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Abstract: In recent years, the emergence of virtual reality (VR) and augmented reality (AR) has
revolutionized the way we interact with the world, leading to significant advancements in 3D display
technology. However, some of the currently employed 3D display techniques rely on stereoscopic 3D
display method, which may lead to visual discomfort due to the vergence-accommodation conflict.
To address this issue, several true 3D technologies have been proposed as alternatives, including
multi-plane displays, holographic displays, super multi-view displays, and integrated imaging
displays. In this review, we focus on planar liquid crystal (LC) devices for different types of true 3D
display applications. Given the excellent optical performance of the LC devices, we believe that LC
devices hold great potential for true 3D displays.

Keywords: 3D display; liquid crystal devices; AR/VR display; Pancharatnam–Berry phase

1. Introduction

Nowadays, 2D flat panel displays are ubiquitous in our daily lives and serve as
important tools for interacting with the world. They are extensively utilized in various
commercial devices, including smartphones, tablets, laptops, smartwatches, micro-displays,
and large-screen TV panels [1–3]. Despite the advanced stage of development in 2D display
technology, achieving natural and vivid 3D displays remains the ultimate goal [4–6]. More
recently, virtual reality (VR) and augmented reality (AR) have emerged as the most promis-
ing candidates for the next generation of mobile platforms, facilitating the advancement
of 3D display technology [7–9]. Notably, Apple’s introduction of the groundbreaking
Apple Vision Pro headset in June 2023 has ignited researchers’ enthusiasm towards AR/VR
displays and 3D display technologies.

However, most of the current commercial devices, such as Apple Vision Pro, Microsoft
HoloLens, Lumus, ODG smart glass, Meta, DigiLens, and Oculus Rift, employ conventional
stereoscopy techniques to provide a 3D image [10,11]. In conventional 3D displays, two
offset images are used to generate the depth information. The well-known issue lies in the
conflict between vergence and accommodation [12,13], as depicted in Figure 1. In the real
world, both the accommodation and vergence cues are accurately provided, as shown in
Figure 1a. However, when viewing conventional stereoscopic 3D displays, our eyes are
compelled to focus on the 2D screen in order to perceive the information clearly, while
the 3D image appears at a distinct distance from the screen, as shown in Figure 1b. This
mismatch between accommodation and vergence distances gives rise to visual fatigue,
nausea, and other forms of discomfort. This is particularly evident in near-eye displays
when users are fully immersed in a virtual environment using VR devices or observing 3D
scenes in VR/AR devices after prolonged use. Thus, it is crucial to employ true 3D display
technologies to display a natural 3D image [14].

To effectively address the problem of vergence–accommodation conflict (VAC), various
true 3D display technologies have been proposed, including integral imaging displays [15],
holography displays [16], super multi-view displays [17], Maxwellian viewing displays [18],
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and multi-plane displays [19]. Over the past few decades, numerous liquid crystal (LC)
devices have been proposed for these true 3D displays. Among them, liquid crystal display
(LCD) and liquid crystal on silicon (LCoS) are widely utilized as light engines in various
3D displays. Moreover, various planar LC devices have been proposed as key optical
components in both tabletop 3D displays and near-eye 3D displays, due to their excellent
optical performance, electronic controllability, and extensive design flexibility.
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Figure 1. Vergence and accommodation conflict (VAC) problem. (a) Natural 3D visual experience in
real world. (b) VAC in conventional displays.

In this review, we mainly focus on planar LC devices for true 3D display applications,
discussing their working principles and properties. Firstly, we review recent advancements
in multi-plane displays/varifocal displays based on LC devices, including LC scattering
shutter, refractive LC lens, Pancharatnam–Berry (PB) phase LC lens, Alvarez tunable LC
lens, cholesteric LC (CLC) film, and LC polarization switch. Next, we review the super
multi-view display utilizing PB phase LC optical elements. Subsequently, we delve into a
video-rate holographic display based on dye/quantum dot-doped LC devices. Additionally,
we discuss integral imaging display based on LC lens arrays. Finally, we provide discussion
and insights into future developments of LC devices for 3D displays.

