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Abstract: Serial crystallography (SX) enables the determination of the structure of macromolecules or
small molecules with minimal radiation damage. In particular, biomolecule structures determined
using the SX technique have the advantage of providing room-temperature crystal structures with
high biological relevance. The SX technique requires numerous crystals to be collected to complete
three-dimensional structural information. To minimize crystal sample consumption, we introduced
SX data collection with fixed-target (FT) pink-beam serial synchrotron crystallography (SSX) at the 1C
beamline of Pohang Light Source II. A new sample holder consisting of a magnetic frame with a nylon
mesh was developed for easy sample handling. The FT-pink-SSX diffraction data were collected by
continuously scanning X-rays using a stepping motor. The room-temperature structures of glucose
isomerase and lysozyme were successfully determined at a resolution of 1.7 and 2.2 Å, respectively.
The use of pink-beam FT-SSX in experimental applications and data acquisition for large beam sizes
is discussed. Our results provide useful information for future pink-beam SSX and SX data collection
using large X-ray beams.
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1. Introduction

Serial crystallography (SX) using an X-ray free-electron laser (XFEL) or synchrotron
X-rays is an experimental technique that can determine the room-temperature structure
of biomolecules or chemical structures [1–6]. In SX experiments, the X-ray exposure time
to crystals is shorter than the X-ray exposure time to crystals in traditional X-ray cryo-
crystallography, thereby minimizing the radiation damage to the crystal samples compared
to that of traditional X-ray cryo-crystallography [7–9]. In particular, the room-temperature
structure of macromolecules obtained using the SX technique provides more biologically
relevant structural information than using traditional macromolecular cryo-crystallography
in cryogenic environments [3,10,11]. In SX experiment, numerous partial diffraction in-
formation are obtained from several crystals and merged to determine the completed
three-dimensional crystal structure [12]. Accordingly, the SX technique requires a large
number of crystal samples compared to traditional macromolecular cryo-crystallography,
which typically uses a single crystal. In addition, the SX technique requires a sample
delivery system to deliver a large number of crystals to the X-ray interaction points in a
stable and serial manner [13]. Various sample delivery systems, such as injectors, fixed
targets, and hybrid-type sample delivery methods, have been developed for the continuous
delivery of crystal samples for X-ray interactions [14]. A typical liquid-jet injector requires a
high flow rate to create a stable injection stream during data collection [15]. The injection of
a crystal sample embedded in a viscous medium produces a stable injection stream at a low
flow rate and is widely used in synchrotron or XFEL facilities [16–18]. However, sample
delivery using a viscous material requires not only the selection of a delivery material that
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can stably store the crystal sample, but also technical efforts to provide a stable injection
stream [16]. The fixed-target scanning method is widely applied for SX data collection at
XFEL facilities or synchrotrons [19–24]. It can minimize sample consumption compared
to injection systems and does not physically impact the crystal sample during data collec-
tion [25]; in the case of the injector method, pressure is applied to the crystal sample as it
passes through the nozzle, which may have a physical effect on the crystal. Conversely,
the FT scanning method has certain drawbacks, including dehydration and the propensity
for crystals to assume a specific orientation on the sample holder. Additionally, crystal
deposition on the sample holder using a pipette may impart physical damage to the crystal
sample, depending on the deposition technique used.

A hybrid-type sample delivery method, such as mix-and-diffuse [26], drop-on-drop [27],
a combination of an injector and fixed-target scanning [28], TapeDrive [29], and capillary-
based sample delivery [30,31], is useful for reducing sample consumption. Among these
various sample methods, the injector-based and hybrid-type sample delivery method re-
quires technical handling of the injector for stable sample delivery, whereas the fixed-target
scanning method only requires mounting a sample holder containing a crystal sample
on a translator, without a specialized sample delivery technique. Therefore, the FT-SX
experimental technique is convenient for users.

One way to minimize the consumption of crystal samples is to perform serial crystal-
lography using pink-beam X-rays [32,33]. A pink beam has a photon flux that is substan-
tially higher than that of the monochromatic beam and can reduce the problem of ‘partial
reflection’ measurement that is inherent in the monochromatic beam [32–35]. Recently, we
successfully demonstrated pink-beam serial crystallography on the beamline 1C at Pohang
Light Source II (PLS-II) using a syringe-based sample delivery method [36]; however, appli-
cations using other experimental techniques have not yet been attempted. The application
of pink-beam SSX using a fixed-target sample delivery method will expand the scientific
program at the PLS-II 1C beamline as well as provide insights into FT-SSX experiments for
other beamlines.

