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Abstract: Single crystals of two polymorphic forms of 4′-methyl-2,4-dinitrodiphenylamine were
obtained by crystallization and characterized by X-ray diffraction analysis. One of the forms is non-
centrosymmetric (space group P21212), while the second is centrosymmetric (space group P¯1) and
contains two crystallographically independent molecules in the asymmetric unit. In both forms, the
same supramolecular synthon, a dimer linked by bonding N-H···O, O···O, and C-H···O interactions
were found. Despite nearly the same connectivity of the bonding interactions, the conformation of
the supramolecular synthon is different, including its unavoidably different symmetry in two poly-
morphs. The comparison of the crystal packing of the orthorhombic polymorph with that of the
related 2,4-dinitrodiphenylamine (space group P21/n) shows the quasi-isostructurality of the frag-
ments, infinite π-stacks joined by weak non-directional intermolecular interactions. However, the
fragments are linked by the supramolecular synthons via either a two-fold axis or an inversion center,
which lead to only the partial isostructurality of the crystals.
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1. Introduction

The polymorphism of molecular crystals [1] is a well-known phenomenon in the
field of materials science and is of great importance not only from theoretical, but also
from a practical point of view. Indeed, while many physical properties of a material are
governed mainly by the chemical structure of the compound, crystal packing can also play a
significant role [2]. The polarization of the electron density caused by strong intermolecular
interactions such as hydrogen or halogen bonds, the stabilization of certain molecular
conformations, intra- and intermolecular charge transfers can lead to notable differences in
the physical properties of polymorphic forms of biologically active compounds used as
active pharmaceutical ingredients (APIs) [3], energetic compounds [4], etc. In some cases,
only the polymorph that crystallizes in a space group belonging to a specific point group
reveals the desired physical property: a well-known example is non-centrosymmetric
crystals exhibiting non-linear optical (NLO) properties [5].

Despite considerable research efforts, there is no simple approach to predict the
formation of polymorphs, let alone a practical recipe to obtain a real-world polymorphic
form of an arbitrary compound [6,7]. However, certain properties of a molecule can lead to
an increased likelihood of its polymorphic behavior. For instance, conformationally flexible
molecules appear in different conformations in different crystal forms that lead to so-called
conformational polymorphism [8].

Another important factor responsible for the enhanced probability of polymorphism is
the presence in a crystal of so-called supramolecular synthons. A supramolecular synthon is
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defined as “a structural unit within supermolecules which can be formed and/or assembled
by known or conceivable synthetic operations involving intermolecular interactions” [9]. It
is usually suggested that the formation of different supramolecular synthons by the same
functional groups of the molecule increases the probability of polymorphism due to the
competition between different intermolecular interactions. Indeed, such competition (e.g.,
dimers vs. chains) automatically leads to different crystal packing, and thus, to different
polymorphic forms [10].

However, the formation of the same supramolecular synthon can lead to polymorphic
behaviors as well due to the conformational lability of the resulting supramolecular as-
sociate. Indeed, the most common supramolecular synthons in crystals are usually built
by relatively weak hydrogen [11] or halogen bonds [12] that have a pronounced, but not
always strong, directionality. This permits significant conformational flexibility of the
synthon without the loss of the bonding pattern.

In this paper, we report two polymorphic forms of the title compound, 4′-methyl-2,4-
dinitrodiphenylamine 1 (Scheme 1). This molecule contains both the formally electron
donor and electron acceptor fragments, which assumes the possibility of intramolecular
charge transfer in the π-conjugated system. Although compound 1 has been known of for
many years and was tested for a potential application as antibacterial agent [13] and for
non-linear optical properties [14], its crystal structure is not yet reported. However, as the
powder sample of compound 1 is known to exhibit second-harmonic generation [15,16], it
has been expected to be non-centrosymmetric. Recently, a crystal structure of the closely
related phenyl-substituted compound 2,4-dinitrodiphenylamine (2) was reported [17], and
while it has the same color and morphology as a bulk sample of compound 1, it crystallizes
in the centrosymmetric space group P21/n. It turns out that compound 1 crystallizes at
least in two polymorphic forms, which were established by single-crystal X-ray diffraction
analysis. The supramolecular synthons in the polymorphs were thoroughly studied using
DFT calculations and a topological analysis of the theoretical electron density distribution.
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Scheme 1. Schematic representation of the molecules 1 and 2.

