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Abstract: It has been found that the addition of Ti can improve the strength of Cu-Al-Mn alloys and
adjust their mechanical properties. However, the internal mechanism has not been fully understood.
In order to clarify the influence of Ti content on the mechanical properties and microscopic mech-
anism of Cu-Al-Mn alloys, the mechanical, structural, and electronic properties of Cu2AlMn1–xTix
(x = 0, 0.25, 0.50, 0.75, 1) alloys were studied by first-principles calculations. Results show that the
substituted Ti prefers to occupy the Mn site directly due to the lower formation energy. With the
increase of Ti substitution content, the L21 phase stability of the alloy improves. Moreover, the elastic
modulus of the alloy increases and the anisotropy factor decreases. Further analysis shows that the
proportion of antibonding states under the Fermi energy of the alloy decreases and the covalent bond
is enhanced after Ti substitutes Mn, which is the main mechanism for the enhancement of stability
and mechanical properties. Mulliken charges change little after Ti replaces Mn, indicating that Ti has
little effect on the ionic bond strength.

Keywords: Cu-Al-Mn alloys; first-principles calculation; mechanical properties; electronic properties

1. Introduction

Cu-Al-Mn alloys are widely used to produce vibration-damping components because
they exhibit significant superelastic properties at room temperature and are also considered
one of the most promising superelastic materials for large-scale applications due to their
low manufacturing costs [1–7]. However, Cu-Al-Mn alloys have the disadvantages of low
strength and high anisotropy factor, which greatly limits their extended application [7].
Experiments have shown that the superelasticity hysteresis curve of Cu-Al-Mn alloys varies
significantly with crystal orientation under uniaxial stretching [8–10]. The superelastic
strain of [10] crystal orientation is obviously larger than that of other crystal orientations.
It is widely believed that Cu-Al-Mn alloys have obvious mechanical anisotropy, which
leads to extremely strong strain incongruence during deformation and stress concentration
at grain boundaries. Columnar crystal alloys with specific crystal orientations instead of
common polycrystalline alloys have been proposed as an effective strategy to optimize the
superelastic properties of Cu-Al-Mn alloys [11,12].

Since it is challenging to explain the internal mechanism of alloys’ mechanical property
change in experiments, first-principles simulation has become more popular as a useful
tool [13–28]. The differential charge has shown that the significant anisotropy in the
mechanical properties of Cu-Al alloys is due to the apparent directivity of the strong
bonding between the nearest-neighbor Cu atoms [16]. The addition of Mn has little effect
on the mechanical anisotropy of Cu-Al-based alloys because the elastic constants are not
sensitive to the changes of Mn content [17]. In terms of phase stability of alloys, some
studies on Hessler alloys have shown that the superelastic effect decreases with the increase
of the stability of the L21 phase during tetragonal distortion [18,19]. With respect to
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the electronic properties of alloys, interatomic bonding was usually used to explain the
variation in mechanical properties [20,21]. For example, in Cu-Ti alloys, the atomic bonds
in Cu-Ti intermetallics are mixed bonds and the covalent bond nature determines the phase
stability and mechanical properties [20]. In Cu-Zn-Sb alloys, the strength of the Cu-Sb bond
is stronger than that of other bonds [21].

In addition, doping certain elements (such as Ti, Ni, Zn, and Ga) to Cu-Al-Mn alloys
can improve their mechanical properties [29–35]. In particular, doping Ti into Cu-Al-Mn-
based alloys can improve their strength because the Ti-rich phase formed can effectively
inhibit grain growth [34]. In Cu-Al-Mn-Ti alloys, the dispersive L21-Cu2TiAl precipitates
strengthen the stabilization of stress-induced 2H(γ′1) martensite from the L21-Cu2AlMn
parent, which results in superelasticity at deformation and shape memory effect after
unloading by heating [35]. It was also found that the shape memory effects of the alloys
decrease with the increase of the addition of Ti when the content of Ti is over 4.6wt%.
However, the internal mechanism of the effect of Ti on the mechanical properties of Cu-Al-
Mn alloys has not been fully understood. In this paper, Cu2AlMn1–xTix (x = 0, 0.25, 0.5, 0.75,
1) alloys were selected as the research object, based on the phenomenon that Ti replaces
Mn to form a new alloy phase with Cu and Al. To study the effects of Ti content on the
mechanical properties and microscopic mechanism of Cu2AlMn1–xTix alloys, the structural,
mechanical, and electronic properties were examined using the first-principles method.

