydrogen
production in our country [6–8]. The unique structural features give two-dimensional
materials excellent physical and chemical properties and rich scientific connotations.

There are various defect types in monolayer MoS2, including point defects (vacancy
and substitution), dislocation and grain boundaries, etc. [9–15]. These defects will change
the electrical properties of monolayer MoS2 and may induce novel physical phenomena,
such as ferromagnetism. However, in practical applications, the existence of defects will
lead to the electrical performance of single-layer MoS2 (reduced mobility, etc.), and the co-
existence of different types of defects may make single-layer MoS2 become a compensation
semiconductor [16–20]. Therefore, it is of great significance to accurately identify the differ-
ent defect types of single-layer MoS2, control the defect concentration, and then regulate
the band structure and electrical properties of single-layer MoS2 for relevant application
research. Chalcogen vacancy lines, another frequently observed 1D line defect in 2D TMD
materials, can provide additional metallic channels and thus promote catalytic performance,
such as the hydrogen evolution reaction (HER) activity of the host materials [21–27].

Sulfur line vacancy engineering triggered by an electron beam (e-beam), plasma,
chemical treatment, and so forth is comprehensively reviewed. Firstly, e-beam irradiation-
induced defect evolution, structural transformation, and novel structure fabrication are
introduced [28–34]. With the assistance of state-of-the-art characterization methods, in
situ observation of sulfur line vacancy engineering could be realized. Thus, the catalytic
HER mechanism of MoS2 could be ascertained. The challenges and outlooks of sulfur
line vacancy engineering in promoting the development of 2D materials are discussed.
Through this review, we aim to build a correlation between the sulfur line vacancies and
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HER catalytic properties of 2D materials to support the design and enhancement of high
catalytic HER performance.

2. Understanding Linear Defects

Understanding the atomic structure and dynamic evolution of defects is of great
significance for the improvement and performance of two-dimensional material functional
devices [35–38]. Spherical aberration correction transmission electron microscopy not only
has subangstrom spatial resolution but also has many experimental functions [35–40]. It
is a very effective method for studying the structure–activity relationship of materials by
simultaneously studying the crystal structure of materials and the corresponding electronic
structure characteristics at the atomic scale so as to understand the correlation between the
microscopic crystal structure and the properties of samples. Therefore, it has a very wide
range of applications in physics, materials science, and chemistry.

The defect structures of two-dimensional materials are closely related to their physical
and chemical properties, but systematic research on them is still relatively rare. To date,
high-resolution images of monolayer MoS2 have been obtained using high-resolution scan-
ning transmission electron microscopy (STEM) to identify defect types such as vacancies,
substitutions, and grain boundaries [40–46]. However, in order to achieve STEM represen-
tation, MoS2 needs to be transferred from the growing substrate to the STEM microgate for
imaging, and high-energy electron beam bombardment will also induce the generation of
defects. In contrast, scanning tunneling microscopy/tunneling spectroscopy (STM/STS)
in an ultra-high vacuum system can not only realize the in situ atomic-scale morphology
study but also clarify the evolution of electronic structures induced by different defect
types, which provides the most intuitive experimental basis for the subsequent application
research of materials [47–54]. Based on this, Liu et al. reported the generation mechanism
of different types of sulfur vacancies in monolayer MoS2 and studied the regulation effect
of different defect types on the band structure of monolayer MoS2 by STM/STS technology.
It was found that with the increase in the sample annealing temperature (400 to 900 K),
the density of S vacancies gradually increases, and S vacancies will aggregate to form a
chain structure (S2, S3, S4, etc.) [43]. The STS measurements show that the formation of S
vacancies induces the formation of new electronic states at the bottom of the conduction
band and leads to a smaller band gap (2.2 eV after annealing at 400 K; 1.8 eV after annealing
at 900 K), and an N-type doping effect on monolayer MoS2 is produced. Combined with
data statistics and theoretical calculations, it was found that the chemical potential of S in
single S vacancy and chain S vacancy structures is almost the same (−6.87 eV~−6.5 eV),
indicating that the concentration of different types of defects strictly complies with the ther-
modynamic statistical law, and temperature is the only inducing factor for the formation of
defects. This work provides the most intuitive experimental basis and theoretical analysis
for understanding the generation and regulation mechanism of defects in monolayer MoS2,
as well as its regulatory effect on the local electronic structure, and also provides a reference
for the future application of semiconducting monolayer disulfide compounds in electronic
devices. An atomic model of the 1D vacancy line consisting of 2S missing atomic rows
is shown in Figure 1a. This type of 1D line defect in MoS2 and WS2 was well studied
by 4D STEM, as reported by Warner et al. Electron beam irradiation can create defects
in 2D materials due to either a “knock-on” effect, ionization, or beam-induced chemical
etching, facilitating the sculpting of 2D membranes with high spatial accuracy and flexible
pattern design. The removal of a single S atom causes little perturbation to the surround-
ing MoS2 lattice, while the loss of two S atoms from the same atomic column results in
measurable local shrinkage. S vacancies aggregate into linear line defects along a zigzag
path, leading to greater lattice compression, which is more pronounced with increasing
line defect length. Figure 1b,c show two different types of S atom reconstructions with
different amounts of lattice compression. AC-TEM images in Figure 1d,e clearly show the
aggregation of S vacancies into extended line defects along a zigzag path with different
lengths and widths. The directional transport of Mo atoms (or Mo cluster) along the sulfur
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vacancy lines can induce the formation of Mo chains, as shown in Figure 1f. Tarak K. Patra
et al. comprehensively studied the dynamic behavior and spatial distribution of defects in
2D transition metal disulfide using machine learning, molecular dynamics simulation, and
high-resolution electron microscopy, as shown in Figure 1h. This study provides a good
basis for the subsequent rational design and large-scale application of 2D transition metal
disulfide-containing defects.
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Figure 1. (a) Perspective view of an atomic model of the 1D vacancy line consisting of 2S missing
atomic rows. (a) Adapted with permission from [7]. Copyright Springer Nature 2011. (b,c) Two
different types of S atom reconstructions with different amounts of lattice compression. (b,c) Adapted
with permission from [12]. Copyright 2014 American Chemical Society. (d) AC-TEM image showing
the aggregation of S vacancies into extended line defects along a zigzag path with different lengths
and widths. (e) Higher-magnification AC-TEM images at 800 ◦C of an ultralong line defect in MoS2