2. Materials and Methods
2.1. Crystallization of Polymorphic Forms

Compound 1 was synthesized by a known procedure [18] via nucleophilic aromatic
substitution on 1-chloro-2,4-dinitrobenzene by 4-methylaniline. The crystals of the or-
thorhombic form I were obtained by recrystallization from ethanol at room temperature, a
number of other solvents and their mixtures were also tested, which lead to the same form,
including acetone, acetonitrile, and water. The phase purity of the bulk sample of form I
was confirmed by powder X-ray diffraction (see Supporting Information Figure S3).

A few single crystals of the apparently metastable triclinic form II were obtained
together with the red form by recrystallization from a very diluted cold acetone solution.
Unfortunately, all of our attempts to obtain the form II in pure bulk form, either by selection
of the solvent or by seeding, failed.

2.2. Single-Crystal X-ray Crystallography

Data collection for both of the samples was performed using a Bruker Smart APEX II
CCD diffractometer (graphite-monochromated MoKα radiation, λ = 0.71073 Å,ω-scans).
Frames were integrated using the Bruker SAINT software package [19] by a narrow-frame
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algorithm. A semi-empirical absorption correction was applied with the SADABS [20]
program using the intensity data of the equivalent reflections. The structures were solved
by the dual-space method with the SHELXT program [21] and refined by the full-matrix
least-squares technique on F2 in the anisotropic approximation for all of the non-hydrogen
atoms using the SHELXL [22] software package. The positions of the hydrogen atoms of
NH groups were found using difference Fourier syntheses, while the positions of all of the
other hydrogen atoms were calculated. The hydrogen atoms of NH groups were refined
in the isotropic approximation, and those connected to carbon atoms were refined in the
riding model, with Uiso(Hm) = 1.5Ueq(Cm) for the methyl groups and Uiso(Hi) = 1.2Ueq(Ci)
for the phenyl groups. Detailed crystallographic information is given in Table 1. Structural
data were deposited to the Cambridge Structural Database, CCDC 1434708 and 1434709,
containing the supplementary crystallographic data in this paper. These data can be obtained
free of charge via https://www.ccdc.cam.ac.uk/structures/ (accessed on 1 January 2023).

Table 1. Experimental crystallographic data and refinement parameters for polymorphs of 1, forms I
and II, and unit cell parameters of form 2 [17].

Compound 1 2

Form I Form II

Chemical formula C13H11N3O4
M 273.25

CCDC number/
CSD identifier 1434709 1434708 1491537/

QQQFGG02
Temperature, K 100 100 100
Crystal shape and color red needle orange prism red needle
Crystal size, mm 0.24 × 0.07 × 0.05 0.12 × 0.10 × 0.08
Crystal system orthorhombic triclinic monoclinic
Space group P21212 P¯1 P21/n
Z/Z’ 4/1 4/2 4/1
a, Å 12.214(2) 7.1979(4) 3.7626(2)
b, Å 26.118(5) 12.8243(8) 11.0374(5)
c, Å 3.8006(7) 13.1514(8) 26.8216(12)
α, ◦ 90 86.2870(10)
β, ◦ 90 83.6270(10) 90.273(2)
γ, ◦ 90 86.2960(10)
V, Å3 1212.4(4) 1201.93(12) 1113.87(9)
dcalc, g cm−3 1.497 1.510
µ (MoKα), mm−1 0.114 0.115
2θmax (◦) 60 60
Measured reflections 8306 25991
Independent reflections 3550 6939
R(int) 0.077 0.033
No. of parameters 186 371
Reflections with I > 2σ(I) 2070 5500
R1 0.055 0.053
wR2 0.094 0.136
GOF 0.99 1.03
ρmax/ρmin (e Ǻ−3) 0.29/−0.30 0.44/−0.26