2. Materials and Methods

The austenite of Cu-Al-Mn alloy is a highly ordered L21 structure that contains four
types of lattice points and its chemical formula is Cu2AlMn [22]. As shown in Figure 1,
Type I and Type II are occupied by Mn and Al atoms respectively, and Type III and Type
IV are occupied by Cu atoms. Each of the four types of lattice sites individually forms a
face-centered cubic (FCC) lattice.
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All simulations were implemented using the Vienna Ab-initio Simulation Package
(VASP) [36,37] based on density functional theory. Generalized gradient approximation
(GGA) [38] and Perdew-Burke-Enzerh exchange-correlation (PBE) functional [39] were
used to describe the exchange-correlation potential. The projector augmented-wave (PAW)
pseudopotential approach was used to describe atomic potentials [37,40]. Typical electronic
configurations of Cu, Al, Mn, and Ti are 3p63d104s1, 3s23p1, 3p63d54s2, and 3p63d24s2,
respectively. A kinetic energy cutoff of 700 eV, an energy convergence criterion of 10−7 eV
during the electronic self-consistency loop, and a force convergence criterion of 0.005 eV/Å
during the structural relaxation were adopted. The first Brillouin zone was sampled using
13 × 13 × 13 k-points in the Monkhorst-Pack scheme [41]. The lattice constant of the unit
cell after relaxation is 5.933 Å, which agrees well with the experimentally measured values
of 5.965 Å [42], and 5.957 Å [43].

3. Results and Discussion
3.1. Structural Properties and Phase Stability

In order to study the effects of Ti content on mechanical properties and microscopic
mechanism in Cu2AlMn1–xTix alloys, it is necessary to determine the atom occupation
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mode. All possible configurations for Cu2AlMn1–xTix (x = 0, 0.25, 0.5, 0.75, and 1) alloys
were constructed. Figure 2 shows the configurations when x = 0.25. When Ti replaces Mn,
five different structural models may exist. One of them is constructed by direct substitution,
i.e., Ti is located directly at the Mn site (Figure 2b, termed as TiMn). The other four structural
models belong to the indirect substitution, including: (1) Ti is located at the Al site, and
the Mn site is occupied by Al (Figure 2c, termed as TiAlAlMn); (2) Ti is located at the Cu
site and the Mn site is occupied by Cu (Figure 2d, termed as TiCuCuMn); (3) Ti is located at
the Al site, the Al is located at Cu site and Mn site is occupied by Cu (Figure 2e, termed as
TiAlAlCuCuMn); (4) Ti is located at Cu site, Cu is located at Al site and Mn site is occupied
by Al (Figure 2f, termed as TiCuCuAlAlMn). In addition, when x > 0.25, mixed substitution
was also considered. Atomic positions in various structural models of Cu2AlMn1–xTix
(x = 0.25, 0.5, 0.75, and 1) alloys were shown in Table 1. It is worth noting that all structural
models are cubic except for x = 0.5 (tetragonal).
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The formation energy (Ef) of alloys, which can be used to analyze the thermodynamic
stability, was calculated by Equation (1).

Ef =
Etotal − NCuµCu − NAlµAl − NMnµMn − NTiµTi

Ntotal
(1)

where Etotal represents the total ground-state energy of the unit cell, NX (X = Cu, Al, Mn,
Ti) represents the number of corresponding elements X in the cell, and µX (X = Cu, Al,
Mn, Ti) represents the average atomic energy of the element X. The calculated formation
energy was listed in Table 1. It is known that lower formation energy means that the
thermodynamic stability of the compound is higher. As shown in Table 1, the configuration
constructed by direct substitution always has the lowest formation energy. Therefore, the
configurations constructed by direct substitution were utilized for further calculation.

