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Abstract: In this paper, an overview of the influence of various modifications on ZnO-based RRAM
has been conducted. Firstly, the motivation for creating new memory technology is presented. The
resistive switching mechanism is explained, including its response to the selection of active layers
and electrodes. A comparison of ZnO devices assembled via different deposition methods is made.
Additional treatment of the active layer and electrodes improving the performance are reported. This
work gives an overview of the influence of different dopants on the characteristics of the device. The
manuscript overviews the previous investigation of inclusion of inserting layers and nanostructures
into ZnO-based RRAM.
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1. Introduction

The last decades in human history can be called “the big data era”. Contemporary
applications such as artificial intelligence, cloud storage, data mining, or the internet of
things were possible due to the advances in data storage technology. Modern applications
require high velocity and generate a large volume of data with less energy consumption.
The conventional von Neumann architecture with silicon complementary metal-oxide-
semiconductor systems (CMOS) and charge-based memory makes power scaling easier,
as the charge leaks away easily in a smaller device. Therefore, non-charge-based memory
technologies such as resistive random access memory (RRAM) have become promising for
future applications [1,2].

Today, for data operation, both temporary and permanent storage are required. Cur-
rently, these demands are fulfilled with dynamic random access memory (DRAM), static
random access memory (SRAM), and Flash memory [2]. A DRAM cell uses a capacitor
to store charge and distinguish between the ‘0’ state and the ‘1’ state. The cell scaling
is narrowed by the load of charge, which is accumulated in the scaled capacitor [2]. An
SRAM cell stores information on the two nodes of a cross-coupled inverter pair. It is a
very fast memory used to interact directly with the high-speed processor. However, an
SRAM is volatile and has a lower density. Flash memories are employed for large capacity
and nonvolatile requirements. A flash memory cell stores charge in the floating gate of a
transistor and can store different amounts of charge to effectively store more than one bit of
information per transistor [2]. All these existing charge-storage-based memory technologies
face challenges in scaling down to 10 nm nodes or beyond. This is correlated with stored
charge loss at the nanoscale, which results in the decrease in performance and reliability,
performance, and widening of the noise margin. Furthermore, the leakage power for both
SRAM and DRAM and requirements of high dynamical refresh power for DRAM pose
serious design challenges [3].

Resistive random access memory (RRAM) devices have appeared as a potential candi-
date for the forthcoming flexible non-volatile memory (NVM) device due to their distinctive
features such as scalability, higher speed operation, CMOS compatibility, and low power
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consumption. Therefore, in broad investigations have been carried out on RRAMs, focusing
on improving their performance and eliminating limitations such as the high impact of
process-induced variations [2]. Moreover, RRAM may be used in neuromorphic systems as
synapse emulators [4], where one of the challenges is the lack of a compact analog RRAM
that bridges the gap between the fundamental physics of the device and the behavior of
the circuit/system [5].

RRAM, also often referred to as a memristor, is a non-volatile memory made from the
simple structure of a metal–insulator–metal (MIM) sandwich, which is generally integrated
into an elementary crossbar circuit [6,7]. Memristor is the physical realization of the fourth
fundamental passive circuit element [8]. Its primary role is resistive switching. The device
relies on the formation of conducting filaments to switch between low- and high-resistance
states. This property makes it particularly useful for in-memory computing due to its
non-volatile storage capability with a continuum of conductance states [9,10]. RRAM uses
an electrical signal to activate the reversible transition between a high resistance state (HRS,
OFF) and a low resistance state (LRS, ON) in a sandwiched structure, thus enabling the
storage of data ‘0’ and ‘1’ [8,11,12]. Due to the characterization of the materials, the most
crucial feature of MIM switches is their HRS/LRS switching ratio (the higher the ratio, the
better the memristive behavior) [13].

Despite the theory of MIM switching having been introduced more than 50 years
ago, the explanation of the driving mechanism was only presented two decades later. The
phenomenon of negative differential resistance in oxides was first reported in the 1960s
and reviewed by Dearnaley et al. in 1970 [12]. Researchers then saw reversible resistive
switching in various binary oxides [14]. In 1971, Chua discovered the memristor as the
fourth fundamental electrical element [7]. The latest research on resistive switching can
be set on the discovery of I-V hysteresis in perovskites and binary metal oxides in the late
1990s and early 2000 [12,14]. These findings began enormous interest in resistive switching
in oxides for application in RRAMs. Research activity intensified after 2004 when Samsung
presented an article demonstrating NiO memory cells integrated with conventional CMOS
in a one-transistor–one-resistor (1T1R) architecture [15]. Hewlett-Packard Labs achieved
the first clear connection between Chua’s theory and practical demonstrations of memristor
devices in 2008. The group observed a memristive behavior at the nanoscale using thin
film titanium dioxide as an insulator layer [6,16].

Today, more and more research is focused not only on the usage of oxides, organic
materials, or 2D nanostructures as an insulating layer, but also on the modification of the
properties of each insulating layer by adding other materials that can change the properties
of the film. Since one of the most commonly utilized materials in memristors is ZnO, this
paper focuses on understanding a review of RRAM based on ZnO thin films modified with
2D and 1D materials.

2. RRAM Mechanism

As mentioned above, a random access memory resistor (RRAM) consists of a memory
cell of resistance switching with a metal–insulator–metal structure, generally known as
the MIM structure. The structure consists of a layer (I) of insulation between two metal
electrodes (M) [3]. The number of electric charges flowing through it can reversibly modu-
late the memristor’s resistive states. The memristive device performs resistive switching
behavior with an inherent memory effect. The resistive state depends both on the extra
stimulations and its intrinsic states [17].

Depending on different criteria, the behavior of resistance exchange can be classified
into different types. For example, resistive switching behavior can be divided into digital
and analog categories based on switching dynamics. Digital resistance switches describe
sudden changes between high resistance states (HRS) and low resistance states (LRS), and
sudden current jumps appear in the digital cell I–V loops. Analog switching relates gradual
modulation—switching cells exhibit continuous I-V loops [17]. According to the retention
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characteristics of the resistive states, the resistive switching behavior can be classified into
volatile and non-volatile switching groups [17].

The switch from HRS to LRS is the ‘set’ process. In contrast, the LRS–HRS switch
event is called a ‘reset’ process. Applying the external voltage pulse through the RRAM
cell allows a transition of the device from a high resistance state (HRS), or the OFF state
generally referred to as logic value ‘0’, to a low resistance state (LRS), or the ON state—logic
value ‘1’ and vice versa. The resistance change phenomenon (RS) is considered the reason
behind the change in resistance values in RRAM cells. In most cases, in new samples with
initial resistance conditions, a voltage greater than the set voltage is required to trigger
resistive switching behaviors in subsequent cycles [3,15]. To read data from the RRAM
cell, a small voltage which cannot destroy the current state is applied for determination
whether the cell is in the logic 0 (HRS) or logic 1 (LRS) state. Since LRS and HRS maintain
their respective values even after applying voltage, RRAM is a non-volatile memory [3].