2.3. Computational Details

Ab initio calculations of the crystal structures, isolated molecules, and dimers were
performed with the CRYSTAL17 software package [23]. In all of the calculations, the
dispersion-corrected PBE0-D3 function [24,25] was used with the POB-TZVP basis set [26],
which was parameterized for periodic solid state calculations. The use of shrinking factor
4 4 4 for the Monkhorst-Pack grid yielded 27 and 36 k-points in the irreducible Brillouin
zone for forms I and II, respectively. For the crystal structures, the atomic positions were
optimized using experimental unit cell parameters and symmetry. For all of the optimized

https://www.ccdc.cam.ac.uk/structures/
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models, the harmonic frequencies were calculated (at the Γ-point for the crystal structures)
using a numerical algorithm, with two atomic displacements in each Cartesian direction.
For the calculation of the lattice energy, the wavefunctions of the isolated molecules in
the crystal geometry were also computed. The basis set superposition error (BSSE) was
corrected by the counterpoise approach [27] by using special algorithms implemented
in CRYSTAL17 (the keywords were MOLEBSSE for the crystals and GHOSTS for the
isolated dimers).

A topological analysis of the electron density distribution ρ(r) in terms of Bader’s
Quantum Theory of Atoms in Molecules (QTAIM) [28] was performed with the TOPOND
program [29] integrated in CRYSTAL17. The results of the topological analysis were
visualized with the AIMStudio program from the AIMAll [30] software package, the
output files of the TOPOND were converted to the sumviz format using an in-house utility
topond2sumviz. To compare the energy of individual interatomic bonding interactions the
empirical Espinosa–Molins–Lecomte (EML) correlation [31] was used: EEML = −0.5a0

3v(r),
where EEML is interaction energy, a0 is Bohr radius, and v(r) is potential energy density
in a bond critical point. Although this approximation was criticized for its empirical
nature and unreliability [32], its theoretical justification and its possible limitations have
been proposed [33], and it was successfully applied for studying different close-shell
interactions [34]. As the approximation is the only way to estimate the contribution of an
individual bonding contact into the interaction energy, we used the EML correlation in this
work, but only for a semi-qualitative comparison of the order of the interaction energy.

3. Results and Discussion
3.1. Molecular Geometry

Form I, Figure 1a, is non-centrosymmetric (space group P21212), while form II is
centrosymmetric (space group P¯1) and contains two crystallographically independent
molecules in the asymmetric unit (further denoted as A and B). The bond lengths and
angles of the molecules in both forms are very similar and are comparable to typical values
for the comparable molecular fragments, as indicated by a Mogul geometry check [35].
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Figure 1. (a): General view of the molecule 1 in crystal form I, anisotropic displacement parameters
are drawn at 50% probability level; (b): overlay of molecules from crystal structures of forms I (green),
II (light and dark blue) and crystal structure of 2,4-dinitrodiphenylamine 2 [17], red).

Note that the bonds of the central amino atom N3 with the carbon atom C1 of the
electronic acceptor dinitrobenzene fragment are shorter (1.341(4) Å in form I and 1.351(2)
and 1.353(2) Å in form II) than they are with the carbon atom C7 of the toluene moiety
(1.426(4), and 1.425(2) and 1.424(2) Å), which suggests more effective conjugation of the
lone electron pair of the nitrogen atom with the aromatic system of the acceptor benzene
ring. The specific orientation of the lone pair is determined by the intramolecular H-bond
with S(6) graph set [36] that closes a highly favorable [37] six-membered H-bonded ring.
The geometric parameters of this H-bond are very similar for the molecules in both of the
polymorphs (Table 2). Note that in both of the structures, the intramolecular H-bond is
the major component of a bifurcated bond (see below), and the variation of its strength
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can reflect different strength of the weaker secondary bond. The intramolecular H-bond
clearly fixes the orientation of the nitro group N1 O1 O2, while the second nitro group is
conformationally labile, however, both of the nitro groups in both of the polymorphs are
nearly co-planar to the benzene ring, with the angles between the mean planes falling in
the range from 3.00(17) to 9.06(19)◦.