To clarify the effect of Ti on phase stability, tetragonal distortion under the Bain path
was applied to L21 lattices of Cu2AlMn1–xTix (x = 0, 0.25, 0.5, 0.75, and 1) alloys. Figure 3
displays the energy changes (E–E0) of the Cu2AlMn1–xTix (x = 0, 0.25, 0.5, 0.75, and 1) alloys
under different tetragonal distortions (∆a/a). The L21 phase (∆a/a = 0) always has the
lowest total energy for different substitution content of Ti, indicating that the alloys have
no transition tendency to martensite. With the increase of Ti substitution content, it can be
found that the energy curves near the origin become steeper, which indicates that the L21
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phase stability of Cu2AlMn1–xTix alloys increases. This is consistent with the phenomenon
that the superelastic effect properties of Cu-Al-Mn-Ti alloys start to deteriorate when the
addition of Ti exceeds 4.6wt % [35].

Table 1. The formation energy of Cu2AlMn1–xTix alloys (x = 0, 0.25, 0.50, 0.75, and 1).

x Occupation Manner
Atomic Site Occupation Ef

(eV/atom)I II III + IV

0 No substitution Mn Al Cu2 –0.128

0.25

Direct substitution Mn0.75Ti0.25 Al Cu2 –0.157
Indirect substitution Mn0.75Al0.25 Al0.75Ti0.25 Cu2 –0.087

Mn0.75Cu0.25 Al Cu1.75Ti0.25 –0.114
Mn0.75Cu0.25 Al0.75Ti0.25 Cu1.75Al0.25 –0.082
Mn0.75Al0.25 Al0.75Cu0.25 Cu1.75Ti0.25 –0.096

0.5

Direct substitution Mn0.50Ti0.50 Al Cu2 –0.197
Indirect substitution Mn0.50Al0.50 Al0.50Ti0.50 Cu2 –0.122

Mn0.50Cu0.50 Al Cu1.50Ti0.50 –0.068
Mn0.50Cu0.50 Al0.50Ti0.50 Cu1.50Al0.50 –0.109
Mn0.50Al0.50 Al0.50Cu0.50 Cu1.50Ti0.50 –0.079

Mixed substitution Mn0.50Ti0.25Al0.25 Al0.75Ti0.25 Cu2 –0.102
Mn0.50Ti0.25Cu0.25 Al Cu1.75Ti0.25 –0.141

0.75

Direct substitution Mn0.25Ti0.75 Al Cu2 –0.247
Indirect substitution Mn0.25Al0.75 Al0.25Ti0.75 Cu2 –0.180

Mn0.25Cu0.75 Al Cu1.25Ti0.75 –0.153
Mn0.25Cu0.75 Al0.25Ti0.75 Cu1.25Al0.75 –0.129
Mn0.25Al0.75 Al0.25Cu0.75 Cu1.25Ti0.75 –0.137

Mixed substitution Mn0.25Ti0.25Al0.50 Al0.50Ti0.50 Cu2 –0.142
Mn0.25Ti0.25Cu0.50 Al Cu1.50Ti0.50 –0.096
Mn0.25Ti0.50Al0.25 Al0.75Ti0.25 Cu2 –0.167
Mn0.25Ti0.50Cu0.25 Al Cu1.75Ti0.25 –0.171

1 Direct substitution Ti Al Cu2 –0.306
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3.2. Mechanical Properties

The elastic constants (Cij) are the comprehensive representation of the elastic state
and the mechanical properties of crystalline materials [28]. There are three independent
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nonzero elastic constants (C11, C12, C44) for cubic crystals and six independent nonzero
elastic constants (C11, C33, C12, C13, C44, C66) for tetragonal crystals, which were both
determined by performing six finite distortions of the lattice and deriving the elastic
constants from the strain-stress relationship [44]. Table 2 shows the lattice volumes and
elastic constants of Cu2AlMn1–xTix. It is found that the calculated results in this work are
in good agreement with the previous experimental and theoretical data. Based on Born
stability criteria [45], for cubic crystals the elastic constants need to satisfy:

C44 > 0, C11 >|C12|, C11 + 2C12 > 0 , (2)

and for tetragonal crystals the elastic constants need to satisfy [46]:

C11 >|C12|, C44 > 0, C66 > 0,
(C11 + C12)C33 > 2C2

13.
(3)

Table 2. Lattice volumes and elastic constants of Cu2AlMn1–xTix (x = 0, 0.25, 0.5, 0.75, and 1).