2.1. Resistive Switching

According to the current polarity, the RRAM can be divided into two modes: unipolar
and bipolar (Figure 1). In unipolar switching, changing between modes does not depend
on the polarity of the applied voltage. In bipolar switching, the SET and RESET processes
rely on the polarity of the applied voltage. A switch from an HRS to an LRS occurs at one
polarity (positive or negative) and the opposite polarity shifts the RRAM cell back into the
HRS [3]. Resistance-switching properties in memristive devices were highly dependent on
materials, device structures, external simulations, and switching mechanisms. Therefore,
many reports deal with the adjustment of switching behavior characteristics by modifying
the structure of the device and the simulation parameters [11,15].

Crystals 2023, 13, x FOR PEER REVIEW 3 of 23 
 

 

retention characteristics of the resistive states, the resistive switching behavior can be clas-
sified into volatile and non-volatile switching groups [17]. 

The switch from HRS to LRS is the ‘set’ process. In contrast, the LRS–HRS switch 
event is called a ‘reset’ process. Applying the external voltage pulse through the RRAM 
cell allows a transition of the device from a high resistance state (HRS), or the OFF state 
generally referred to as logic value ‘0′, to a low resistance state (LRS), or the ON state—
logic value ‘1′ and vice versa. The resistance change phenomenon (RS) is considered the 
reason behind the change in resistance values in RRAM cells. In most cases, in new sam-
ples with initial resistance conditions, a voltage greater than the set voltage is required to 
trigger resistive switching behaviors in subsequent cycles [3,15]. To read data from the 
RRAM cell, a small voltage which cannot destroy the current state is applied for determi-
nation whether the cell is in the logic 0 (HRS) or logic 1 (LRS) state. Since LRS and HRS 
maintain their respective values even after applying voltage, RRAM is a non-volatile 
memory [3]. 

2.1. Resistive Switching 
According to the current polarity, the RRAM can be divided into two modes: unipo-

lar and bipolar (Figure 1). In unipolar switching, changing between modes does not de-
pend on the polarity of the applied voltage. In bipolar switching, the SET and RESET pro-
cesses rely on the polarity of the applied voltage. A switch from an HRS to an LRS occurs 
at one polarity (positive or negative) and the opposite polarity shifts the RRAM cell back 
into the HRS [3]. Resistance-switching properties in memristive devices were highly de-
pendent on materials, device structures, external simulations, and switching mechanisms. 
Therefore, many reports deal with the adjustment of switching behavior characteristics by 
modifying the structure of the device and the simulation parameters [11,15]. 

 
Figure 1. Unipolar and bipolar modes for RRAM devices. 

The basis of a switching mechanism is the growth of a conductive filament (CF) in-
side the insulator. A CF is a very narrow channel that connects the top and bottom elec-
trodes of the memory cell. Low-resistant (LRS) states with high conductivity are achieved 
when the filament is connected, and high-resistance state (HRS) is obtained when the fil-
ament is disconnected from the gap between the electrodes. Based on the composition of 
the conductive filament and the mechanism of conduction, RRAM switching can be clas-
sified as a thermal chemical mechanism (TCM), valance change mechanism (VCM), and 
electrochemical metallization (ECM) [3,11]. 

Electrochemical metallization (ECM) is based on the migration of metal ions and sub-
sequent reduction/oxidation (redox) reactions. The junction consists of a chemically active 
top electrode such as Ni, Cu or Ag, a nearly inert bottom electrode (e.g., W, Pt), and a 
sandwiched metal oxide layer. The filament formation in such memory cells occurs due 
to the dissolution of the active metal electrodes, the transport of cations (M+), and their 
deposition or reduction on the inert electrode [3,11]. 

Figure 1. Unipolar and bipolar modes for RRAM devices.

The basis of a switching mechanism is the growth of a conductive filament (CF)
inside the insulator. A CF is a very narrow channel that connects the top and bottom
electrodes of the memory cell. Low-resistant (LRS) states with high conductivity are
achieved when the filament is connected, and high-resistance state (HRS) is obtained when
the filament is disconnected from the gap between the electrodes. Based on the composition
of the conductive filament and the mechanism of conduction, RRAM switching can be
classified as a thermal chemical mechanism (TCM), valance change mechanism (VCM),
and electrochemical metallization (ECM) [3,11].

Electrochemical metallization (ECM) is based on the migration of metal ions and
subsequent reduction/oxidation (redox) reactions. The junction consists of a chemically
active top electrode such as Ni, Cu or Ag, a nearly inert bottom electrode (e.g., W, Pt), and
a sandwiched metal oxide layer. The filament formation in such memory cells occurs due
to the dissolution of the active metal electrodes, the transport of cations (M+), and their
deposition or reduction on the inert electrode [3,11].
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In the valence change mechanism, the formation of a conduction filament is correlated
with the creation of oxygen vacancies (V2+

O) and the subsequent relocation of oxygen
ions (O2), thus enabling the formation of a conductive filament between the upper and
lower electrodes of RRAM cell. For the commissioning of the mechanism, it is necessary to
knock out oxygen atoms from the lattice by applying a high electric field toward the anode
interface. The oxygen ions (O2) drift toward the electrode whereas the oxygen vacancies
(V2+

O) are left in the oxide layer. If noble metals are used as materials for the anode to form
an interfacial oxide layer, oxygen ions (O2−) react with anode materials or are released as
neutral oxygen. Next, the conductive filament (CF) is formed and the appreciable current
flows in the device through the accumulation of oxygen vacancies (V2+

O) in the bulk oxide,
which switch the RRAM cell to the low resistance state (LRS). To return the device to the
high resistance state (HRS), the reset process occurs. In the process, the oxygen ions (O2)
migrate back to bulk oxide from the anode interface and combine with the oxygen vacancies
(V2+

O) [3,11].
The thermochemical mechanism (TCM) explains the formation and fracture of CFs

resulting from ion migration induced by a thermochemical reaction (Joule heating), which
is independent of the switching modes (unipolar and bipolar) for RRAM devices. In the
case of LRS, the ions are driven by the Joule heating effect towards the top electrode and,
in the case of the unipolar device, left oxygen vacancies. For the RESET process of the
unipolar device, the current steadily increases with increasing positive voltage bias, and the
formed CFs finally break when it reaches the critical temperature induced by Joule heating,
which causes the device to switch back to HRS. For the RESET process of the bipolar device,
oxygen ions drift back to the insulating layer due to the melting of CF and the device to
HRS [11].

2.2. Activation Process

The RRAM behavior is based on the possibility of electrically modifying the conductiv-
ity of a stack of metal–insulator–metal (MIM). To activate the switching mechanism, some
technologies require a preliminary formation operation [18], which is shown in Figure 2.
The electroforming process (soft or hard) is usually realized by applying a large electrical
bias across the two electrodes within a certain specific time interval to generate initial
conductive channels via the Joule heating effect. The formation step can be conquered by
appropriately modifying the fabrication process to readily introduce oxygen vacancies to
facilitate the migration of anions within the switching layer [6]. Even if the forming process
is performed once, this initial state plays a fundamental role in determining the subsequent
array and system performance. The performance of the formation process relies on its
ability to create homogeneous conductive conditions among cells, thus easing successive
SET/RESET operations [18]. As explanations of the driving force of anion transport during
the formation process, the following are suggested: (i) drift by electric potential gradient,
(ii) electromigration assuming an electron kinetic energy, (iii) Fick diffusion due to ion
concentration gradient, and (iv) thermophoresis due to temperature gradient [6].