In this study, we performed fixed-target pink-beam serial crystallography (FT-pink-
SSX) at beamline 1C at PLS-II. Herein, we introduce a newly developed magnetic-based
sample holder. We collected diffraction data for glucose isomerase and lysozyme using a
continuous scanning method and successfully determined their room-temperature struc-
tures. We discuss the experimental possibilities and limitations of the FT SSX experiment
at 1C in PLS-II. These results will contribute to future FT pink-beam crystallography
applications.

2. Materials and Methods
2.1. Protein Crystal Preparation

Glucose isomerase from Streptomyces rubiginosus (cat. no. HR7-102) was purchased
from Hampton Research (Aliso Viejo, CA, USA). This commercial product contains crys-
tallized glucose isomerase in a solution of 6 mM Tris-HCl, pH 7.0, 0.91 M (NH4)2SO4, and
1 mM MgSO4, which is directly used for SX data collection without further purification or
crystallization. The crystal suspension (50 µL) was mixed with a solution of 20 mM MgCl2
to load the metal-binding site of the active site of glucose isomerase with magnesium ions.
The size of the glucose isomerase crystal was approximately <5–300 µm, and the sample
contained large- and small-sized glucose isomerase crystals.

Lysozyme isolated from chicken egg whites (cat. no. L0036) was purchased from
Sigma-Aldrich (St. Louis, MO, USA). The crystallization procedure of lysozyme for the SX
experiment using the batch crystallization method was the same as the method used in
a previous report [36]. Briefly, the lysozyme powder (100 mg/mL) dissolved in solution
containing 10 mM Tris-HCl, pH 8.0, and 200 mM NaCl was mixed with a crystallization
solution containing 0.1 M Na-acetate, pH 4.4, 8% (w/v) polyethylene glycol 8000, and 4 M
NaCl in a 1.5 mL tube. The mixture was vortexed for 30 s at 3000 rpm and incubated at
25 ◦C for 30 min. The size of the lysozyme crystals was approximately 20 × 20 × 20 µm3.
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2.2. Sample Holder Preparation

A magnetic-based sample holder frame was generated by assembling eight magnets
(width × length × depth: 5 mm × 20 mm × 1 mm). The outer and inner dimensions of the
sample holder frame were 50 mm × 50 mm and 40 mm × 40 mm, respectively. The magnet
of the sample holder was covered with a 300 m-thick PVC frame (Crenjoy, Seoul, Republic
of Korea) using double-sided polyimide tape (Daehyunst, Hwasung, Republic of Korea),
and a 25 µm-thick polyimide film (Covalue Youngjin Co., Daegu, Republic of Korea) was
attached to one side of the sample holder frame. We placed a nylon mesh with 70 µm pore
size (Merck, Darmstadt, Germany) in one sample holder, loaded the crystal suspension,
and covered it with the other sample holder. The two sample holders were then enclosed
in polyimide tape.

2.3. Data Collection

Fixed-target pink-beam SSX experiments were performed at beamline 1C at the Pohang
Light Source II (PLS-II, Pohang, Republic of Korea). The pink beam was generated via
the implementation of the Mo/B4C multilayer monochromator system. The X-ray energy
and energy bandwidth were 14,820 eV and 1.2% (∆E/E), respectively. The X-ray photon
flux was approximately 1 × 1011 photons/s. The vertical and horizontal X-ray sizes were
130 and 100 µm (full width at half maximum, FWHM), respectively. The fixed target
sample holder was translated vertically and horizontally using 5-phase stepping motors
(Tamagawa Seiki Co., Ltd., Nagano, Japan). A sample holder containing the glucose
isomerase or lysozyme crystals was scanned from the top left to the bottom of the sample
holder at a speed of approximately 1.786 mm/sec, then moved to the right at 400 µm
and scanned from the bottom to the top. Successive vertical scans at 400 µm intervals
covered the full area of the mesh. Diffraction data were collected at an ambient temperature
(24 ± 0.4 ◦C). The diffraction data were recorded using a Pilatus 2M detector (Dectris,
Baden-Daettwil, Switzerland). The acquisition time per diffraction pattern was 100 ms. The
sample-to-detector distance was 105 mm. Diffraction images were visualized using ADXV
(https://www.scripps.edu/tainer/arvai/adxv.html, accessed on 18 August 2023).