Alloys Source V0 (Å3) C11/C33 (GPa) C12/C13 (GPa) C44/C66 (GPa)

Cu2AlMn This work. 208.83 136.94 120.40 106.15
Experimental [47]. 212.08 128.1 101.5 104.4

Vanderbilt [17]. 210.63 138.8 111.3 102.0
FPLAPW [48]. —— 137 115 112
FPLAPW [49]. 208.95 143.7 116.1 117.6

Cu2AlMn0.75Ti0.25 This work. 212.78 144.38 120.15 101.27
Cu2AlMn0.50Ti0.50 This work. 213.98 151.67/162.11 126.22/116.31 96.32/103.50
Cu2AlMn0.25Ti0.75 This work. 218.02 164.65 114.06 94.14

Cu2AlTi This work. 219.76 178.95 115.02 101.32

All five structural models in this work satisfied the mechanical stability.
As shown in Table 2, the lattice volume increases after Ti substitute Mn, resulting in a

decrease in the density. C11 and C33 are significantly higher than other elastic constants,
indicating that the resistance to normal stresses of the alloys is higher. With the increase of
Ti substitution content, the increase of C11 and C33 is relatively obvious, while the decrease
of C12, C13, C44, and C66 is relatively small. This is different from the results of the effects of
Mn content on the mechanical properties of Cu-Al alloys. In Cu-Al-Mn alloys, the decrease
in C12 value is most obvious with the change in Mn content [17]. Adding Mn can improve
the stability of Cu-Al alloys, but has no significant effect on axial deformation resistance.
The substitution of Mn for Ti not only improves the stability of the alloy but also improves
the axial deformation resistance of the alloy.

To further investigate the elastic anisotropy of Cu2AlMn1–xTix, a three-dimensional
surface representation of the elastic anisotropy was employed to show the variation of the
elastic modulus with crystal orientation. It is well known that the anisotropy of mechanical
properties of materials mainly arises from the atomic regularity of the spatial arrangement.
Young’s modulus of arbitrary crystal orientation in cubic crystals can be expressed as [50]:

En =
1

(S11 − (2S11 − 2S12 − S44)(l2
1 l2

2 + l2
1 l2

3 + l2
2 l2

3))
(4)

Young’s modulus of arbitrary crystal orientation in tetragonal crystals can be expressed
as [50]:

En =
1

(S11(l4
1 + l4

2) + 2S12l2
1 l2

2 + 2S13(l2
1 l2

3 + l2
2 l2

3) + S33l4
3 + S44(l2

1 l2
3 + l2

2 l2
3) + S66l2

1 l2
2)

(5)
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where li is the cosine of the angle between the chosen direction n and the i-th crystal basis
vector. Equations (4) and (5) displays the relationship between Young’s modulus (En) in
any crystal orientation and the constants of the flexibility matrix (Sij, as shown in Table 3).

Table 3. Flexibility matrix constants of Cu2AlMn1–xTix (x = 0, 0.25, 0.5, 0.75, and 1).