Crystals 2023, 13, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 2. Process of electroforming, SET and RESET. 

2.3. Material for Electrodes 
One of the undervalued elements of MIM switches is the electrode. The materials and 

forms of electrodes can have a significant impact on the behavior of RS, mainly through 
direct participation in redox reactions or as transport routes for oxygen tanks or loading 
carriers [9]. 

Firstly, it is necessary to choose a suitable material for the top and bottom electrodes. 
In general, the specific material for the electrodes is related to the conduction mechanism. 

VCM is triggered by the migration of field-assisted oxygen anions and valence 
change of the cation sublattice [22]. In the case of VCM, the most common and widely 
used are inert metals, such as Au, Pt, and Pd, which normally contribute less to RS, and 
act mainly as a carrier transport path or oxygen reservoir [9]. 

In the case of ECM, the conduction mechanism is based on the migration of cations 
in the solid electrolyte [b]. The typical ECM cell has an asymmetric structure with one 
active electrode. In the case of cation-based structures, electrochemically active metals 
such as Cu, Ni, Ag, and Ru, have been explored [9]. Active metals with the ability to mod-
ulate the concentration or migration of anions are used, such as Ta, Ti, Al, Hf, and W. 
What is more, the redox reaction of a Ta electrode can lead to the formation of Ta CFs. 
Therefore, competition between the ECM and the VCM may exist in devices based on the 
Ta electrode [9]. Recently, active metals have been intentionally mixed into the electrolyte 
layer to achieve bipolar threshold-switching behavior with typical I–V curves. These 
memristive devices with bipolar threshold-changing behaviors are also called diffusive 
memristive devices [17]. 

More and more alloy electrodes are used for improving or optimizing RS behaviors 
by modulation of the mobile cations’ diffusivity or confination of the position of CFs [9]. 
The use of alloys where both components are redox-active and mobile may bring signifi-
cant advantages in the design of electrode materials [23]. Most commonly used switching 
films are binary, ternary, or quaternary compounds such as Ta2O5, SiO2, SrTiO3, etc. In 
those alloys, the interactions between the ions/atoms of the active electrode/filament and 
the solid electrolyte matrix influence the chemical and electronic properties both of the 
conducting channel and also of the whole matrix [23]. 

Carbon-based electrodes, for example, graphene and carbon nanotubes (CNT), are 
reported for flexible and small-scale devices. One of the more common bottom electrodes 
is p- and n-type silicon, as well as nitride electrode materials such as TiN and TaN. Con-
ducting metal oxides, such as indium tin oxide (ITO), Al-doped ZnO (AZO), Ga-doped 
ZnO (GZO), and F-doped SnO2 (FTO), have also been reported as electrodes for some 
special applications, for example, fully transparent or flexible devices [9]. 

The electrode material can significantly change the behavior of the active layer. 
Khrapovitskaya et al. [24] have investigated RS of TiO2-based memristors with respect to 
different material of top electrodes. In the case of the Pt electrode, the maximum to mini-
mum resistance ratio (Roff/Ron) was up to about 100 Ω, whereas in the case of the golden 

Figure 2. Process of electroforming, SET and RESET.



Crystals 2023, 13, 416 5 of 21

A standard formation can be carried out by applying a voltage ramp [19] or a volt-
age/current pulse to each cell individually [18]. Both formation processes produce a
non-destructive soft breakdown regime and a progressive breakdown regime of the dielec-
tric and require a sufficiently high electric field [20]. Another method, the constant voltage
formation process, enables the formation of conductive filaments at lower voltages rather
than the conventional fast voltage ramp method [21].

2.3. Material for Electrodes

One of the undervalued elements of MIM switches is the electrode. The materials and
forms of electrodes can have a significant impact on the behavior of RS, mainly through
direct participation in redox reactions or as transport routes for oxygen tanks or loading
carriers [9].

Firstly, it is necessary to choose a suitable material for the top and bottom electrodes.
In general, the specific material for the electrodes is related to the conduction mechanism.

VCM is triggered by the migration of field-assisted oxygen anions and valence change
of the cation sublattice [22]. In the case of VCM, the most common and widely used are
inert metals, such as Au, Pt, and Pd, which normally contribute less to RS, and act mainly
as a carrier transport path or oxygen reservoir [9].

In the case of ECM, the conduction mechanism is based on the migration of cations
in the solid electrolyte [b]. The typical ECM cell has an asymmetric structure with one
active electrode. In the case of cation-based structures, electrochemically active metals
such as Cu, Ni, Ag, and Ru, have been explored [9]. Active metals with the ability to
modulate the concentration or migration of anions are used, such as Ta, Ti, Al, Hf, and
W. What is more, the redox reaction of a Ta electrode can lead to the formation of Ta CFs.
Therefore, competition between the ECM and the VCM may exist in devices based on the Ta
electrode [9]. Recently, active metals have been intentionally mixed into the electrolyte layer
to achieve bipolar threshold-switching behavior with typical I–V curves. These memristive
devices with bipolar threshold-changing behaviors are also called diffusive memristive
devices [17].

More and more alloy electrodes are used for improving or optimizing RS behaviors by
modulation of the mobile cations’ diffusivity or confination of the position of CFs [9]. The
use of alloys where both components are redox-active and mobile may bring significant
advantages in the design of electrode materials [23]. Most commonly used switching
films are binary, ternary, or quaternary compounds such as Ta2O5, SiO2, SrTiO3, etc. In
those alloys, the interactions between the ions/atoms of the active electrode/filament and
the solid electrolyte matrix influence the chemical and electronic properties both of the
conducting channel and also of the whole matrix [23].

Carbon-based electrodes, for example, graphene and carbon nanotubes (CNT), are
reported for flexible and small-scale devices. One of the more common bottom electrodes is
p- and n-type silicon, as well as nitride electrode materials such as TiN and TaN. Conducting
metal oxides, such as indium tin oxide (ITO), Al-doped ZnO (AZO), Ga-doped ZnO
(GZO), and F-doped SnO2 (FTO), have also been reported as electrodes for some special
applications, for example, fully transparent or flexible devices [9].

The electrode material can significantly change the behavior of the active layer.
Khrapovitskaya et al. [24] have investigated RS of TiO2-based memristors with respect
to different material of top electrodes. In the case of the Pt electrode, the maximum to
minimum resistance ratio (Roff/Ron) was up to about 100 Ω, whereas in the case of the
golden electrode, the sample resistance in the low-ohmic state (Ron) was about 90 Ω, and
that in the high-ohmic state (Roff) was about 900 Ω. The author claimed that the greater
switching behavior in the case of memristors with gold electrodes is probably related to a
lower diffusion of oxygen through the gold film compared to the case of platinum. On the
other hand, Kumar et al. [25] have investigated the effect of different electrode materials in
the case of the active ZnO layer of ZnO. They observed that the ZnO-based memristor with
the Pt electrode showed a better hysteresis compared to Cr and Au metal electrodes. In the
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case of the Pt electrode, a current ratio of six times the magnitude was observed between
the high resistive state and the low resistive state at 1 V, where a maximum current density
value of 1.25 A/cm2 was measured.

