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Abstract: The utilization of heterogeneous catalysts during the production of biodiesel potentially
minimize the cost of processing due to the exclusion of the separation step. The (X wt%)Ni–ZrO2

(where X = 10, 25 and 50) catalysts prepared through a hydrothermal process were tested for the
production of biodiesel by the transesterification of waste cooking oil (WCO) with methanol. The
influences of various reaction parameters were systematically optimized. While the physicochemical
characteristics of the as-synthesized catalysts were examined using numerous techniques such as
FTIR, XRD, TGA BET, EDX, SEM, and HRTEM. Among all the catalysts, (10 wt%)Ni–ZrO2 exhibited
high surface area when compared to the pristine ZrO2, (25 wt%)Ni–ZrO2 and (50 wt%)Ni–ZrO2

nanocatalysts. It may have influenced the catalytic properties of (10 wt%)Ni–ZrO2, which exhibited
maximum catalytic activity with a biodiesel production yield of 90.5% under optimal conditions.
Such as 15:1 methanol to oil molar ratio, 10 wt% catalysts to oil ratio, 8 h reaction time and 180 ◦C
reaction temperature. Furthermore, the recovered catalyst was efficiently reused in several repeated
experiments, demonstrating marginal loss in its activity after multiple cycles (five times).

Keywords: transesterification; biodiesel; waste cooking oil; nano-catalysts

1. Introduction

Over the last few decades, the consumption of petroleum products has incremented
significantly because of excessive industrialization and rapid increase in the world popula-
tion. As a result, the major portion of the energy used in these processes comes from fossil
fuels. However, the petroleum reservoirs are depleting quickly, which could lead to the
attrition of many fossil fuel-based stocks [1]. Particularly, the increasing demand for fossil
fuels in the transportation sector in recent years has seriously affected the rate of depletion
of fossil fuels. Therefore, developing alternative technologies based on renewable resources
is inevitable [2]. Recently, many research efforts have been devoted to finding a suitable
alternative to fossil fuels. The alternative energy option should be competitive from energy
efficiency and cost-effectiveness viewpoints [3]. In this pursuit, biofuels/biodiesels are a
promising substitute with high energy efficiency, abundant renewable raw materials, and
green environmental impact [4,5].

Biodiesel is derived from triglycerides like plant or animal oils or fats [6]. These
constituents are mainly comprised of fatty acid alkyl esters (FAAEs), which are typically
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generated by the transesterification of triglycerides of lipids with alcohols (low molecular
weight) [7]. Compared to mineral diesel, biodiesel is usually considered a better alterna-
tive due to its extraordinary properties, including high renewability, effective biodegrad-
ability, environment-friendliness, and excellent lubricity. Besides, biodiesel is portable,
non-hazardous, safe to use, readily available and free from aromatics and sulfur contents,
significantly increasing its demand in transportation and other relevant sectors [8]. Ad-
ditionally, biodiesel has a high quality of exhaust gas emission because organic carbon is
photosynthetic in origin. It also reduces the percentage of CO2 emission into the atmo-
sphere and has a negative greenhouse effect [9]. Moreover, due to the close resemblances
among the properties of biodiesel and petrodiesel, such as similar energy content, cetane
number, viscosity, and phase changes, these two can be easily blended and used as effective
alternatives in conventional diesel engines.

For the cost-effective production of biodiesel, various economic and ecological param-
eters need to be considered. Particularly, the feedstock price has a notable effect on the
resulting cost of biodiesel. Thus, local feedstocks are usually considered to reduce the cost
of transportation. Biodiesel is primarily produced using various vegetable oils, cooking
oils, and animal grease. So far, various vegetable oils (edible or non-edible), such as soy-
bean, rapeseed, cotton, peanut, corn, olive, sesame, and sunflower, have been extensively
used as feedstocks for biodiesel production. Apart from this, the synthesis of biodiesels
can also be achieved by other non-conventional feedstocks, such as waste cooking oils,
microalgae, or animal fats, which have been extensively studied by several investigators.
Notably, about 350 types of oil-containing crops are potentially used as precursors to syn-
thesize biodiesel [10]. Among these resources, palm, soybean, rapeseed, moringa, coconut,
pongamia, neem, jatropha, sunflower, castor oil, jojoba, cotton, rice bran, and microalgae
has received great attention from various researchers globally [11–13]. Since these raw
materials are rich in triglyceride contents and mainly consume environmental CO2 during
their growth, this renewable source could help in the remediation of environmental pollu-
tion [14]. Due to the increased knowledge and advancements in processing the feedstock,
universal biodiesel production is predicted to continue to extend in the upcoming years to
a significant amount, i.e., increasing from 29.7 × 106 m3 in 2014 to 39 × 106 m3 in 2024 [15].