Table 2. Geometric parameters of bonding interactions in forms I and II and characteristics of the
electron density ρ(r) and its derivatives.

I II-A II-B

exp. DFT exp. DFT exp. DFT

Intramolecular H-bond
N···O, Å 2.620(3) 2.593 2.6308(19) 2.606 2.6295(19) 2.614
H···O, Å 1.813 1.802 1.867 1.828 1.877 1.842
N−H···O, ◦ 133.87 132.04 129.48 130.80 128.42 130.21
ρ(r), e Å−3 0.266 0.252 0.244
∇2ρ(r), e Å−3 3.42 3.29 3.21
ε 0.02 0.02 0.04
EEML, kcal/mol 12.27 11.36 10.85

Intermolecular H-bond
N···O, Å 3.330(3) 3.457 3.2558(19) 3.300 3.3865(19) 3.436
H···O, Å 2.425 2.564 2.328 2.389 2.543 2.600
N−H···O, ◦ 148.22 146.75 151.58 149.03 140.33 139.61
ρ(r), e Å−3 0.034 0.050 0.035
∇2ρ(r), e Å−3 0.54 0.83 0.53
ε 1.86 0.50 1.39
EEML, kcal/mol 0.86 1.31 0.86

Intermolecular O1···O1 contact
O1···O1, Å 2.699(3) 2.891 2.683(2) 2.744 2.928(2) 2.923
ρ(r), e Å−3 0.044 0.062 0.046
∇2ρ(r), e Å−3 0.87 1.25 0.85
ε 0.47 0.53 0.55
EEML, kcal/mol 1.45 2.33 1.43

Intermolecular C8-H8···O1 contact
C···O, Å 3.504(4) 3.593 3.449(2) 3.429 3.541(2) 3.629
H···O, Å 2.886 3.048 2.849 2.792 2.623 2.720
C-H···O, ◦ 115.97 111.76 114.64 117.43 141.43 113.74
ρ(r), e Å−3 0.022 0.037 0.037
∇2ρ(r), e Å−3 0.32 0.50 0.49
ε 0.30 0.14 0.78
EEML, kcal/mol 0.47 0.87 0.87

Intermolecular C8-H8···O2 contact
C···O, Å 3.659(4) 3.775 3.390(2) 3.458 3.431(2) 3.510
H···O, Å 3.220 3.418 2.778 2.877 2.421 2.561
C-H···O, ◦ 105.15 100.84 115.34 141.28 145.04 145.66
ρ(r), e Å−3 0.031 0.049
∇2ρ(r), e Å−3 0.44 0.64
ε 0.17 0.05
EEML, kcal/mol 0.73 1.17

The values of the electron density ρ(r), laplassian of the electron density ∇2ρ(r), and elliptisity ε are calculated
in the corresponding bond critical point (BCP) using PBE0-D3/POB-TZVP data. Experimental N-H and C-H
distances normalized to the average values of 1.014 and 1.090 Å taken from DFT calculations.

As a result of the bonding pattern and intramolecular non-covalent interactions, the
molecular conformations are very similar in both of the polymorphic forms, with almost
identical dihedral angles between the mean planes of the phenyl rings (51.65(8) in I, and
50.19(4) and 49.17(4)◦ in II). The conformation also resembles the conformation of the
related molecule 2 (Figure 2). Considering the small differences between the molecular
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geometries, the structures of forms I and II cannot be considered as “conformational
polymorphs”, and their polymorphic behavior is defined by intermolecular interactions.
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Figure 2. Topological graphs of the H-bonded dimers in polymorphs I and II (two crystallographically
independent molecules A and B). Bond critical points are drawn as orange spheres, bond paths for
non-covalent interactions are drawn with dashed lines. The intermolecular R2

2(12) H-bonded graph
set is shown with a green dotted line using form I as an example.