Swathi et al. [26] investigated the changes in RS due to the bottom electrode. They
investigated the Au/NiO/ITO and Au/NiO/Pt devices. Although the NiO switching layer
was deposited under similar conditions, different switching patterns were observed in
NiO films with ITO and Pt electrodes. In particular, the RS device with ITO as BE exhibits
gradual set-and-reset switching or analog-type RS. The change from HRS to LRS and vice
versa in positive and negative voltage sweeps was incremental in comparision to abrupt
change in samples with Pt bottom electrode device [26].

In addition to material, the size of the top electrode influences the formation of the
memristor conduction structure [27]. Gale et al. [28] showed that the scaling of the electrode
changing affects the behavior of curved-type memristors and has no effect on triangular-
switching ones. This suggests that the two types operate via different mechanisms. The
value of the hysteresis increases with increasing electrode size as a result of the decrease in
the value of Ron with increasing electrode size [28].

In another work, Gale et al. [29] observed a larger I-V curve in the case of a larger
electrode, which indicates the memristor’s response under the electrical field in relation
to three spatial dimensions. Furthermore, the hysteresis increases with electrode size but
does not increase equally across the devices; instead, the top right quadrant of the curve
increases more. This asymmetry leads to a negative hysteresis [29].

The size and materials of the electrodes may present some problems. Schroeder et al. [30]
observed the molting between the top and bottom electrodes as a result of a large current
during the forming process. Similarly, the fusing of electrodes lying next to each other was
observed, or the observation of creating the dendritic structures on the substrates [30].

2.4. Material for Active Layer

Many thin film materials have been investigated as RS mediums for RRAM devices be-
cause of their RS characteristics under the influence of the external electrical field. Generally,
organic materials and inorganic materials are two categories of RS medium [11].

2.4.1. Organic Materials

In the case of organic materials, research focuses primarily on biological materials,
polymer materials, and other materials. Most of them require low-temperature processes.
Therefore, in most cases, developing a way to control their interfacial pathways is a mile-
stone [31]. For example, investigation on the memory effect began in the 1970s when the
switching mechanism between different resistance states was observed in polystyrene and
copper–tetracyanoquinodimethane (Cu–TNCQ) films. Since then, noteworthy progress has
been made in organic memory devices [32].

Polymers are the most common group of organic materials used as active layers.
One of the most commonly used materials is polyaniline (PANI). The researchers utilized
its adaptive behavior: the PANI demonstrates non-linear electrical characteristics with
hysteresis loop and rectification [33,34]. Berzina et al. [35] used the PANI difference in the
conductivity in the oxidized and reduced states for the memristive behavior. PANI may
also act as an electrode, and was utilized by Erokhin et al. [36] in a sandwich structure,
where a solid electrolyte (polyethylene oxide doped with lithium salt (PEO)) acted as an
active layer.

More and more researchers are focusing on producing flexible devices. For example,
Xu et al. used a chlorotrifluoroethylene and vinylidene fluoride copolymer (FK-800) to
produce RRAM for an artificial nociceptor (pain sensor) [37]. Another realization of a flexi-
ble memristor was proposed by Zhou [38], who used polymer nanocomposites, with the
configuration of the silver nanowire (AgNW)/citric acid quantum dot (CA QD)-polyvinyl
pyrrolidone (PVP)/AgNW. Park et al. [39] proposed poly(vinyl cinnamate) (PVCi) with a
predefined CF.
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Many polymer devices are based on complexes with 2D material or composites. One
of the mediums most commonly chosen for different materials is PMMA [31,40,41] or
azobenzene polymer [42].

Due to its rich electrochemical redox behavior, viologen diperchlorate EV(ClO4) with
different polymers (pyridyl-iron polymer (TPy-Fe) [43], triphenylamine-containing polymer
(BTPA-F) [44] are used to simulate the functions of the synapse. Other materials used in the
production of memristors are (PVK (polyvinyl carbazole), PVA (polyvinyl alcohol), PDA
(polydiacetylene), and PTH (polythiophene) [11].

Another widely used group of organic substances are biomaterials. Biomaterial-based
memristive devices are made of biopolymers produced by organisms. These substances
can be divided into two groups: carbohydrates and protein. The molecular structure
of carbohydrates contains only three elements: carbon (C), hydrogen (H), and oxygen
(O). However, in addition to C, H, and O, proteins usually contain nitrogen (N) from
amino acids and some trace elements such as iron (Fe), zinc (Zn), copper (Cu), manganese
(Mn), and so on. Thus, the memristive effect depends on trace elements, which help
to form conductive filaments and redox reactions [32]. Natural organic materials can
provide versatile engineering platforms and are an attractive alternative due to their
biodegradability, bioabsorbability, and nontoxicity [45].

One of the most commonly used biomaterials is egg albumen [11,45]. The albumen
layer is characterized by a transparency of more than 90% under visible light with a
wavelength range of 230–850 nm, flexibility [32,46], clockwise and counterclockwise current
hysteresis [47]. Low SET/RESET voltage ~3 V and reliable switching endurance were
observed over 500 cycles with ~103 ON/OFF ratio [11].

Spider silk [48] and silkworm cocoon fibroins [11,49,50] are highly utilized in the
production of MIM junctions. The fibroin structures exhibit excellent performance and
behave as RRAM with the immersion process in di-isopropanol water, indicating the great
potential of silk fibroin applied to transient and biocompatible electronics [11].

Battistoni et al. reported two hybrid devices based on poly(3,4-ethylenedioxy- thio-
phene), doped with polystyrene-sulfonate (PEDOT: PSS) and Physarum polycephalum
slime mold (PP), which acted as a living electrolyte [33]. Furthermore, Abbas et al. fabri-
cated and characterized the transparent and biocompatible resistive random access memory
(ReRAM) device with the structure of Pt/Cu2+ doped salmon DNA/FTO where Cu2+ was
doped in salmon DNA by solution processes [32].

Protein-based memristors were produced mainly with keratin [32] and gelatin [51].
However, polysaccharides are also widely used in the manufacture of memristors. The
MIM structures are based on chitosan [32,45], cellulose [11], or glucose [11]. Furthermore,
resistive switching behavior was also found in orange peel pectin [32], maple leaves [52],
and anthocyanin extracted from plant tissue [53].

Organic small molecules that have a clear structure, easy purification, and low cost,
and are lightweight also have caused a widespread boom in research in the field of resistive
switch memory. Furthermore, in the production of RRAM, liquid crystalline polymer (LCP)
aligned with polyimide was used [54]. Copper phthalocyanine nanowires were used to
change the response due to IR illumination [55].

2.4.2. Inorganic Materials

Compared to organic RRAM, inorganic materials exhibit better electrical performance,
more stable switching behavior, lower energy consumption, and longer retention time [11].
Hickmott proposed the first report on RS performance in binary metal oxides in 1962,
which demonstrated the RS characteristics of the Al/Al2O3/Al device under the effect of
an electric field [11]. Inorganic memristors usually have a typical metal–insulator–metal
(MIM) structure, and their insulator layer (also known as the RS layer) is made of binary
metal oxides, perovskite metal oxides, chalcogenides, and others [56].