Alloys S11/S33 (GPa−1) S12/S13 (GPa−1) S44/S66 (GPa−1)

Cu2AlMn 0.0401 −0.0187 0.0094
Cu2AlMn0.75Ti0.25 0.0284 −0.0129 0.0099
Cu2AlMn0.50Ti0.50 0.0242/0.0154 −0.0065/−0.0151 0.0103/0.0095
Cu2AlMn0.25Ti0.75 0.0140 −0.0057 0.0106

Cu2AlTi 0.0112 −0.0044 0.0099

Figure 4 shows the three-dimensional surface of Young’s modulus anisotropy for dif-
ferent x values based on Equations (4) and (5). The crystal direction and the corresponding
elastic modulus were represented by the coordinates and lengths of points on the surface,
respectively. The closer the shape of the three-dimensional surface is to a sphere, the
lower the anisotropy of Young’s modulus is. As shown in Figure 4, with the increase of Ti
substitution content, the three-dimensional surface becomes closer and closer to a sphere,
which indicates that Ti substituting Mn reduces the magnitude of mechanical anisotropy of
Cu2AlMn alloy.
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(b) Cu2AlMn0.75Ti0.25, (c) Cu2AlMn0.50Ti0.50, (d) Cu2AlMn0.25Ti0.75, and (e) Cu2AlTi.

Then, in order to quantitatively understand the mechanical properties and the magni-
tude of anisotropy of polycrystals, the V-R-H model approximation was used to calculate
the bulk modulus, shear modulus, and Young’s modulus of the alloys. The V-R-H model
gives the following Equations (6)–(9) [51], and the anisotropy factors of alloys were calcu-
lated by Equation (10) [16,52]. The results were shown in Table 4.
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Table 4. The bulk modulus (BH), shear modulus (GH), Young’s modulus (E), Poisson’s ratio,
anisotropy factor, and G/B of Cu2AlMn1–xTix (x = 0, 0.25, 0.5, 0.75, 1).

Alloys B (GPa) G (GPa) E (GPa) υ AE AG G/B

Cu2AlMn 125.66 42.98 115.45 0.35 0.52 0.56 0.34
Cu2AlMn0.75Ti0.25 128.22 45.64 122.39 0.34 0.39 0.44 0.36
Cu2AlMn0.50Ti0.50 133.66 48.84 130.55 0.34 0.31 0.34 0.37
Cu2AlMn0.25Ti0.75 130.92 55.90 146.63 0.31 0.17 0.19 0.43

Cu2AlTi 136.33 63.96 166.14 0.30 0.13 0.15 0.47

Voigt and Reuss models of cubic crystals:

BV = BR = (C11 + 2C12)/3
GV = (C11 − C12 + 3C44)/5
GR = 5(C11 − C12)C44/[4C44 + 3(C11 − C12)]

(6)

Voigt and Reuss models of tetragonal crystals:

M = C11 + C12 + 2C33 − 4C13
C2 = (C11 + C12)C33 − 2C2

13
BV = [2(C11 + C12) + C33 + 4C13]/9
GV = (M + 3C11 − 3C12 + 12C44 + 6C66)/30
BR = C2/M
GR = 15

{
(18BV/C2) + [6/(C11 − C12)] + 6/C44 + 3/C66

}−1

(7)

Hill model averages Voigt and Reuss models:

BH = (BV + BR)/2, GH = (GV + GR)/2 (8)

Young’s modulus and Poisson’s ratio are calculated by the following equation:

E = 9BHGH/(3BH + GH) , ν = (3BH − 2GH)/(6BH + 2GH) (9)

The anisotropy factors of Young’s modulus and shear modulus were calculated using
the following equation:

AE = (EV − ER)/(EV + ER) , AG = (GV − GR)/(GV + GR) (10)

The results in Table 4 show that the substitution of Mn by Ti can increase the bulk
modulus, shear modulus, and Young’s modulus of polycrystals. When Mn is completely
substituted by Ti, the shear modulus and Young’s modulus of the alloys reach the highest
values. This indicates that Ti substituting Mn can improve the deformation resistance of
the alloy. The calculation of the mechanical anisotropy factor of the polycrystal shows
that the substitution of Mn by Ti reduces the anisotropy of the alloy, which is consistent
with the previous three-dimensional surface. The decrease of mechanical anisotropy can
increase the strain coordination between grains with different crystal orientations during
deformation and thus reduce the stress concentration at grain boundaries. In addition, the
values of G/B were calculated to represent the ductility of the alloy, where the material is
ductile when G/B is less than 0.5. As shown in Table 4, all alloys are ductile materials and
the value of G/B of the alloys increases with the increase of x, indicating that adding Ti can
make the alloy brittler.