2. Multi-Plane Displays Based on LC Devices

The multi-plane displays generate multiple 2D images positioned at different planes
within the volume. This method provides the acceptable accommodation cues and solves
the VAC problem in conventional 3D displays [19–21]. The straightforward way to achieve
a multi-plane display involves utilizing a stack of transparent displays in space [22]. Many
tunable optical components, such as liquid lens [23], deformable mirror [24,25], and LC
devices have been proposed for utilization in multi-plane AR displays employing the
time-multiplexing method [26–29]. Relevant research indicates that multi-plane display
technology has the ability to achieve a continuous 3D scene with only six planes for AR
applications [24], and this approach effectively strikes a balance between computational
complexity and image quality, making it suitable for use in next-generation AR/VR de-
vices. In the following sections, we review the applications of LC devices in different
multi-plane systems.
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2.1. Based on LC Scattering Shutter

In 2016, we proposed an optical see-through multi-plane AR display based on a stack
of polymer-stabilized LC (PSLC) scattering shutters [19]. The normal mode PSLC scattering
shutter is in a scattering state when the voltage is off, due to the refractive index mismatch
in different domains, as shown in Figure 2b. When an external voltage is applied, the
LC molecules are uniformly reoriented along the electric field, and the PSLC scattering
shutter switches to a transparent state, as shown in Figure 2a. The formation of the
polymer network significantly accelerates the response time of the PSLC to approximately
0.65 ms, enabling rapid switching of PSLC films in the system. Figure 2c shows the system
configuration of the AR display based on PSLC film. The AR system comprises a quasi-
collimated projector, a stack of PSLC films, an ocular lens, and an optical combiner. The
PSLC films maintain transparency except for one film in the scattering state at any given
moment, while simultaneously projecting a corresponding 2D slice onto it. To ensure clear
display of the projection image at different planes, a quasi-collimated projector should be
employed. Figure 2d is a quasi-collimated projector consisting of three lenses (l1, l2, and l3),
a pinhole, and a commercial projector. The lens l1 forms a real image of the original image
at the front focal plane of l2. A pinhole is positioned at the back focal plane of l2 where
the beam diameter is minimized. As this pinhole location also serves as the front focal
plane of lens l3, the output image light becomes quasi-collimated with a single angular
spectrum, thereby providing a large depth of field. Consequently, 2D images on each PSLC
shutter consistently exhibit sharpness and uniformity in size. Then, the virtual image can
be perceived by the viewer after the magnification of the ocular lens. A four-plane 60 Hz
AR display prototype utilizing a 360 Hz digital mirror device (DMD) was implemented
in our experiment. Figure 2e–h showcase the images captured at four different depths,
indicating that the system provides accurate depth cues.
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multi-plane AR display system based on reverse mode PSLC scattering shutters using a 

Figure 2. (a,b) PSLC film in a transparent state and a scattering state when the applied voltage
is on and off [19], respectively. (c) Optical scheme of the AR system based on PSLC scattering
shutters. (d) Ray tracing diagram of the quasi-collimated projector. (e–h) Demonstration of the AR
display prototype with four letters “A,B,C,D” when focusing the camera at 30 cm, 50 cm, 80 cm, and
500 cm [19], respectively. (a,b,e–h) adapted with permission from Ref. [19], Wiley.

In this multi-plane AR display system based on PSLC scattering shutters, only one
film is in a scattering state at one moment. To reduce power consumption, we proposed a
multi-plane AR display system based on reverse mode PSLC scattering shutters using a
negative LC material (∆ε < 0) in 2018. Because only one reverse mode PSLC film needs an
applied voltage at one moment, the power consumption of the reverse mode PSLC-based
system is reduced to 1/(N − 1) compared to that of a normal mode PSLC-based system [28].
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2.2. Based on Refractive LC Lens