The layer of binary metal oxides is usually formed with a single insulator such as
TiO2 [11,57], NiO [11], HfO2 [11,58], SiO2 [59], TaO2 [11,60], and Ga2O3 [61]. However,
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with the development of research, researchers tend to make a dielectric layer diversification
by doping or making a multilayer. Two or three dielectric layers have various degrees of
optimization effects on the performance of the device [56]. Sakellaropoulos et al. demon-
strated a comparison among other devices with three types of dielectric structures such as
HfOx, TaOy/HfOx, and HfOx/TaOy/HfOx, which correspond to single-layer (SL), bilayer
(BL), and triple-layer (TL) [11]. Liu et al. [56] investigated conductance modulation on
TE/HfOx/AlOx/BE and Ta/TaOx/TiO2/Ti stacks. Mahata et al. reported an RRAM device
with ALD-based HfO2/Al2O3 stack layers, which exhibited excellent performance with
an operating voltage lower than ~2 V and an ON/OFF ratio [11]. Prezioso et al. investi-
gated spike time-dependent plasticity on 200-nm Al2O3/TiO2−x memristors integrated
into 12 × 12 crossbars [62].

For a memristive performance, porous bionic structures are investigated. One of the
best examples is the work of Gao et al. [63], who researched a double-layer structure com-
prising a Pt/porous LiCoO2/porous SiO2/Si stack. Furthermore, binary oxides are mixed
with nanomaterials such as nanotubes, which may increase reservoir oxygen vacancies [11].

Another group of materials that are used is perovskites. Perovskite is a compound
with the ABX3 type crystal. A is a monovalent cation and can be an organic (methy-
lammonium CH3NH3

+) or inorganic (Cs+) cation. B is a divalent cation, such as Pb2+,
and Sn2+, and X is an anion. When X is oxygen (O), the material is called an oxide per-
ovskite, and when X is a halide (I or Br), it is called an HP [64]. The oxide perovskite,
which was investigated, had higher dielectric constants, and those are LaAlO3, SrTiO3,
Pr0.7Ca0.3MnO3, and BiFeO3 [11]. Halide perovskite (HP) materials with point defects
(such as gaps, vacancies, and inversions) also have a strong application potential in mem-
ristors with an averaged ON/OFF ratio of 104–105 [64,65]. Unfortunately, most HPs are
lead-based: MAPbI3, FAPbI3, HC(NH2)2PbI3, CsPbI3, or (Cs3Bi2I9)x- (CsPbI3)1−x. Thus,
the thermal instability and toxicity severely restricted their further practical applications.
Therefore, more and more researchers are focusing on lead-free HP such as CsSnI3, Cs3Bi2I9,
(MA)3Bi2I9, (BzA)2CuBr4, or CsBi3I10 [66,67].

Organic–inorganic halide perovskites (OHPs) have gained attention as promising
materials for memristors. Particulary, their mixed ionic-electronic conduction ability paired
with light sensitivity allows OHPs to show novel functions such as optical erase memory,
optogenetics-inspired synaptic functions, and light-accelerated learning capability [68].
Furthermore, to enhance the properties of perovskites, the material is mixed with nanostruc-
tures, for example, reduced graphene oxide (rGO) [69]. In addition, amorphous perovskite
materials exhibit memristive properties [70].

A series of 2D materials such as graphene and molybdenum disulfide (disulfide
perovskite) have gained popularity due to their small size, ultrathinness, and excellent
physical properties, which have resulted in the performance of RRAM devices [11]. For
example, additional graphene layers can act as the charge storage medium, resulting in a
higher retention time. In addition, graphene can offer increased transparency, light weight,
flexibility, and low sheet resistance [13]. Nonvolatile and bistable memory devices based on
graphene oxide (GO) have prompted great interest due to their high optical transparency,
low cost, easy fabrication, high flexibility, environmentally friendly nature, and controllable
chemical and physical properties for future electronic devices [13]. On the other hand,
MoS2 embedded in the active layer tends to trap and release charge carriers [13].

3. ZnO as Active Layer

The resistive switching effect is demonstrated by many metal oxides [71–73], among
which zinc oxide is an especially prominent material due to its broad band gap, chemical
stability, high thermal conductivity, and melting point [74]. Additionally, zinc oxide has been
widely used for its biodegradable and biocompatible properties. That is why ZnO-based
RRAM can not only have excellent operational characteristics [75] but also find application
in the field of green electronic devices and implantable biomedical devices [76,77]. ZnO,
in the last two decades, has also gained interest as a potential material for flexible and
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transparent electronics, e.g., transistors and solar cells [78]. Flexible ZnO-based RRAM has
been successfully assembled and does not change its properties significantly after bending
tests [79–81].

ZnO thin films for RRAM applications have been produced with various techniques,
mainly techniques requiring vacuum conditions such as sputtering [75,77,81–90], pulsed
laser deposition [91,92], and plasma-enhanced atomic layer deposition [93]. A significant
amount of research is also focused on alternative methods of obtaining devices such
as inkjet printers [81] and chemical routes such as electrochemical deposition [76], sol-
gel [79,80,94,95], or chemical bath deposition [96]. Worth mentioning is that the memory
performance of sol–gel ZnO films prepared by a spin-coating, which is a significantly easier
and cheaper technique, is comparable to that of ZnO films prepared using conventional
vacuum deposition processes [79,94].

The annealing process has a tremendous influence on ZnO layer properties because it
is one of the factors influencing crystallinity [94]. As shown in Hsu et. al. [97], crystallinity
of the active layer is a key factor in the device performance. The conduction mechanism in
polycrystalline ZnO is usually correlated with the hopping of electrons through filament
paths consisting of oxygen vacancies. The set process is induced by a defect-induced soft
breakdown, which is associated with a polarization effect due to the migration of oxygen
vacancies under an applied electric field [82]. Oxygen vacancies are formed and accumu-
lated around the grain boundaries so the conducting filaments follow the grain boundaries
and make conductive paths. As there are fewer grain boundaries that can potentially
become conductive paths in films with a higher degree of crystallinity, the current paths
can be reduced in the HRS as the annealing temperature increases [79]. Amorphous ZnO
may present resistive switching performance as good as the polycrystalline one [98] but be
in turn attributed to the formation of the electrode’s metal nanofilaments in amorphous
ZnO. One of the techniques to improve the switching cycle is N2 rapid thermal annealing
(RTA) of films. Presumably, the larger and condensed grains with grain boundary paths are
beneficial to the HRS/LRS resistance switching and improve the switching cycle [83]. High
temperature annealing is responsible for weakening the screening effect which accounts
for the absence of resistive switching characteristics in devices. Annealing can effectively
reduce the number of defects and the carrier concentration in ZnO films, thus increasing the
driving force of oxygen vacancy drifting and improving the device performance. A study
researching the influence of annealing temperature on the screening effect [88] compared
thin films of ZnO fired in 300, 450 and 600 ◦C. In conclusion, the higher temperature
of annealing allows for more effective devices. The observation was confirmed later by
Gupta [99].