2.4. Data Processing

Images in which crystals were not exposed to X-rays or whose diffraction intensity
was weak were filtered through the Cheetah Program [37] with the following parameters:
cutoff signal/noise 5, max/min number of connected pixels 20/2, threshold 1000, and
max/min number of peaks 5000/30. Diffraction images containing Bragg peaks were
indexed and processed using CrystFEL v0.9.1 [38] with XGANDALF [39] or MOSFLM [40]
algorithms. The geometry parameters for data processing of GI and lysozyme are shown in
Supplementary Table S1. The detector geometry was optimized using a geoptimiser [41]
during data processing. The reflection intensities of indexed images were scaled and
merged by the partialator in the CrystFEL program [38].

2.5. Structure Determination

The phasing problem was solved by the molecular replacement method with MOL-
REP [42] using the crystal structures of glucose isomerase (PDB code 7E03) [43] and
lysozyme (PDB code 7E02) [43] as search models. The model was built using the COOT
program [44]. Model refinement was performed using phenix.refine in PHENIX [45]. The
quality of the final structures was validated using MolProbity [46]. Structural figures were
generated using PyMOL (https://pymol.org, accessed on 18 August 2023). The superim-
position of the crystal structures of glucose isomerase or lysozyme was performed using
the COOT program [44].

https://www.scripps.edu/tainer/arvai/adxv.html
https://pymol.org
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3. Results
3.1. Experimental Setup for FT Pink-Beam SSX

We previously used a nylon mesh sample holder with a polyimide film attached to a
PVC frame, which was then sealed with double-sided polyimide tape after spreading the
sample onto a nylon mesh [20,21]. To minimize dehydration of the crystal suspension and
increase convenience during the sample preparation procedure, we designed magnetic-
based sample holders to easily enclose the protein crystals after spreading the sample on
the nylon mesh on the sample holder frame (Figure 1A). The nylon mesh was installed
to prevent the crystals from sinking in the crystal sample holder due to gravity. Using a
combination of 5 × 20 mm magnets, we fabricated a sample holder frame with an inner
area of 40 × 40 mm (Figure 1B). To install the polyimide film flatly to prevent dehydration
of the crystal suspension, a 300 µm thick PVC layer was attached to the magnet with
double-sided polyimide adhesive tape. The process of spreading the crystal sample onto
the nylon mesh of the sample holder and then covering it with another sample holder was
the same as that reported previously [20,21]. However, the sample holder developed here
could quickly cover the two sample holders without double-sided tape contact because
both sample holders are magnetic (Figure 1B). Practically, the surfaces of the two sample
holders are in contact with the flat PVC. In this state, even if the crystallization solution is
left at room temperature for several hours, no noticeable dehydration of the solution occurs
under a microscope. Nevertheless, to completely avoid evaporation of the crystallization
solution, the outside of the sample holder was additionally sealed using polyimide tape.
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The sample holder containing the crystal sample was mounted on a sample holder
manufactured using aluminum and connected to Y translators (Figure 1C). The travel
lengths of the sample holder in the horizontal and vertical directions were 85 mm and
85 mm, respectively. X-rays that had passed through the sample holder exhibited significant
background, which was considered to be emitted by the X-ray halo, near the low-resolution
detector. To minimize the X-ray background, the size of the X-ray beam was reduced using
a slit of approximately 1 m in front of the sample position to remove all unwanted beams
except for the main beam. The distance between the detector and the sample was measured
using the diffraction pattern of LaB6 powder.

3.2. FT Pink-Beam SSX Data Collection

In the early stages of FT pink-beam SSX, data collection was performed using the raster
scan method. Using a stepping motor installed on the beamline, scans were performed
in the vertical and horizontal directions by exposing about 50–100 ms at each scan point.
Although this approach can be employed to collect SSX data, approximately 300 ms of
raster scan point movement time was consumed by the stepping motor, which reduced the
beam time efficiency such that more than half of the total data collection time was used to
move the sample holder. To resolve this issue, we collected data by continuously moving
the sample holder on the stage rather than performing a raster scan. This is different from
the raster scanning approaches performed in previous SX experiments [20,21]. However, it
shares a conceptual similarity with the method for continuously delivering X-ray radiation
to a stream of crystals provided by an injector.