The multi-plane display can be achieved by adjusting the focal length of the tunable
lens, also known as a varifocal display [30–33]. By rapidly varying optical power of the
tunable lens, a continuous 3D scene can be reconstructed. In 2015, Chen et al. proposed an
AR system using a refractive LC lens [32]. They adopted a double-layered refractive LC
lens structure, as shown in Figure 3b. When V1 = V2, the optical power of the refractive LC
lens is zero because the LC molecules are uniformly aligned. When V1 < V2, the optical
power of the refractive LC lens is negative, because the LC molecules near the center are
more perpendicular, while those near the edge are more parallel. Conversely, when V1 > V2,
the optical power of the refractive LC lens is positive. The optical power of the refractive
LC can continuously change from −1.34 to +1.82 D with applied voltages. The rise and
fall response times of the refractive LC lens are 1.7 and 3.1 s. The prototype comprises a
refractive LC lens, a concave mirror, an optical combiner, and a spatial light modulator
(SLM), as illustrated in Figure 3a. By manipulating the applied voltages (V1 and V2) on the
refractive LC lens, the virtual image planes can be tuned from 42 to 360 cm, while the real
image can be tuned from 27 to 52 cm on the other side. Due to its relatively slow response
time, the system is incapable of operating at video rate.
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2.3. Based on Pancharatnam–Berry Phase LC Lens

Over the past few decades, Pancharatnam–Berry LC (PBLC) devices have undergone
significant development in various fields due to their exceptional ability to manipulate
the phase and polarization of light [34,35]. By precisely controlling the alignment of LC
molecules with photoalignment azo dye materials [36,37]. PBLC devices can achieve
accurate modulation of incident light’s phase and polarization. This capability has found
extensive use in diverse fields such as lens, grating, holography, and vortex beams [38].
Additionally, PBLC offers advantages such as compactness, high efficiency, and polarization
selectivity [39–41].

The PBLC lens exhibits polarization sensitivity and demonstrates opposite optical
power for right-handed circularly polarized (RCP) and left-handed circularly polarized
(LCP) light. Thus, the optical power of a PBLC lens can be switched between two states.
There are mainly two ways to drive the PBLC lens: (1) directly applying a voltage across
the LC cell, and (2) adding an external polarization switch to select the input polarization
between LCP and RCP. Here, we focus on the multi-plane display based on the active
driving method. In 2017, Lee et al. built a dual-plane AR system using the PBLC lens [33].
In 2019, we proposed a multi-plane AR system based on two fast-response PBLC lenses [40],
as depicted in Figure 4. To fabricate the fast response PBLC lens, we first utilized a non-
interferometric single-exposure photoalignment technique to fabricate an alignment layer.
Then, polymer networks were formed in the LC cell through UV curing. The PBLC lens
exhibited a response time of ~0.8 ms and achieved a high diffraction efficiency of ~90%.
By stacking two PBLC lenses, four discrete optical powers (f = 50 cm, 100 cm, −100 cm,
and ∞) can be realized with two applied voltages. We demonstrated a four-plane AR
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prototype, rendering “SJTU” at distances of 28 cm, 40 cm, 67 cm, and 200 cm, as captured
in Figure 4i–l.
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Figure 4. Four-plane display based on two PBLC lenses. (a–d) Four modes: f = 50 cm, 100 cm,
∞, and −100 cm when the applied voltages on P1 and P2 are off|off, off|on, on|on, and on|off,
respectively [40]. (e–h) Beam spots on the RS when f = 50 cm, 100 cm, ∞, and −100 cm, respectively.
RS: receiving screen [40]. (i–l) Four letters, “SJTU”, are rendered at distances of 28 cm, 40 cm, 67 cm,
and 200 cm [40]. (a–l) adapted with permission from Ref. [40], Optica Publishing Group.