The formation of biodiesel through the transesterification of oil or fat with alcohol
is demonstrated in Scheme 1. This reaction produces fatty acid methyl ester, while the
ref. [16] glycerol is formed as a byproduct. Mechanistically, transesterification is a reversible
process. Therefore, it requires an excess of alcohol which facilitates the shifting of the
equilibrium reaction towards the product side. At the same time, chemical catalysts are
applied to enhance the reaction kinetics and product yield. During the transesterification
reactions, the types and contents of alcohol play a major role. Short-chain alcohols like
ethanol, methanol, butanol, and propanol are mostly preferred for this process. Among
these alcohols, methanol is the maximum selected alcohol due to its less expensive and
physicochemical (polar, short carbon chain) properties [17]. The transesterification reaction
could be catalyzed using an alkaline or acidic medium. The alkaline medium with better
kinetic is mostly utilized on a commercial scale, even under low amounts of fatty acid [18].

The commercialization of biodiesel is predominantly inhibited by the price of pro-
duction. So far, biodiesel is still costly when compared to conventional fossil fuels. The
cost of raw feedstock oils and the synthesis of catalysts are still considered the main cost
of biodiesel production (60–80%) [19]. The former problem could be solved by choosing
less expensive and locally available feedstock which are low costs like, waste cooking oil
(WCO), animal fats [20], palm fatty acid distillate (PFAD) [21], Jatropha curcas oil [22]
and grease etc. [23,24]. Whereas extensive scrutiny is still needed to minimize the cost
of catalyst production. In this regard, WCO is a suitable feedstock which is abundantly
available and largely considered an environmental pollutant and harmful to health. WCO
is a growing menace to the environment and thus needs to be disposed of safely, but it
often requires a large amount of management resources for safe disposal. The leftover
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WCO usually becomes part of sewerage leaching and significantly contaminates the water
resources, affecting human health, animals, plants and most aquatic life [25].

Conventionally, biodiesel production is achieved by employing base catalysts such
as sodium hydroxide or potassium hydroxide under homogeneous catalytic conditions.
However, this method suffers from various limitations, such as separation, recycling, and
regeneration of the catalyst. Moreover, the product should be neutralized with strong acids
like hydrochloric acid, phosphoric acid, or sulfuric acid, followed by washing of product
with plenty of water. Altogether, the process becomes cost-intensive and environmentally
hazardous due to the applications of many inorganic acids and water for post-reaction work-
up [26]. Therefore, heterogeneous catalysis qualifies better to solve these problems [27].
The heterogeneous catalysts operate under benign conditions that help in the catalyst’s
easy separation, recycling, and regeneration.

Moreover, it doesn’t require washing and neutralization of reaction contents [28].
Therefore, the process could be scaled-up to meet the market demands. Accordingly,
heterogeneous catalysts have become popular for producing biodiesel via transesterifica-
tion reactions.

Typically, biodiesel production through transesterification of WCO has been reported
to be performed by using diversification of heterogeneous catalysts, including mixed metal
oxides. For instance, Mohadesi et al. [29] have generated biodiesel in the existence of
catalyst (KOH) and small-chain alcohol (methanol). Detailed analysis of the reaction has
been performed by varying parameters, including alcohol-to-oil ratio, catalyst contents,
reaction duration and temperature. The results have revealed that a methanol to oil ratio of
9.4:1, 1.16 wt% of catalyst, duration of 120 s, and a temperature of 62.4 ◦C have resulted
in the formation of high yield of transesterification product (methyl ester, 98.2%). In
another study, Mansir et al. [16] utilized WCO to produce biodiesel in high yield (92.1%)
under optimized reaction conditions. They have used ~3 wt% of Mn-Zr (2:3)/CaO as a
catalyst, a CH3OH to oil ratio of 15:1, a temperature of 80 ◦C and a time of ~3 h. Similarly,
Putra and co-workers [30] have reported the preparation of CaO/SiO2 catalyst using cost-
effective raw materials obtained from waste eggshells. When the catalyst was applied
for biodiesel production using WCO under appropriate conditions (1 h and 60 ◦C), a
high yield of transesterification product was obtained (~91%). While in another study,
Sadaf et al. [31] successfully transformed WCO to biodiesel in high yield (~94%) using
KOH (1 wt%), CH3OH to oil molar ratio of 1:3 at 60 ◦C. Furthermore, CaO/KI/γ-Al2O3
catalyst prepared by Asri et al. has demonstrated efficient catalytic activity during the
WCO transesterification by facilitating the formation of a high yield of product (83.08%)
under optimized conditions, such as ref. [32] 6% of catalyst, 1:15 WCO to CH3OH ratio, a
temperature of 65 ◦C and a 5 h reaction time.