In general, the addition of Ti can improve the deformation resistance and reduce the
mechanical anisotropy of Cu2AlMn alloys.
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3.3. Density of States and Bonding Characteristics

In this section, the bonding characteristics were analyzed to examine the underlying
mechanism for the change in mechanical properties.

To clarify the variation in covalent bonding, the total densities of states (TDOS) near
Fermi Energy of Cu2AlMn1–xTix (x = 0, 0.25, 0.5, 0.75, and 1) alloys were calculated, as
shown in Figure 5. At Fermi energy, there is a sufficient density of states for all systems
with different x values, which indicates that compounds are metallic in nature. In spin-
down TDOS, the distribution of peaks is essentially unchanged with the increase of x.
However, in spin-up TDOS, the peak between −2.50 and −1.50 eV gradually disappears
with the increase of x, while a new peak is generated between 0.50 and 1.12 eV. To further
understand the bonding properties, the crystal orbital Hamiltonian population (COHP)
analysis method [53–55] was employed to determine the bonding characteristics. The
−COHP values for the interactions of all the first and second nearest neighbor atomic pairs
in a unit cell were calculated, and the average −COHP values were used to represent the
covalent bonding characteristic of the entire structure (Figure 6). As shown in Figure 6, the
spin-up−COHP peaks between−2.50 and−1.50 eV are antibonding states, which decrease
continuously as the proportion of Ti increases. However, there is no significant change in
the spin-down −COHP curve in Figure 6. This indicates that the decrease of spin-up TDOS
peaks between −2.50 and −1.50 eV reduces the proportion of antibonding states below
Fermi energy, which makes the alloy more stable and difficult to undergo a phase transition.
This may be the reason for the addition of excess Ti weakening the superelastic strain of
Cu-Al-Mn-Ti alloys. Specifically, the negative Integrated COHP Values at the Fermi Level
were calculated to evaluate the strength of different bonds (Listed in Table 5). As shown in
Table 5, the covalent bond strength between the same atomic pairs in Cu2AlMn1–xTix alloys
changes little under different Ti substitution content. The strength of Ti-Al and Ti-Cu bonds
is stronger than that of Mn-Al and Mn-Cu bonds, which causes the increase of Young’s
modulus. Compared to other bonds, the strength of the Cu-Cu bond is very weak and
contributes little to the covalent bonding of alloys.

Table 5. Negative integrated COHP values at the Fermi Level for Cu2AlMn1–xTix (x = 0, 0.25, 0.5,
0.75, and 1).

Alloys
Bond

Mn-Al Mn-Cu Al-Cu Cu-Cu Ti-Al Ti-Cu

Cu2AlMn 0.649 0.351 0.918 0.051
Cu2AlMn0.75Ti0.25 0.614 0.35 0.837 0.047 0.924 0.526
Cu2AlMn0.50Ti0.50 0.607 0.349 0.804 0.044 0.964 0.528
Cu2AlMn0.25Ti0.75 0.577 0.357 0.831 0.036 0.955 0.529