2.4. Based on Planar Alvarez Tunable LC Lens

The exceptional design flexibility of PBLC design enables the achievement of any de-
sired phase distribution through the single-exposure photoalignment technique employing
an SLM. The Alvarez lens is a tunable lens consisting of two sub-elements, allowing for con-
tinuous focal length adjustment through lateral displacement [41]. Therefore, the Alvarez
tunable lens can serve as the key optical component in multi-plane display system [31].
However, the conventional freeform Alvarez lens is difficult to manufacture and usually
has a bulky size for compact AR devices. In 2022, Chen et al. from our group proposed
a planar PB Alvarez LC lens for multi-plane AR applications, significantly reducing the
manufacturing complexity of the Alvarez lens [42]. The Alvarez LC lens offers an optical
power ranging from −1.4 D to 1.4 D at 532 nm when a lateral shift ranging from −5 mm to
5 mm. By laterally shifting the sub-elements of the Alvarez lens, as illustrated in Figure 5b,
virtual images at different distances can be achieved. Figure 5a shows an AR letter “G”
displayed at different depths by the prototype. The virtual image becomes sharp when
the camera adjusts its focus to the correct depth. Consequently, the system is capable
of providing accurate depth cues. However, the proposed method presents challenges
in achieving a dynamic 3D display due to the mechanical movement required for two
sub-elements.
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Figure 5. (a–c) Virtual image “G” is rendered at 40 cm with a lateral shift of x0 = −5 mm when
focusing the camera at 40 cm, 55 cm, and 70 cm [42], respectively. (d–f) Virtual image “G” is rendered
at 55 cm with a lateral shift of x0 = 0 when focusing the camera at 40 cm, 55 cm, and 70 cm [42],
respectively. (g–i) Virtual image “G” is rendered at 70 cm with a lateral shift of x0 = 2.4 mm when
focusing the camera at 40 cm, 55 cm, and 70 cm [42], respectively. (j) Scheme of multi-plane display
based on planar Alvarez tunable LC lens. (a–i) adapted with permission from Ref. [42], Optica
Publishing Group.

2.5. Based on CLC Films

The CLC film exhibits strong polarization selectivity, reflecting one circularly polarized
light completely and transmitting the other nearly 100% [43–45]. In our experiment, we
fabricated two reflective CLC cells with opposite handedness in order to distinguish
between the RCP and LCP light by manipulating the optical distances [26]. A polarization
switch combined with a linear polarizer, a TN LC cell, and a λ/4 plate was employed to
generate the RCP and LCP light sources, as shown in Figure 6a. Thus, the RCP and LCP
can be formed at two different depths which realize the multi-plane function. As shown in
Figure 6b–e, the color image “flower” was rendered at distances of 20 cm and 130 cm from
the camera. To achieve a continuous 3D image, we devised a multi-plane AR display by
alternately stacking switchable λ/2 plates and CLC films. However, achieving full-color
display with a CLC cell remains challenging in this system, even with the use of large
birefringence (∆n~0.4) LC material.

2.6. Based on LC Polarization Switch

The LC polarization switch is a commonly used device in multi-plane displays [46].
The primary LC device employed is a twisted nematic (TN) LC cell [47,48], which alters the
polarization of linearly polarized light. As previously discussed, an external polarization
switch can be added to select the input polarization between LCP and RCP, thereby switch-
ing the PBLC lens between focusing and defocusing states. Additionally, CLC films also
require an LC polarization switch. Furthermore, when combined with other polarization-
dependent devices, such as a polarizing beam splitter (PBS) [27] and Savart plate [49], the
LC polarization switch enables the realization of multi-plane functionality. In 2016, Lee
et al. presented a proof-of-concept dual-focal near-eye display system utilizing polarization-
dependent PBS to separate the optical paths of two linearly polarized lights [27], as shown
in Figure 7. Subsequently, by incorporating λ/4 plates and employing two mirrors in
conjunction with the PBS, distinct optical distances are created, resulting in the formation
of two depth images.
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Figure 6. (a) AR display based on two CLC films with opposite handedness. Red arrow is the LCP
light, and green arrow is RCP light. (b,c) Color image is rendered at 20 cm when focusing the camera
at 20 cm and 130 cm, respectively [26]. (d,e) Color image is rendered at 130 cm when focusing the
camera at 130 cm and 20 cm [26], respectively. (b–e) adapted with permission from Ref. [26], Optica
Publishing Group.
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3. Super Multi-View Displays