Sputtering is commonly used for assembling ZnO-based RRAM devices; therefore, the
influence of various sputtering factors on RRAM devices properties has been extensively
researched. Reactive magnetron sputtering films vary in properties depending on oxygen
gas flow ratio during growth. As the oxygen–gas flow ratio increases, Zn atoms tend to
bind to oxygen atoms in the ZnO film. Specifically, when more oxygen atoms are incor-
porated into the ZnO film, the binding energy decreases slightly [9]. Another important
factor is working pressure, which can impact devices’ power consumption and ensure
stable high-endurance properties [87]. Radio frequency magnetron sputtering can give
tremendously different device characteristics, especially crystallinity level, depending on
substrate temperature during deposition [97].

As mentioned earlier, the conduction mechanism and its effectiveness depend on the
electrodes’ material. For example, RRAM devices with TiN top electrode maintain good
switching endurance. Ti and TiN are the scavenging metals and are used to attract oxygen
from RS layers for oxygen vacancies creation [93]. TiN electrode act as an oxygen reservoir
and provide sufficient non-lattice oxygen ions to recover the oxygen vacancies during
the reset process [82]. In another study Pt, Au, and Cr electrodes were compared [100].
The ZnO-based RRAM devices with Pt electrodes had the lowest activation energy for
the oxygen chemisorption process, which leads to better switching functionality due to
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the increased generation/elimination probability of oxygen vacancies. Nevertheless, DFT
calculations [101] show that two Pt electrodes are not compatible when the ZnO active
layer consists of nanowires. Comparison between Ag, Ti, and Pt electrodes showed that
different top electrodes can make a difference in the switching mechanism, and the devices
with a metallic conductive bridge mechanism have more prominent switching behavior
than those with an oxygen ion/vacancy filament mechanism [88]. ZnO biocompatibility
can be fully explored when paired with graphene electrode, as in Tian et. al. [77].

Another factor impacting the conduction mechanism is interface morphology. For
example, one of the electrodes, instead of flat thin film, can consist of arrays of periodic
nanotips. As has been reported in Tsai et. al., the electric field concentrated on nanotip
structures plays a crucial role in lowering Vf and Vset. Similarly, RRAM with a rough surface
of the top electrode has shown superior switching probability and stable characteristics
against various conditions [86]. The mechanism responsible for the phenomena is believed
to be the roughness-enhanced absorption on oxide surface. When the switching mechanism
is a metallic conductive bridge, a rough surface is also superior due to enhanced diffusion
of ions into the resistive layer, which leads to easier filament formation, as explained in
Wu et. al. [95]. Additional UV–ozone treatment of the Pt electrode may provide superior
surface morphology for the subsequent sputtering ZnO thin film deposition [102].

Table 1 presents a selection of some of the pure ZnO-based RRAM devices produced
in the last 15 years. The highest HRS/LRS ratio was achieved via vacuum techniques such
as sputtering (up to 1010). Plasma-enhanced atomic layer deposition allowed for a 105
switching ratio. Sol-gel films’ RRAM HRS/LRS ratio varies from 102 [94] to 106 [79,80].
Electrochemical deposition technique is not very commonly utilized despite the HRS/LRS
ratio reaching 103. A low but sufficient for device operation ratio of 5–40 was documented
for PLD films [91,92]. Similarly, CBD method allowed for RRAM with 18.7 ratio [96].

As can be seen, ZnO thin films have been extensively researched for RRAM devices
with a variety of results. Even within one deposition technique, performance can be
significantly changed depending on parameters such as thickness, electrode material,
additional treatment, etc.

Table 1. Comparison between selected RRAM devices, ND—no data.

Device (Thickness) ZnO Layer
Deposition Method

Additional
Information Ref. VRESET [V] VSET [V] HRS/LRS Ratio

Al/ZnO (30 nm)/Al

sol-gel

[79] 3.0 0.8 >104

Al/ZnO (37 nm)/Al
Si substrate

[80]
0.6–0.8 1.5–1.8 >102

flexible substrate 0.3–0.6 1.5–1.8 >104

Al/ZnO (20 nm)/Cu
changing Cu
electrode
roughness

[95] ND ND 7.7 × 104–3.1 × 106

Al/ZnO/Al [94] ~0.6 ~1.7 >102

GZO/ZnO (90 nm)/GZO
PLD

[91] 1.5–1.8 2.0–2.4 5–10

Ti/ZnO/Pt [92] −2.5 4 ~41

ITO/ZnO/Ag CBD nanorod layer [96] −2.78 3.25 18.7

Ag/ZnO (100 nm)/W electrochemical
deposition [76] −2.8 3.1 103

Au/ZnO/AZO
plasma-enhanced
atomic layer
deposition

[93] ND ND 105

EDOT:PSS/ZnO/PEDOT:PSS jet-printing [81] −3.5 0.7 5

Pt/ZnO (20 nm)/TiN

sputtering

[89] −0.7 0.7 >102

TiN/ZnO (30 nm)/Pt [82] −4.0 4.0 ~10

Al/ZnO (60nm)/Al no rapid thermal
annealing [103] 0.6 2.2 108
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Table 1. Cont.

Device (Thickness) ZnO Layer
Deposition Method

Additional
Information Ref. VRESET [V] VSET [V] HRS/LRS Ratio

TiN/ZnO (30 nm)/Pt

sputtering

rapid thermal
annealing [82] 0.3 2.6 109

Al/ZnO (71.4 nm)/Al
Al/ZnO (70 nm)/Al [75,85]

2.5 0.5 109

oxygen-gas flow
ratio 16% 2.85 0.3 ~105

Al/ZnO (71.4 nm)/Al oxygen-gas flow
ratio 25% [75] 2.45 0.35 ~109

Al/ZnO (70 nm)/Al
Pt/Cr/SiO2/Si/ZnO
(100 nm)/Pt

oxygen-gas flow
ratio 33%

[85,86]

2.30 0.25 ~108

rough interface 1.5 1.65 ~717

flat interface 2.0 2.6 ~4600

Ag/ZnO (100 nm)/P
Ag/ZnO (90 nm)/Pt

amorphous ZnO
[88,98]

−0.2 0.24 >107

−0.6 0.5 102

Ti/ZnO (90 nm)/Pt [98] −0.9 1.1 10

Ag/ZnO (70 nm)/Graphene
[77,90]

−3.11 3.81 30

Cu/ZnO (23 nm)/ITO no O treatment no switching
behavior

no switching
behavior

no switching
behavior

Ag/ZnO (70 nm)/Graphene O treatment [77] ND ND ~10

4. Modulation Mechanisms and Utilizing ZnO and 1D/2D Materials

There are many factors influencing RRAM devices, including the choice, morphology,
and deposition of the active layer and electrodes, which have been discussed previously.
Another way to improve the performance is to modify the layer via illumination or other
treatment, doping of ZnO layers, or implementing 2D and 1D nanostructures.

4.1. Influencing Pure ZnO Monolayer

It is possible to modify the ZnO RRAM devices’ properties using UV light. Illumination
is an efficient way to break Zn–O bonds, generating oxygen ions and radicals. After
illumination, the current conduction mechanism of the ZnO RRAM device was changed
from Schottky emission to Poole–Frenkel conduction [84]. UV illumination can be used
to better RS performances in terms of the device’s endurance and current values [104].
Another procedure improving ZnO films’ properties is neutral O beam treatment [90]. It
allows for creating RRAM devices with very thin ZnO films (23 nm), which otherwise show
no switching behavior as a result of a large leakage current. The treatment is effective in
decreasing O vacancy defects in the sputtered-ZnO film and promotes the formation of the
conducting filament at a lower operation current.