In this experiment, the translation stage moved at a speed of 1.786 mm/s in both the
vertical and horizontal directions. The size of the X-ray beam was 130 µm × 100 µm in
the vertical and horizontal directions. Considering the moving speed of the translator
and the X-ray beam size, the volume of all crystals was exposed within 100 ms. This
X-ray exposure rate was higher than that in previous SX experiments [10,47]. However,
when considering the photon number per area, less photon flux density passed through
the crystal sample than in previous SX experiments. Since X-rays have a Gaussian shape
profile, centrally located crystals in the 130 µm wide X-rays are exposed to more X-ray flux,
while the off-center crystals are exposed to less X-ray flux. After consecutive scans in the
vertical direction, the sample holder was moved by 400 µm in the horizontal direction to
avoid overlapping exposure to X-rays.

A total of 20,210 and 18,959 images were collected from glucose isomerase and
lysozyme data, respectively (Table 1). For the glucose isomerase data, 17,626 indexable crys-
tals were obtained from 13,592 diffraction patterns. The multi-crystal hit rate for glucose
isomerase was 22.88%. For the lysozyme data, 3485 indexable crystals were obtained from
diffraction patterns. Unit-cell distributions of indexed GI and lysozyme data are shown in
Supplementary Figure S1.

Regarding data processing, the indexing rate for lysozyme was low. This can be
attributed to the substantial contamination of diffraction patterns by neighboring crystals
due to the large beam size coupled with weak diffraction signals.

During glucose isomerase and lysozyme data collection, the Bragg peaks from the
glucose isomerase and lysozyme data exhibited a distinctive stretched shape (Figure 2).
This radial elongation phenomenon is a common feature typically encountered in mosaic
crystals when employing a pink beam source [32,48]. We confirmed that multi-crystal
hits were present at a high rate in the low-resolution regions of the diffraction images.
The reason for the high multi-crystal hit rate in SX was the existence of a large number of
protein crystals within the exposed X-ray area. In this experiment, the reason for the high
multi-crystal hit rate indicates that numerous crystals were exposed using a large beam.
Additionally, the large beam size is also a cause of multi-crystal hits. To reduce this, it is
necessary to lower the concentration of protein crystals in the future.
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Table 1. Data collection statistics.

Data Collection Glucose Isomerase Lysozyme

X-ray source 1C beamline, PLS-II 1C beamline, PLS-II
X-ray energy (eV) 14820 14820

X-ray exposure (ms) 100 100
Total images 20210 18959
Hit images 13592 9535

Indexed crystals 17626 3485
Space group I222 P43212

Cell dimension (Å)
a, b, c 94.14, 99.94, 103.16 78.83, 78.83, 38.20

Resolution (Å) 20.00–1.70 (1.76–1.70) 20.00–2.20 (2.27–2.20)
Unique reflections 53508 (5307) 6509 (628)
Completeness (%) 100.0 (100.0) 100.0 (100.0)

Redundancy 191.5 (256.9) 488.7 (398.5)
SNR 4.67 (4.39) 5.43 (3.74)
CC 0.8239 (0.3692) 0.8737 (0.5245)
CC* 0.9505 (0.7343) 0.9657 (0.8295)

Rsplit (%) 25.98 (27.16) 21.21 (33.46)
Wilson B factor (Å2) 11.97 23.92

Values for the outer shell are given in parentheses.
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Figure 2. Diffraction images and close-up view of glucose isomerase from FT pink-beam SSX data.

Glucose isomerase datasets were processed up to 1.7 Å with a total of 53555 unique
reflections. The overall completeness, SNR, CC, CC*, and Rsplit values were 100, 4.67,
0.8240, 0.9505, and 25.98, respectively (Table 1). Lysozyme datasets were processed up to
2.2 Å with a total of 6525 unique reflections. The overall completeness, SNR, CC, CC*,
and Rsplit values were 100, 5.43, 0.8741, 0.9658, and 5.43, respectively (Table 1). All data
collection statistics for glucose isomerase and lysozyme were sufficient to determine the
crystal structure, but the CC values were relatively poor compared to other parameters.
Although the CC* value in the last shell, especially for lysozyme, appears high, it is essential
to note that the resolution cutoff was comprehensively determined considering both the
CC and Rfree values after the final structure refinement process.

3.3. Structure Determination

Crystal structures of glucose isomerase and lysozyme were determined at 1.7 and
2.2 Å resolution, respectively (Table 2). During refinement, the low-resolution area (beam
stopper ~7 Å) data containing an X-ray background were not used to generate better R-
values. The values of Rwork/Rfree for glucose isomerase and lysozyme were 25.10/27.79
and 25.12/29.93, respectively. These R-values are suitable for the representation of the
model structure but are not as good as the previous result. The structures we determined in
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this study exhibited relatively elevated R-values. Our ongoing investigations are centered
on discerning the root causes of this phenomenon, which may be attributed to factors such
as insufficient data volume, heightened background scattering, or quality degradation
stemming from multi-crystal hits. Addressing these factors can contribute to improving
the overall quality of the data.