A super multi-view (SMV) display is a true 3D display technology that effectively
stimulates the eye to focus on a virtual 3D image [5,50,51]. To generate more natural
visual effects in 3D displays, SMV displays use an extremely large number of views (for
example, 256 views) to create a natural 3D experience for tabletop 3D displays [17,52].
In this technique, the interval between viewing zones is much smaller than the pupil
diameter (at least two views enter the pupil simultaneously), allowing for multiple rays
passing through the same point in space to pass through the eye pupil simultaneously.
Consequently, our eyes can effortlessly focus on that specific point. For near-eye displays,
the requirement for the number of views is significantly reduced, as it only needs sufficient
coverage around the pupil [53,54].

Recently, in 2022, Wang et al. from our group proposed an SMV AR display system
based on PBLC devices [55], as shown in Figure 8a. Figure 8b,c shows two kinds of PBLC
grating array. Gratings of different regions in the PBLC grating have different vector
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orientations or grating periods. Thus, it can generate light beams in different directions
(3 × 1 and 3 × 2 directions). In our experiment, the diffraction efficiencies of the PBLC
gratings were nearly 90%, significantly enhancing the image quality. The interval between
the light beams at the pupil position is approximately 2 mm, allowing for light rays from
different views to enter the human eye simultaneously. Finally, an SMV display prototype
was successfully implemented.
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Figure 8. (a) SMV display based on PBLC grating array. (b,c) Microscopic images of 1D/2D PBLC
grating arrays [55]. (d,e) Diffraction patterns from different regions of the 1D/2D PB LC grating
arrays [55]. (f,g) SMV display with 1D PBLC grating when camera focusing at 20 cm and 160 cm.
(h,i) SMV display with 2D PBLC when focusing camera at different distances [55]. (b–i) adapted with
permission from Ref. [55], Creative Commons.

The proof-of-concept prototype of SMV display was implemented based on the 1D
PBLC grating array. As shown in Figure 8f,g, the virtual letter “A” is rendered at a distant
location, while the virtual letter “K” is rendered close to the eye. Figure 8h,i illustrate the
generation of letter “A” at a far distance when employing the 2D PBLC grating array. The
system provides full monocular focus cues without VAC problem, ensuring a natural 3D
experience for the viewer. However, considering the movement of eyeballs, the current
number of views is still insufficient. To enhance the visual experience, it is necessary to
further increase the number of views. Moreover, the achievement of color display may
encounter challenges due to the wavelength-dependent characteristics of PBLC devices.

4. Holographic Displays

Holographic displays are considered the ultimate display technology due to their
ability to provide all the depth cues of an object, enabling a 3D experience without visual
fatigue [56,57]. Currently, holographic displays based on LC technology predominantly
employ SLMs as light engines and construct 3D images through computer-generated
holograms [58,59]. However, these displays face challenges such as limited diffraction angle,
poor scalability, unwanted diffractive orders, and zero-order light due to the relatively
large pixel size, small display size, and low resolution of existing SLM devices.