It should be mentioned that the molecular geometry, including the conformation and
geometric parameters of the intramolecular H-bond, is well reproduced by the DFT geome-
try optimization of the experimental structures. Thus, the results of the DFT calculations
are considered to be adequate for the further analysis of the intermolecular interactions.

3.2. Intermolecular H-Bonds

As mentioned above, the H-bond formed by the hydrogen atom H3N is bifurcated,
and the weaker intermolecular bonds (Figure 2) connect the molecules into R2

2(12) dimer
(Figure 2). It is interesting that the acceptor atom O1 of the secondary H-bond is the same
as that of the intramolecular bond. Based on geometric parameters (Table 2), the secondary
bond is quite weak and could have been considered as unimportant for crystal packing.
However, this bond is observed in both of the polymorphic forms of 1 (albeit of different
geometry), as well as in the crystal of the closely related compound 2. Therefore, the
resulting dimer can indeed be considered as a supramolecular synthon.

The same supramolecular synthon with intramolecular S(6) and intramolecular R2
2(12)

H-bonded patterns was previously found by some of us [38] for 2,4,6-trinitroaniline (TNA),
and it was also observed for a significant number of crystal structures of o-nitroanilines
(ca. 15%) in the Cambridge Structural Database [39]. The specific interesting feature of the
synthon is the relatively short distance between the two acceptor atoms of the H-bond,
which are often much shorter than the doubled van der Waals radius of the oxygen atom.
This short contact corresponds to a bonding interaction in terms of the QTAIM theory, as it
is energetically favorable, and additionally, stabilizes the resulting dimeric system with the
overall binding energy of 6.6 kcal/mol calculated for TNA at the B3LYP-D3/def2-TZVP
level of theory.

While in most structures the synthon is located about an inversion center, it was also
observed for some structures in non-centrosymmetric space groups. In polymorph I, the
molecules in the dimer are related by a two-fold axis, and while intermolecular H-bonds
are very weak, the experimentally determined O···O distance of 2.699(3) Å is unexpectedly
short. However, such geometry is not reproduced well by the DFT calculation of the crystal
structure, as both the N-H···O and O···O distances in the optimized structure are notably
longer. Such an inconsistency between the experimental and the theoretical data is most
probably due to slight dynamic disorder of the nitro group that cannot be resolved by
a conventional X-ray diffraction experiment. Indeed, even a slight deviation of the N-O
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bonds from the co-linearity increases the O···O distance and also disrupts the geometry of
the intermolecular H-bond.

In polymorphic form II, the molecules in the dimer are related by an inversion center,
thus the synthon is formed between the symmetry independent molecules. For molecule
A, the geometry of the dimer with nearly co-planar interacting six-membered H-bonded
rings resembles those in TNA, molecule 2, and many of the related structures. On the other
hand, in the synthon formed by molecule B, the interacting six-membered H-bonded rings,
though they are nearly parallel, are shifted in the perpendicular direction by ca. 1.7 Å. Such
an orientation notably increases the length of the O···O contact and the H-bonds. However,
the formal criteria of the presence of these weak interactions are still satisfied. Note that
in the case of form II, the DFT optimization of the crystal structure leads to much smaller
changes in the geometry of the dimer, as compared to those of form I, with only a slight
increase of the O···O and O···H distances.

In order to identify the bonding interactions in the synthons and rationalize the
differences between the polymorphic forms, we have performed a topological analysis of
the theoretical electron density ρ(r) in the optimized crystal structures with reference to
the QTAIM theory. The resulting topological graphs for the supramolecular synthons are
presented in Figure 2, and the quantitative data are provided in Table 2.