Table 2. Data refinement statistics.

Refinement Glucose Isomerase Lysozyme

Resolution (Å) 7.0–1.7 7.0–2.2
Rwork

a 0.2510 0.2512
Rfree

b 0.2779 0.2993
R.m.s. deviations

Bonds (Å) 0.004 0.008
Angles (◦) 0.861 0.969

B factors (Å2)
Protein 13.42 12.11
Water 7.58 16.24

Ramachandran plot (%)
Favored 93.46 95.28
Allowed 5.76 4.72

Disallowed 0.79 0.00
a Rwork = Σ||Fobs|Σ|Fcalc||/Σ|Fobs|, where Fobs and Fcalc are the observed and calculated structure factor
amplitudes, respectively. b Rfree was calculated as Rwork using a randomly selected subset (10%) of unique
reflections not used for structural refinement.

The electron density map of glucose isomerase was well-ordered to trace the amino
acids from Tyr3 to Arg387 (Figure 3A). Glucose isomerase contains two metal-binding
active sites that are involved in substrate-binding and catalytic reactions [49]. Commercially
available glucose isomerases often have no metal or low occupancy at the M2 site; therefore,
Mg2+ was added to obtain the functional two-metal-bound glucose isomerase structure
before data collection. Interestingly, the M1 metal ion was coordinated to Asp181, Glu217,
Asp245, and Asp287, whereas the M2 metal ion was coordinated to Glu217, Asp255, and
Asp257. These functional metal-binding coordinations at M1 and M2 are identical to those
observed in previous glucose isomerase structures, excluding the position of the His220
residue, which was different. High-Z atoms are more sensitive to radiation damage than
low-Z atoms [50]. Electron density map analysis showed no significant radiation damage
at the two metal ion-binding sites of glucose isomerase (Figure 3B). The B-factor values of
the M1 and M2 metal-binding sites were 2.24 and 2.50 Å2, respectively, which is lower than
the average B-factor of whole amino acids of 13.42 Å2.
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isomerase and (B) close-up view of metal binding sites at active site of glucose isomerase.
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The room-temperature structure of glucose isomerase determined in this study was
similar to the previously reported room-temperature structure of glucose isomerase (PDB
codes: 7E03) [43] determined using SX techniques, with an r.m.s. deviation of 0.275 Å–0.275 Å.

The electron density map of lysozyme was well-ordered to trace the amino acids from
Lys19 to Leu147 (Figure 4A). The side chains of the active site region of lysozyme were
clearly observed, excluding long side chains such as Arg and Glu. Lysozyme contains
four disulfide bonds (Cys24-Cys145, Cys48-Cys133, Cys82-Cys98, and Cys94-Cys112) that
are useful for interpreting X-ray radiation damage. The electron density map showed no
significant radiation damage at any disulfide bond in the lysozyme (Figure 4B). The room-
temperature structure of lysozyme determined in this study was similar to the previously
reported room-temperature structure of lysozyme (PDB codes: 7CVJ) [21] determined using
SX techniques, with an r.m.s. deviation of 0.153 Å.
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4. Discussion

In general, when a pink-beam SSX experiment is performed rather than an SX experi-
ment using a monochromatic beam in a synchrotron, sample consumption can be reduced,
and data with higher diffraction intensity can be collected compared to monochromatic
beams [32–34]. We previously demonstrated a pink-beam SSX experiment at beamline 1C
at PLS-II using a syringe with a viscous medium [36]. Here, pink-beam SSX experiments at
beamline 1C of the PLS-II were performed using an FT scanning method that can reduce
sample consumption compared to the injection method.