showing uniform atomic periodicity. (d,e) Adapted with permission from [13]. Copyright 2018
American Chemical Society. (f) Experimental (Exp.) and simulated (Sim.) images of the Mo chain in
MoS2 and the corresponding atomic model. (f) Adapted with permission from [13]. Copyright 2018
American Chemical Society. (g) Defect dynamics in 2-D MoS2 probed by using machine learning,
atomistic simulations, and high-resolution microscopy. (g) Adapted with permission from [16].
Copyright 2018 American Chemical Society.

3. Application of Linear Defects for Catalytic HER

As a typical 2D transition metal disulfide compound, the MoS2 edge structure has
moderate hydrogen adsorption strength and exhibits good HER activity [55–62]. Therefore,
molybdenum disulfide is widely considered a potential non-precious metal HER catalyst
to replace precious metal Pt. However, a large number of sulfur atoms on the molybdenum
disulfide surface are inert to electrocatalytic hydrogen evolution, and the number of active
edge sites is very limited [63–70]. Therefore, it is of great significance to develop effective
methods to stimulate and optimize the S activity on the molybdenum sulfide surface
to increase the number of catalytic active sites of MoS2 and improve its catalytic HER
activity [71–76]. The one-dimensional monoatomic molybdenum chain was successfully
prepared by regulating the MoS2 electrocatalyst with sodium ions. The S atoms on the
substrate were eliminated linearly. The one-dimensional monoatomic molybdenum chain
has a large potential gradient, which makes it easy to accumulate electrons here, storing
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them like a “reservoir”, and has a higher hydrogen atom coverage, as shown in Figure 2a,
which makes catalytic hydrogen evolution easier to proceed. As shown in Figure 2b,
multilayer MoS2 samples rich in sulfur vacancies were prepared by high-temperature
hydrogen etching technology, and the role and effect of surface sulfur vacancies on HER
catalytic performance were analyzed in detail. Multilayer MoS2 samples with an ultra-high
concentration (90%) of surface sulfur vacancies were prepared to achieve the highest HER
activity under alkaline conditions (Figure 2c,d), and their stability could be maintained.
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Figure 2. (a) Gibbs free energy (∆GH) versus hydrogen coverage (φH) for MoS2 with different rows
of S chains. The insert is the atomic structure depicting linear defects created by successive removal of
S atoms along a row. (b) Calculated turnover frequency (TOF) of recently reported MoS2-based HER
electrocatalysts [19]. (a,b) Adapted with permission from [19]. Copyright 2019 Elsevier. (c) Turnover
frequency (TOF) from defective MoS2 nanosheets. (d) The influence of controlled surface S vacancies
of MoS2 on their performance toward hydrogen production [14]. (c,d) Adapted with permission
from [14]. Copyright 2019 American Chemical Society.

4. Conclusions and Outlook

In summary, we have witnessed the rapid development of sulfur line vacancies in
MoS2 in terms of both their fabrication strategies and application fields in electrochemical
hydrogen evolution. Firstly, although many advanced methods have been proven to be
a powerful way of preparing sulfur line vacancies, the development of novel synthesis
strategies for the “precise control” of sulfur line vacancies is still challenging but highly
required. Secondly, sulfur line vacancies provide a suitable platform for investigating
the structure–activity relationships and the potential catalytic mechanisms of hydrogen
evolution reactions. Thirdly, theoretical prediction based on computational modeling has
proved to be a useful tool for discovering sulfur line vacancies for hydrogen evolution
reactions. Strategies based on DFT studies for the rational design of model defects with a
precise atomic structure are still highly desired [77–81].

In conclusion, despite the exciting progress achieved in defects for electrochemical
energy conversion, both opportunities and challenges remain. Thus, defects with a well-
controlled coordination environment and electronic state, combined with advanced in
situ/operando techniques and DFT theoretical studies, will pave the way for both funda-
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mental research and future industrial applications of sulfur line vacancies for various fields
related to electrochemical energy conversion.

(1) The development of in situ dynamic characterization technology and real-time
monitoring of the catalytic reaction process is of great significance for the in-depth under-
standing of reaction mechanisms and the design of efficient catalysts. In situ characteri-
zation instruments, especially under operational conditions, can realize the study of the
structure and chemical composition of materials under working conditions to a certain
extent, which is conducive to understanding the causes of the observed phenomena. There-
fore, it is very important and necessary to develop working conditions, sample surface
structure, and chemical properties in a growing environment.

(2) The wide application of DFT has produced a large amount of data, but the reliabil-
ity and intrinsic self-consistency of these data still need extensive attention. In addition,
in recent years, research on accelerating traditional quantum chemical computation based
on database and machine learning has rapidly emerged, but there is still a lack of orig-
inal innovation in the underlying methods (neural networks, etc.), and it is urgent to
develop “intelligent” tools that can be used for “intelligent” mining catalytic theory and
real theoretical research.
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