As expected, all of the bond critical points (3,-1) (BCPs) and gradient paths corre-
sponding to covalent and strong intramolecular hydrogen bonds were found. In addition,
BCPs corresponding to an intramolecular C6-H6···C12(π) interaction were found for both
of the polymorphs, which is also mentioned for compound 2 from the B3LYP/6-31++G(d,p)
single-point electron density analysis [17] of the isolated associate.

As for intermolecular interactions, all of the BCPs and bond paths characteristic of the
discussed supramolecular synthon were located, despite there being significant differences
in the relative orientation of the component molecules. In the dimers of Ci symmetry in
form II, two additional weak C-H···O contacts with the H atom of the tolyl fragment are
observed, which additionally stabilize the synthon, whereas in form I, only one of these
bonds remains due to there being a significantly greater distance between the atoms in
the dimer of C2 symmetry. The energy of all of the non-covalent bonding interactions was
estimated from the EML approximation (Table 2). Note again that this empirical approach
allows only the semi-qualitative comparison of the interaction energy. It turns out that the
energy of intramolecular H-bonds is very close, and the bond in form I is the strongest
one. As expected from geometric parameters, the intermolecular H-bonds are weaker by
an order of magnitude, and the bonds in form II-A are the strongest ones due to the most
favorable orientation of interacting atoms. Interestingly, the energy of O···O interaction
is nearly three times higher than one of the intermolecular H-bonds, which makes the
contribution of these two interaction types into stabilization of the synthon almost equal.

Thus, except for the weakest C-H···O interaction, the connectivity of the topological
graph for the dimers in polymorphs I and II is the same. However, the symmetry of the
dimers is different, and the relative orientation of the molecular fragments is responsible
for the synthon formation. This allows us to consider these distinct geometries as different
conformations of the supramolecular synthon.

The same observation was recently reported by some of us for crystal structures of
8-hydroxyquinoline (8HQ) and its derivatives [40]. As for the polymorphs of form 1, in
different crystal forms of 8HQ the molecules are linked into H-bonded dimers, either
centrosymmetric (space groups P21/n and P¯1) or located about a two-fold axis (space
group Fdd2). In contrast to 8HQ, where the supramolecular synthon of C2 point group
is an energy minimum and the centrosymmetric dimer is a transition state, for form 1,
both the C2 and Ci symmetries are found to be energy minima, with a very small energy
difference of 0.22 kcal/mol. However, the lowest calculated vibration frequencies of 8.5 and
11.2 cm−1, respectively, indicate the flatness of the potential energy surface for molecular
libration. The resulting conformation lability allows the synthon to adjust to different
crystal surroundings.
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The pair interaction energy was calculated by PBE0-D3/POB-TZVP method for iso-
lated H-bonded dimers in the optimized crystal geometry. It turns out that the binding
energy of the dimer observed in form I (4.4 kcal/mol) is the lowest one when it is compared
to those of forms II-A (8.6 kcal/mol) and II-B (9.2 kcal/mol). The main reason for the
much greater stability of the H-bonded dimers in polymorph II seems to be its additional
stabilization by the C-H···O interactions.

3.3. Other Intermolecular Interactions and Crystal Packing

In addition to the intermolecular interactions in the supramolecular synthon discussed
above, all of the intermolecular bonding interactions were found as BCPs in the intermolec-
ular space. A full list of the BCPs is provided in Supporting Information (Tables S2 and S4).
The list for polymorph I contains N-H···O, C-H···O, O···O, O···C, C···C, and H···H in-
teractions; note that in this form, there are no direct interactions between the atoms of
nitro groups, except for those in the H-bonded dimer, in accordance with the packing
pattern (Figure S1 in Supporting Information). It is interesting that the infinite π-stacks
in form I are built by partially overlapping benzene rings of the same type and not by
alternating electron-rich and electron-deficient cycles, which are more typical for this type
of compound. On the other hand, the list of the intermolecular BCPs for polymorph II
includes interactions of nearly all of the possible types: N-H···O, C-H···O, C-H···N, O···O,
O···C, N···C, C···C, and H···H. In the case of this polymorph, the structure contains dimer-
like aggregates built by π-stacking interactions between partially overlapping donor and
acceptor cycles.