Saini et al. [105] performed a study on the influence of illumination of specific wave-
length light in conjunction with applied voltage. It has been reported that illumination
modulates the bipolar switching behavior. The Vset/Vreset for RS obtained for different
wavelengths (in the range of 300–700 nm) appear in the middle of the Vset/Vreset obtained
under dark and white light illumination. Light wavelength adds up an extra control
parameter in conventional memristor devices [105].

Many studies researched the influence of doping on RRAM device parameters. The
incorporation of dilute concentration of dopant having a valence state different from that of
the host cation enables controlled incorporation of vacancy defects [106]. As can be shown in
XPS spectra, certain dopants result in increasing oxygen vacancies [107,108] attributed to CF
formation mechanism. Research conducted on ZnO films confirms that the forming energy
of oxygen vacancies lowers after doping with typical p-type impurities [109]. Additionally,
first-principle calculations performed for Ti-doped and Co-doped ZnO reveal that the
formation energies of oxygen vacancies had the minimum value when it was located at the
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next-nearest neighbor to Ti atoms [110,111]. In the following paragraphs, the most popular
dopants will be discussed, but it is worth mentioning the transition metals such as Fe [112],
Cr [107], Ti [110,113], Ag [114,115], which are not so common. Among the transition metals,
Ti, Ag, and Hf [116] also appear in electrodes or additional layers which will be discussed
in the next point. Other frequent dopants include Pr [103,117], N [85,118], Mg [119,120],
Ge [121,122].

In Li-doped ZnO-based RRAM devices [123–125], Li can go to the interstitial and
substitutional site in the lattice structure of ZnO, leading to improved crystallinity [80].
Compared with the pure ZnO-based device, the proposed ZnO:Li devices achieve better
bipolar resistive switching characteristics, including a high ON/OFF current ratio, a low
set voltage (<1.0 V), and reset voltage [125]. Characteristic two-, three-, or four-step RESET
behavior of the LZO RRAM devices can be attributed to the effect of Li addition. The type
of multistep behavior, however, is controlled by tuning the compliance current [118]. The
performance of the device is dependent on the concentration of dopant, which has been
researched by Zhao et al. It has been shown that in the Li-doped ZnO, increasing Li content
results in a decrease in oxygen vacancies [125,126].

Cu doping [105,127–130] allows for investigating the PR behavior (polarization rota-
tion, also called polarization switching or polarization orientation) of structures. With the
increasing copper concentration, HRS and LRS are more distinguished. Doping copper
allows for defect engineering and increased charge storage and polarization rotation behav-
ior [127]. The switching mechanism in Cu:ZnO is believed to be due to the formation of
oxygen vacancies, not because of filamentary formation, as the Cu incorporated into the
ZnO lattice does not bond with oxygen; rather, it creates oxygen vacancies and gets synched
with them [128]. The direct bandgap of Cu:ZnO is lower than that of the conventional ZnO.
Lowered bandgap implies that the concentration of Cu impurities creates localized states,
which are defects caused by the unsaturated bonds [130]. Higher Cu content can shift the
Vset and Vreset values [109].

In Mn-doped ZnO-based RRAM devices [131–134], the incorporation of Mn can lead to
a stable bipolar resistive switch (BRS). VO defects, which are more prominent in Mn-doped
ZnO, are the primary determinant of BRS in ZnO because VO defects migrate easily in
binary oxides under an electric field, generating VO -based conductive filaments [134]. The
ZMO device also showed high endurance characteristics [133]. Another study on ZMO
suggests that BRS requires additionally a suitable bottom electrode [131].

Co-doped ZnO [108,135,136] is a seminal spin-tronic material that shows strong fer-
romagnetism under both insulating and metallic states. RRAM using Co:ZnO as active
layer shows stable RS during repeated sweep cycles and stable bipolar RS characteristics,
and exhibits magnetic modulation with the alternation of set and reset processes, which
allows for obtaining four logic states [135]. Additionally, pure ZnO has a much smaller
memory window compared with Co-doped (2 at% and 5 at%) [136]. Co dopant can be used
to control the defect concentration in ZnO films, mainly oxygen vacancies, which further
improves RS performance [108].

In Al-doped ZnO-based RRAM [137–139], multiple resistance states could be obtained.
The modulation is performed by controlling the stop voltage (five HRS and one LRS) and
setting the ICC (three LRS and one HRS) [139]. Al nanoparticles have been used to lower
the potential barrier of the active layer and electrode’s interface [140]. Al nanoparticles as
the tip electrode can effectively enhance the local electric field; therefore, when a positive
voltage is applied to the device, the CFs will first form near the Al nanoparticles due to the
local electric field effect [140]. Doping of Al modulates the oxygen vacancy concentration in
ZnO matrix as aluminum ion can substitute for the zinc ion. The cationic imbalance in ZnO
matrix induces defects. At low voltage, Al3+ can act as a chemical anchors for vacancies
through which the O2− can move [141]. The increased oxygen deficiency increases the
conductivity of the ZnO film [142]; therefore, the concentration of Al in the ZnO film
can modulate the device performance, as higher concentration (20 at. %) leads to higher
LRS/HRS ratio. On the other hand, excessive amounts of Al incorporated into ZnO causes
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instabilities in the device retention and endurance, as Al2O3 clusters may act as carrier
traps [143].

Ammonia treatment is a process of introducing NH4 ionic bonds into ZnO films.
Ammoniated ZnO devices retain the characteristics of ZnO devices but have improved
reliability. Additionally, the power consumption of RRAMs is demonstrated to be reduced
by 80%. The change is attributed to additional -NHx functional groups repairing the Zn-
and O- dangling bonds [144].

Another way to modulate RRAM parameters is to control the thickness of the active
layer [94,119]. The Li-doped ZnO-based RRAM with thicker ZnO layers shows higher
ON/OFF current ratio ION/IOFF and the set voltage Vset [119]. Additionally, another study
performed on sol-gel ZnO-based RRAM devices demonstrates the relation between forming
voltage and the thickness of the ZnO layer [94]. The study on oxygen treatment mentioned
above attributes the lack of BS behavior to a large leakage current which is also connected
with active layer’s thickness [90].

4.2. 2D Materials

Introducing additional layers can improve the RRAM performance. One of the tech-
niques is creating bilayers (BL) by adding a layer of the electrode’s metal oxide [145], or
adding a doped ZnO layer [119,132,146,147] or an additional layer between ZnO and the
electrode [119]. Trilayers may be created by inserting an additional layer between two ZnO
layers [148] or before and after the ZnO layer [149].

One of the ways of constructing bilayers for RRAM devices is taking one material
that lacks oxygen vacancies and another that has an abundance of them. Therefore, the
latter can be used as the oxygen vacancy reservoir, attracting the oxygen out of prior, as in
Ga2O3/ZnO -based devices [150].