In this study, we used a newly developed magnetic-based sample holder. This sample
holder enables simpler sample preparation than that of the previous sample holder that
used double-sided adhesive tape [20,21] because the two sample chips are attached by two
magnets. When the magnetic-based sample holder containing the crystals was left at room
temperature for several hours, no significant dehydration of the crystallization solution
was observed under the microscope. It is judged that there is no space for the crystallization
solution to escape because of the contact between the magnet and the flat PVC plate or
that the solution does not escape through fine gaps owing to surface tension and is stable
inside. Although we confirmed that evaporation of the solution is not a problem through
preliminary testing, additional polyimide tape was used to seal it perfectly and can be
used in place of other materials such as grease. Previous nylon-mesh-based sample holders
fixed the two sample holders with double-sided tape [20,21], so it was difficult to remove
the double-sided tape and attach it again for reuse. However, the magnetic-based sample
holder developed here was maintained by the magnets on the contact surfaces of the
two sample holders; therefore, it could be reused immediately after washing the sample
holder following the data collection experiment. In this experimental setup, considering
the crystal size of glucose isomerase and lysozyme, mounting was performed using a nylon
mesh with a pore size of 70 µm. The choice of nylon mesh pore size can vary depending
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on the size of the target crystal samples. The overall thickness of the polyimide film in
the sample holder used in this experiment was 50 µm. Notably, we did not encounter
any notable issues related to X-ray background scattering caused by the polyimide films
when processing data for glucose isomerase and lysozyme model samples. However, it
is essential to acknowledge that employing thinner films in the sample holder can lead to
reduced background scattering, thereby potentially enhancing the quality of the collected
data. Meanwhile, a pink beam exhibits relatively high background scattering compared to
a monochromatic beam [32]. In SX utilizing a pink-beam, enhancing data quality can be
achieved by mitigating background scattering through methods like capillary beamstop or
X-ray focusing, which reduce air scattering [32].

During glucose isomerase and lysozyme data collection, multi-crystal hits had a high
presence rate in the low-resolution regions of the diffraction images. When the same
crystal sample distributed in the same area is scanned with the micro-focusing beam,
the multi-crystal hit rate in the micro-focusing beam will be low, while the photon flux
density exposed to the crystal sample will be high. Conversely, when a large X-ray beam
is used, more crystals are exposed compared to the micro-focusing beam, resulting in a
higher multi-crystal hit rate and providing a relatively low photon flux density to the
crystal sample. In this respect, during SX data collection, it is advantageous to increase
the quality of the data using the micro-focusing beam rather than the large beam used
in this experiment. However, micro-focusing beams are not available on all beamlines
and installing micro-focusing optics on existing beamlines requires considerable time and
effort. Accordingly, when employing a fixed target in an SX experiment using a large
beam, a strategy different from that of the existing micro-focusing beamline is required.
When performing FT-SX using a large beam, the multi-crystal hit rate can be controlled by
reducing the concentration of the sample, which can increase the indexing efficiency and
improve the SNR quality during data processing. A large beam provides lower photon flux
to the same area as a micro-focused beam. One way to solve this problem is to increase the
photon flux to the crystal sample by increasing the X-ray exposure time. However, this has
the disadvantage of increasing the data collection time. Nevertheless, this data collection
will be helpful for other applications in SSX experiments using large beam sizes at other
beamlines or synchrotrons. Currently, the 1C beamline has not planned the installation
of microfocus optics, such as KB mirrors; therefore, a long X-ray beamtime is required to
collect FT pink-beam SSX data.

In summary, we demonstrated fixed-target pink-beam serial synchrotron crystallogra-
phy at the Pohang Light Source II. We report a newly developed magnetic-based sample
holder and determine the room-temperature structures of glucose isomerase and lysozyme.
We discuss the possibilities and limitations of a fixed-target pink-beam SSX using a large
X-ray beam. This result will be useful for further data collection strategies for FT-SSX at the
1C beamline of PAL-II and other beamlines using a large X-ray beam.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13111544/s1, Figure S1: Distribution of unit cell parameters
resulting from glucose isomerase and lysozyme diffraction patterns; Table S1: Detector geometry
parameter for data processing.
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50. Gopakumar, G.; Unger, I.; Slavíček, P.; Hergenhahn, U.; Öhrwall, G.; Malerz, S.; Céolin, D.; Trinter, F.; Winter, B.; Wilkinson, I.;
et al. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat.
Chem. 2023, 15, 1408–1414. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1107/S205225251700570X
https://doi.org/10.1107/S0108767387099872
https://doi.org/10.1128/mr.60.2.280-300.1996
https://doi.org/10.1038/s41557-023-01302-1

	Introduction 
	Materials and Methods 
	Protein Crystal Preparation 
	Sample Holder Preparation 
	Data Collection 
	Data Processing 
	Structure Determination 

	Results 
	Experimental Setup for FT Pink-Beam SSX 
	FT Pink-Beam SSX Data Collection 
	Structure Determination 

	Discussion 
	References