In 2013, Li et al. from our group proposed a video-rate holographic display using an
azo dye-doped LC device [60]. The DR1 is an azo dye material capable of undergoing a
reversible photochemical transition between the trans and cis states. Under laser irradiation,
DR1 molecules change from their original oblong-shaped trans state to a bent-shaped
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cis state, as shown in Figure 9a. The unstable cis state of azo molecules can transform
back to the trans state in darkness. The alteration in the orientation of azo molecules also
induces a change in the alignment of LC molecules, leading to variations in refractive
index and the formation of a refractive index grating, as shown in Figure 9a. In the system,
the interference of two recording beams generates a holographic pattern, leading to the
refractive index grating. A real-time 25 Hz holographic display was demonstrated based
on a dye-doped LC device. In 2016, our group proposed a dynamic holographic display
based on a quantum dot (ZnS/InP)-doped LC device [61,62]. Under the influence of laser
irradiation, quantum dots efficiently absorb photons and generate free charge. Figure 9b
depicts that when a voltage is applied, the photo-excited charge creates a local space
field. Consequently, a refractive index grating is induced by the nonuniform distribution
of interference intensity. The optical setup is shown in Figure 9c. The dynamic binary
images, generated using a computer, are loaded onto an amplitude SLM at a refresh rate
of 25 Hz. The object beam with image information is illuminated onto the LC cell. A
460 nm laser is used to provide coherent reference and object beams, with s-polarization
set for both. The intensity ratio of the object beam and reference beam is approximately
1:1. Under the illumination of two reference and object beams, electrons and holes separate
and transport along the grating wave vector when a DC voltage is applied. This creates
a nonuniform space charge field that induces spatially modulated reorientation of LC
molecules and periodic refractive index modulation. When the two reference and object
beams are removed, the distribution of photoinduced charges becomes uniform, thereby
eliminating the grating. In the experiment, both the build-up time and decay time of the
grating are ~4 ms. Therefore, we can implement a video-rate holographic display. Based
on the quantum dot-doped LC device, Figure 9d shows a sequence of snapshots of the
real-time video-rate 25 Hz holographic display system using three R,G,B reading beams.
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Figure 9. (a) Principle of the azo dye-doped LC device. (b) Principle of the quantum dot-doped LC
device. (c) Schematic of the real-time holographic display system based on LC device. (d) Snap-
shots using three R,G,B reading beams [62]. (d) adapted with permission from Ref. [62], Optica
Publishing Group.

5. Integral Imaging Based on LC Lens Array

The integral imaging 3D display technique effectively addresses the VAC issue by
providing continuous depth information. The main structure of the integral imaging scheme
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comprises a high-resolution 2D display screen and a lens array, as shown in Figure 10a.
Each lens is associated with a 2D elemental picture providing a distinct perspective of the
3D scene. The LC devices could serve as either the high-resolution display screen or the
lens array components. As LCDs are commonly used in 3D systems, we mainly focus on
the integral imaging display based on LC lens arrays.
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The fundamental operational mechanism of the LC lens array involves spatial vari-
ation of the refractive index across the LC layer. This can be realized by patterned
electrodes [63–65], patterned polymer networks [66], PBLC devices [67], and other ma-
terials [68,69]. Various methods have been proposed for integral imaging display based
on LC lens array [70–72]. For example, in 2021, Li et al. proposed a compact 2D/3D
integral imaging display based on an LC lens array [70]. The basic structure of the LC lens
array is composed of two substrates, LC, a planoconcave polymer layer, and an alignment
layer, as shown in the Figure 10b. The ordinary refractive index of the LC material closely
matches that of the polymer layer, allowing for the LC lens to directly transmit y-polarized
light while focusing on x-polarized light. Therefore, this LC lens exhibits a polarization-
dependent property. By changing the direction of input polarized light, the system is
capable of switching between 2D and 3D display modes, as shown in Figure 10c. The LC
lens array has a size of 45 mm × 40 mm. Each sub-lens has a focal length of 1.3 mm and
a diameter of 1 mm. In this 3D display mode, the resolution is reduced to 45 × 40 pixels.
Although integral imaging display can provide full depth cues, the resolution of the system
is relatively low, greatly reducing the quality of 3D images.