The lattice energy of the polymorphs was calculated by the PBE0-D3/POB-TZVP
method as the difference between the full energy of an optimized crystal structure and a
molecule in the crystal geometry. The values of 32.4 and 34.1 kcal/mol for forms I and
II, respectively, suggest more effective crystal packing for the triclinic form, and this is
in line with its slightly higher density at 100 K. The cohesive energies were calculated to
be 31.2 and 32.9 kcal/mol, respectively; the same difference between the forms implies
the negligible energy difference between the molecular conformations, and thus, the same
deformation energy of ca. 1.2 kcal/mol for molecules I, II-A, and II-B. It should be
mentioned that the lattice energy, the cohesion energy, and the crystal density are higher
for the triclinic form, while it is less likely to be obtained by crystallization at ambient
conditions. Unfortunately, due to the lack of pure bulk sample of the form II, we cannot
perform the experimental comparison of the stability of the polymorphs. However, the
differential scanning calorimetry measurements of the bulk form I shows the absence of
phase transitions up to the melting temperature (see Supporting Information Figure S4),
and form I is the polymorph that crystallizes from the melt.

It should be emphasized that based on the ρ(r) and/or EEML values, there are multiple
intermolecular interactions that are comparable in energy with those that were found in
the supramolecular synthon. In fact, the contribution of the dimerization energy into the
total lattice energy is quite small (8.0, 12.6, and 13.5% for I, II-A, and II-B, respectively).
However, the supramolecular synthon is formed in both of the polymorphic forms, in
structure 2, and in a significant number of o-nitro diphenylamines. Thus, the formation
of the synthon can be considered as an important factor for crystal packing and/or for
seeding and crystal growth processes.

Interestingly, the comparison of the unit cell parameters of the form I with the data
for 2,4-dinitrodiphenylamine 2 shows a strong similarity with regard to the different order
of axes. In fact, the smallest dimension nearly coincides, while two others differ only by
ca. 0.7 and 1.2 Å. Moreover, the monoclinic angle in form 2 is close to 90◦, which leads
to pseudo-merohedral twinning of the structure. To reveal the possible similarity of the
crystal structures, a ‘Crystal Packing Similarity’ tool implemented to the Mercury 2022.2.0
package [41] was used, as described previously [42]. The clusters of 15 closest molecules in
polymorph I was compared with the cluster in polymorph 2. The results of the comparison
are depicted in Figure 3.
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generate the second half of the unit cell on (a) are depicted by symbols of the corresponding color.

It turns out that both of the structures contain the same packing fragment, a stack
along the crystallographic c axis in form I (or along the a direction in 2) formed by molecules
M1 in Figure 3a. These fragments fit perfectly, with an RMS deviation of the common
atoms of only 0.062 Å. In the next stack M2, which is related to M1 by a two-fold screw
axis, the molecules of form 2 are slightly shifted, and in the stack M3, which is related to
M1 by a translation, the shift relative to form I reaches the above-mentioned difference of
ca. 1.2 Å of the corresponding unit cell parameter. The latter shift is approximately equal
to the linear size difference of the H and Me substituents. Thus, taking into account the
difference in the size of the substituents, we can consider the fragment depicted in Figure 3a
as quasi-isostructural ones. On the other hand, these fragments are related to each other in
the whole unit cell by a proper two-fold rotation axis in form I, but by an inversion center
in form 2, which leads to the observed difference in crystal symmetry (Figure 3b). It should
be noted that partial isotructurality is a known phenomenon, and the structures of 1 and 2
are a perfect illustration to its relationship with polymorphism [43].