Cu2AlTi 0.821 0.032 0.954 0.535

Then, the variation of covalent bonding strength during tetragonal distortion was
examined. Figure 7 displays the electron localization function (ELF) maps of Cu2AlMn
and Cu2AlTi for tetragonal distortion at different levels. Larger ELF values imply stronger
covalent bonds, and these regions are marked in red in Figure 7. As shown in Figure 7, the
ELF values between Mn and Al as well as those between Ti and Al decrease rapidly with the
increase of tetragonal distortion, which indicates that the covalent bond strength of Al-Mn
and Al-Ti is very sensitive to the tetragonal distortion. In order to quantitatively analyze
the change of covalent bonding, the −COHP values of Cu-Mn, Cu-Al, Cu-Ti, Al-Mn, Al-Ti,
and Cu-Cu bonds were integrated at Fermi energy, as shown in Figure 8. The strength
of Al-Mn and Al-Ti covalent bonds declines rapidly in the early stage of the tetragonal
distortion process, which is consistent with the previous analysis. However, the strength
of Cu-Mn, Cu-Al, and Cu-Ti covalent bonds changes relatively slowly and the strength of
Cu-Cu covalent bonds is always very weak. The result indicates that the strength of Al-Mn
and Al-Ti covalent bonds is unstable and greatly affected by tetragonal distortion.
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In addition, the ionic bonding properties of Cu2AlMn1–xTix alloys were also investi-
gated. Mulliken population analysis [56] results were used to analyze electronic transfer
information between different atoms, as shown in Table 6. In Cu2AlMn1–xTix alloys, Cu,
Mn, and Ti are the elements that lose electrons while Al is the element that gains electrons,
which indicates the ionic nature of alloys. As the Ti substitution content increases, there is
no significant change in the number of electrons from Cu and Mn to Al. The ionic bonding
strength between Cu, Mn, and Al is insensitive to the Ti element.
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Table 6. Atomic Mulliken charge of Cu2AlMn1–xTix (x = 0, 0.25, 0.5, 0.75, and 1).

Alloys Elements s p d Total Charge (e)

Cu2AlMn
Cu 0.96 6.00 9.68 16.64 +0.36
Al 1.14 3.20 4.34 −1.34
Mn 0.76 6.00 5.62 12.38 +0.62

Cu2AlMn0.75Ti0.25

Cu 0.97 6.00 9.67 16.64 +0.36
Al-I (0.25) 1.14 3.27 4.41 −1.41
Al-II (0.75) 1.14 3.17 4.31 −1.31

Mn 0.76 6.00 5.61 12.37 +0.63
Ti 0.71 6.00 2.71 9.42 +0.58

Cu2AlMn0.5Ti0.5

Cu 0.97 6.00 9.67 16.64 +0.36
Al-I (0.50) 1.14 3.23 4.37 −1.37
Al-II (0.50) 1.14 3.15 4.29 −1.29

Mn 0.76 6.00 5.59 12.35 +0.65
Ti 0.72 6.00 2.70 9.42 +0.58

Cu2AlMn0.25Ti0.75

Cu 0.97 6.00 9.66 16.63 +0.37
Al-I (0.75) 1.14 3.19 4.33 −1.33
Al-II (0.25) 1.14 3.16 4.30 −1.30

Mn 0.74 6.00 5.58 12.32 +0.68
Ti 0.71 6.00 2.73 9.44 +0.56

Cu2AlTi
Cu 0.97 6.00 9.65 16.62 +0.38
Al 1.14 3.19 4.33 −1.33
Ti 0.72 6.00 2.71 9.43 +0.57

4. Conclusions

In this paper, the effect of Ti replacing Mn on the mechanical properties of Cu2AlMn1−xTix
(x = 0, 0.25, 0.5, 0.75, and 1) alloys were studied by the first-principles method, and
the internal mechanism was analyzed from the perspective of structural and electronic
properties. The following conclusions could be summarized:

(1) In terms of mechanical properties, all of the Cu2AlMn1–xTix alloys presented in this
work are mechanically stable. With the increase of x, Young’s modulus, shear modulus,
and volume modulus increase, and the mechanical anisotropy factor decreases, which
indicates that the addition of Ti improves the mechanical properties of the alloy.

(2) In terms of structural properties and phase stability, Ti atoms prefer to occupy the
position of Mn atoms directly in Cu2AlMn1–xTix alloys, and the L21 phase is the most
stable phase in the process of tetragonal distortion. With the increase of Ti substitution
content, the phase stability of the alloy improves.
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(3) In terms of microscopic mechanism, the proportion of antibonding states under the
Fermi energy of Cu2AlMn1–xTix alloys decreases with the increase of Ti substitution
content, which is the main reason for the increase in stability and mechanical proper-
ties. The strength of Ti-Al and Ti-Cu bonds is stronger than that of Mn-Al and Mn-Cu
bonds. In particular, the covalent bond strength of Al-Mn and Al-Ti is relatively
sensitive to tetragonal distortion. In addition, the addition of Ti has little effect on the
ionic bond strength of Cu2AlMn alloy.
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