A commonly employed method for implementing LC lens arrays involves the utiliza-
tion of patterned electrodes. In 1991, Patel et al. presented an electrically controlled Fresnel
lens array (8 × 8) that used patterned electrodes [63]. The LC lens array has a low driving
voltage of ~2V and a diffractive efficiency of 34%. In 2014, Chang et al. proposed a 3D
display based on LC lens array using stripe electrodes [64]. In the 3D mode, a gradient
electric field distribution can be formed when an external voltage is applied, allowing
for the generation of a spatial variation in refractive index across the LC layer. They suc-
cessfully implemented a 3D image with horizontal and vertical views. Recently, Zhang
et al. proposed an integral imaging display based on an electrically high-resistance LC
lens array in 2020 [72]. Figure 11a illustrates the utilization of circular hole aluminum (Al)
electrodes to generate a gradient electric field, enabling the achievement of spatial variation
in refractive index across the LC layer. The LC lens array consists of an Al patterned
electrode, a high-resistance layer, LC layer, two alignment layers, ITO layer, and two glass
substrates, as shown in Figure 11b. They implemented a 3D display with different depths
using a smartphone panel (320 × 180 elemental pictures) and the LC lens arrays. The
driving voltage of the LC lens array is about 2.8 V.
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The LC lens array boasts features such as a lightweight design, compact size, low
power consumption, and a tunable optical power. And it enables switchable 2D/3D display
functionality. However, the integral imaging display has a limited depth range and requires
a tradeoff between the depth of field and spatial resolution.

6. Conclusions and Prospects

In this review, we briefly reviewed the recent advancements in the applications of
LC devices for true 3D displays. Initially, we introduced multi-plane display technologies
based on LC devices. Tunable LC devices such as LC scattering shutter, refractive LC lens,
PBLC lens, Alvarez tunable LC lens, CLC film, and LC polarization switch for 3D displays
were reviewed. Additionally, we discussed the super multi-view technology based on
PBLC grating arrays and holographic display utilizing doped LC materials. Furthermore,
integral imaging displays based on LC lens arrays were also reviewed. The pros and
cons of these true 3D displays based on LC devices are summarized in Table 1. The
aforementioned approaches are all dedicated to solving the VAC problem and enabling
a natural 3D experience without visual fatigue. The utilization of planar LC optics offers
excellent optical performance characterized by an ultrathin form factor, high efficiency, fast
response time, polarization-dependent behaviors, wavelength-dependent behaviors, and a
high degree of design freedom. These outstanding characteristics enable the application of
LC devices in various 3D systems.

Table 1. Pros and cons of some true 3D display-based LC devices.

True 3D Displays LC Devices Pros Cons

Multi-plane display

LC scattering shutter [19,28] Fast response time High driving voltage

Refractive LC lens [32] Continuous optical power change Slow response time, small
aperture

PB phase LC lens [33,40] Fast response time, polarization
dependence, compact Chromatic dispersion

Planar Alvarez tunable lens [42] Planar device, large adjustment
range, compact Require lateral displacement

CLC films [26] Polarization dependence Require large ∆n LC material to
cover the visible light

LC polarization switch [27,49] Fast response time Require other polarization devices

Super multi-view display PB grating array [55] High diffraction efficiency, views is
significantly reduced Chromatic dispersion

Holographic display
Azo dye-doped LC [60] Video rate Two-beam interference

Quantum dot doped LC [61,62] Video rate, highly photorefractive Two-beam interference
SLM / /

Integral imaging display LC lens array [70,72] Lightweight design, tunable optical
power

Limited depth range, low
resolution

LCD / /
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However, certain limitations of LC devices need to be addressed. For example, the
PSLC film exhibits a high driving voltage, refractive LC lens has a slow response time, PB
LC devices suffer from chromatic dispersion, and some LC devices have small apertures.
Additionally, in order to achieve a vivid holographic display and integral imaging display,
the resolution requirements for LC-based SLM or LCD screens far exceed current capabili-
ties. As technology continues to evolve, there is an increasing emphasis on overcoming
current limitations and enhancing the overall performance of these LC devices. The tunable
metasurface based on LC material has the potential to reduce the pixel size of SLMs and
increase display resolutions [73]. The realization of achromatic LC optics may be achieved
through innovative design utilization [74] and advanced LC formulations. Furthermore,
ongoing innovations in manufacturing processes are expected to result in more ultrathin
compact LC devices, thereby making these solutions more accessible for AR/VR wearable
devices. Although there are still many challenges to overcome in practical devices, true
3D displays utilizing LC devices hold significant promise for advancing both tabletop and
near-eye 3D devices in the future. We believe that LC devices possess great potential for
future 3D display applications, particularly in AR and VR applications, facilitating the
development of compact and lightweight headsets.
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