Note that sometimes it is desirable to fix the symmetry relation of fragments, e.g.,
stacks, by choosing a highly directional supramolecular synthon to exclude, for example, the
possibility of inversion and predictably obtain a non-centrosymmetric crystal structure [44].
However, in other cases conformation flexibility of a supramolecular synthon can help it
to switch from a centrosymmetric to a non-centrosymmetric structure by variation of the
substituent peripheral to the synthon, as in the case of polymorph I and 2. Clearly, the
variation in the crystal packing in the structures discussed in this paper results from the
interplay between the conformation of the supramolecular synthon and the differences in
the overall molecular shape, size, and weak intermolecular interactions, as the conformation
of the synthon is not directly affected by the substituents.

4. Conclusions

To summarize, two polymorphic modifications of 4′-methyl-2,4-dinitrodiphenylamine
(forms I and II) were obtained, and their structures were established by single-crystal
X-ray diffraction. One of the crystal structures (form I) is non-centrosymmetric (space
group P21212), which makes us assume possible application of the compound as non-
linear optical material. In both of the crystal structures, the molecules form the same
supramolecular synthon, a dimer built by two weak intermolecular H-bonds, a bonding
O···O interaction between the acceptor atoms of the H-bond that is additionally stabilized
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by C-H···O interactions with the hydrogen atoms of the tolyl substituents. The differences
in the conformation of the supramolecular synthons reflect the symmetry of the crystal
structures: in the non-centrosymmetric form I, the dimer is located about a two-fold axis,
while in the centrosymmetric structure II, two dimers formed by crystallographically
independent molecules lie on the inversion centers. In addition, the geometry of the
synthon is different for two independent molecules in form II, as in one of the pairs, the
molecules are significantly shifted in direction that is perpendicular to the intramolecular
H-bonded ring. The Quantum Theory of Atoms in Molecules (QTAIM) approach applied
to the theoretical (PBE0-D3/POB-TZVP) electron density distribution shows that despite
the difference in conformation, the set of bonding interactions in the synthons are the
same in all of the structures, with the exception of one weak C-H···O bond. Both of the
conformations of the supramolecular synthon with C2 and Ci symmetry were found to
be energy minima, but with a very flat potential energy surface for molecular libration.
Despite the contribution of the binding energy in the supramolecular synthon to the total
lattice energy not exceeding 15%, the presence of the synthon in both of the polymorphs
and the crystal structure of the related 2,4-dinitrodiphenylamine assumes its importance
for crystal packing.

Interestingly, the unit cell parameters of the form I and those of 2,4-dinitrodiphenylamine
exhibit a strong similarity. The comparison of the crystal packing shows that both of the
structures contain a quasi-isostructural fragment, infinite π-stacks joined by weak non-
directional intermolecular interactions. However, these fragments are linked together by
the supramolecular synthons, which lead to a non-centrosymmetric structure in the case
of polymorph I, but to a centrosymmetric structure (space group P21/n) of the phenyl
analogue. Therefore, the addition of one substituent peripheral to the supramolecular
synthon indirectly changes the geometry of the synthon and the overall symmetry of the
crystal structure, leaving the quasi-isostructural fragment nearly unaffected.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13020296/s1, Figure S1: Fragment of crystal packing of the
polymorph I; Figure S2: Fragments of crystal packing of the polymorph II; Figure S3: Observed and
calculated powder diffraction patterns for the crystal structure of form I; Figure S4: DSC curves for
the powder sample of form I upon heating and cooling; Listing S1: Coordinates of form I optimized
by PBE0-D3/POB-TZVP method; Listing S2: Coordinates of form II optimized by PBE0-D3/POB-
TZVP method; Table S1: Bond critical points corresponding to intramolecular interactions in form I;
Table S2: Bond critical points corresponding to intramolecular interactions in form I; Table S3: Bond
critical points corresponding to intramolecular interactions in form II; Table S4: Bond critical points
corresponding to intramolecular interactions in form II.
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