When Cu/ZnO/AZO and Cu/CuO/ZnO/AZO devices were compared [145], it was
noted that the resistive switching characteristic was significantly better in BL structures.
There, the CuO layer is a “reservoir” of oxygen ions in the set process and acts as an
oxygen ion “supplier” in the reset process, which plays a critical role in recovery/rupture
of filament paths. Similarly, a Ga-doped ZnO nanorod layer as in ITO/(GZO)/ZnO/ITO
device [146] acts as the oxygen reservoir for high-performance RS behavior. The HRS/LRS
ratio is increased and the distribution of each state is very narrow, compared to pure
ZnO devices.

Studies by Simanjuntag et al. [151,152] propose the addition of a high-resistivity ZnO2
layer to lower the operation current needed for the formation of a conducting bridge.
Similarly, degradation of operating current has been observed by Wu et al. [153]. In
this study, the addition of highly resistive HfOx thin film thickness could modulate the
barrier at the HfOx interface. Later, the performance improvement was explained in
the study performing first-principles calculation [154]. There, a middle resistance state
(MRS) speculation was proposed in which a conductive filament was formed by Ag atom
and oxygen vacancy at the same time and was responsible for degradation of HRS. The
introduction of HfO2 layer modulates the conductive channel of oxygen vacancy, which
improves the device performance.

High current for the reset process means high power dissipation. Introducing an
additional layer inside the ZnO active layer, as in the TiN/ZnO/Ni/ZnO/Pt device [38],
reduces the reset current. Another effect is increased forming voltage, which is explained
by the behavior on the interface between ZnO and Ni. Ni diffuses into the ZnO thin film,
which causes impurity energy level and defect when sputtering on the ZnO film. The
opposite situation, in which the ZnO layer is surrounded from both sites by inserting
layers, has also been constructed as in the TiN/Al2O3/ZnO/Al2O3/TiN device [149]. The
motivation for this structure is the fact that layers on both sides of ZnO would help stabilize
the local oxygen migrations for the formation and rupture of the CF during the continuous
switching cycles. The modification results in increasing memory switching characteristics
such as high HRS/LRS ratio, endurance, and stable retention at high temperatures.
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The addition of conventional 2D materials may also change the properties of the ZnO
layer itself. Shen et al. [155] created a transistor with resistance-switching properties using
MoS2 and ZnO. MoS2 and ZnO have been shown to possess hysteretic characteristics,
which are attributed to the adsorption/release of O2 and water molecules on the surface
of the channel and electron capture at the 2D material/oxide interface. The MoS2/ZnO
heterojunctions showed an ON/OFF ratio of 104 and significant rectifying behavior with a
forward-to-reverse bias current ratio. Kadhim et al. [156] obtained the broad spectrum with
self-colored ZnO layers on the Ti foil, varying the sputtering time of MoS2. The structures
exhibited different coloration and resistive switching responses due to the thickness of
the MoS2 layer. In the work of Jagannadham [157], two-dimensional semiconductor MoS2
films in combination with ZnO are used to form the diode–memristor structure. The height
barrier for Schottky conduction in the switching from LRS to HRS is higher for positive
polarity and reduced for a negative polarity by forming a p-n junction with a memristor.

Numerous authors used graphene and reduced graphene oxide (rGO) to enhance ZnO
active layer properties. Zhou et al. [158] proposed the hybrid of zinc oxide nanorods and a
reduced graphene oxide hybrid nanostructure to create flexible RRAM with an ON/OFF
ratio of 107. Khanal et al. [159] proposed an active layer of the ZnO–rGO composite
for analyzing the synaptic behavior of a structure. Cardarilli et al. investigated a sol-
gel ZnO-graphene oxide layer, two-terminal MIM with Al and FTO electrodes [160]. In
Khanal et al.’s [161] work, a thin film was sandwiched between Ag and FTO electrodes and
annealed at 500 ◦C to create oxygen vacancies. The memristor exhibited a ratio Ron/Roff of
approximately 103. Aziz [162] and Izam [163] investigated ZnO–graphene hybrids. In the
work of Aziz, ZnO was grown on a glass substrate using thermal chemical vapor deposition
at different substrate temperatures of 350 ◦C, 450 ◦C, and 550 ◦C, and graphene in water
solution was transformed into a thin film using a water bath at 90 ◦C. The material was
sandwiched between Pt electrodes. The ZnO–graphene devices exhibited bipolar resistive
switching characteristics with a slightly smaller memristive window than those without
graphene. The addition of graphene upgraded the transitioning cycle stability. Izam and
colleagues investigated the influence of dip-coating speed on the memristive properties of
the ZnO-decorated graphene film.

4.3. 1D Materials

Various ZnO low dimensional structures have been used as active layers, such as
nanorods [96,146,164–166], nanowires [101], and nanoislands [167]. The resistive switching
mechanism in ZnO nanorod layers has been described by Chang et al. [168]. Oxygen
vacancies and/or Zn interstitials could easily condense to form tiny filaments at the surface
of the single crystalline ZnO nanorods because the mobility of defects at the surfaces is
much higher than that in the single crystal. The gathering of these tiny filaments at the
surfaces of the individual ZnO nanorods causes the formation of straight and extensible
conducting filaments along the direction of each nanorod. Cathodoluminescence imaging
spectroscopy performed in Tseng et al. [169] revealed the Vo-induced green emission
distributed on the nanorod sidewall. The oxygen vacancy, with single positive charge
(Vo), has a deep donor level that can trap an electron. The following transition results in
neutral oxygen vacancies Vo, which are conductive shallow donors. In ITO/ZnO NRL/Al
devices, the switching resistance mechanism can be explained in the following manner:
when the applied voltage reaches above the SET voltage, the injected electrons fully occupy
the trap level, and subsequent electrons can transport to the ITO without being trapped.
Under negative bias, the captured electrons are released and attracted to the Al electrode
due to the negative electric field which results in an increased resistance. The conductive
filaments are bridged on the nanorod sidewall. Nanorods ensure higher stability via more
stable straight filaments than branched ones [168]. Similarly, in ZnO nanoisland devices,
conducting filaments are formed on the edges of the ZnO nanoisland [167].
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5. Conclusions

Resistive random access memory stands out among memory technologies due to
its scalability, high-speed operation, and low power consumption. Zinc oxide is one of
the most promising candidates for RRAM active layers. The combination of suitable
bandgap, thermal conductivity, chemical stability, and above all, flexibility, transparency,
and biocompatibility, allow for a wide range of designed devices. Extensive studies
have been dedicated to finding the influence of the thin film deposition methods on
device performance. It has been found that even cheap chemical routes allow for a high
HRS/LRS ratio. The selection of electrode, its size, and interface with the active layer
have tremendous effects on conduction mechanisms. To further alter the characteristics,
rapid thermal annealing, UV, and visible light illumination can be used. Doping of ZnO
layers not only can enhance or stabilize the performance but also introduce multistep or
polarization rotation behavior. Bi- and trilayers are used to, among other uses, modify the
interface barrier and control the oxygen migrations. The incorporation of low dimensional
structures such as nanowires, nanobelts, and nanoislands creates a path for stable straight
filaments. This work may give a valuable insight into the development of ZnO-based
RRAM technology and its prospects.
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