Apart from these, other commonly applied heterogeneous catalysts are metal ox-
ides [33], zeolites [34] and hydrotalcites etc. [35]. This report presents the synthesis of
nickel-zirconium mixed metal oxides (X%)Ni–ZrO2 with different ratios of Ni(X = 10, 25
and 50 wt%) and its application in the transesterification of WCO as a heterogeneous cata-
lyst. Furthermore, nickel-zirconium-based catalysts have also been used as heterogeneous
catalysts in many other organic transformations, such as the hydrogenation of acetoni-
trile [36], hydrogenation of carbon oxides [37], hydrogenation of tetralin [38], hydrogen
production [39] and oxidation of alcohols [40].

The process of transesterification of WCO to biodiesel using nickel-zirconium-based
mixed metal oxide catalysts is depicted in Scheme 1. The as-prepared catalyst was identified
by using a variety of techniques, including Fourier transform infrared spectra (FT-IR),
transmission electron microscopy (TEM), energy dispersive X-ray (EDX), X-ray diffraction
(XRD), thermal gravimetric analysis (TGA) and Brunauer Emmett Teller (BET) surface area
analysis. Detailed analysis of the catalytic transesterification of WCO was performed to
optimize the reaction conditions to obtain the maximum yield of the product. Furthermore,
several experiments were performed under similar conditions to test the reusability of the
catalysts for the same reaction.
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Scheme 1. Schematic diagram of transesterification of WCO to biodiesel using the developed catalyst.

2. Experimental Section
2.1. Catalyst Preparation

Ni–ZrO2 with different % ratio of Ni was synthesized using the solvothermal method.
For example, to synthesize Ni (10 wt%)–ZrO2, a clear solution of nickel acetylacetonate
(0.166 g) in tert. butanol (10 mL) and oleylamine (2 mL) were made in a conical flask by
heating at 80 ◦C. In another flask, a clear solution of zirconium isopropoixde (1.66 g) in
benzyl alcohol (15 mL) was taken. Both solutions were mixed and sealed in a Teflon-lined
autoclave at 200 ◦C for 48 h. After the required time, the reaction vessel was brought down
to room temperature, and ethanol (50 mL) was added to precipitate the product, which was
separated using centrifugation and washed three times by dissolving the precipitates in
dichloromethane (10 mL) and precipitating using ethanol (50 mL).

2.2. Transesterification Experiment

To test the catalytic activity of the as-prepared catalyst, WCO (3 g), methanol (15 times
molar; molecular weight of oil was considered as 890) and catalyst (10 wt% of oil) were taken
into a 100 mL Teflon cup, which was later placed in a stainless-steel autoclave. To complete
the reaction, the autoclave was kept in a muffle furnace at a high temperature (180 ◦C) for
8 h. After this, the autoclave was taken out and allowed to cool down to room temperature.
The catalyst was isolated from the reaction mixture using centrifugation (4000 rpm), while
the unreacted alcohol was isolated on a rotary evaporator. Subsequently, the reaction
mixture only contained trans-esterified products (fatty acid alkyl esters), unreacted oil,
and glycerol as a side product. This reaction mixture added 5 mL of hexane to separate
the glycerol, which ultimately precipitated out at the bottom of the vessel. The oil and
the transesterified product readily went into the organic layer, and glycerol persisted as a
discrete layer. The organic layer was separated using a separating funnel, and hexane was
distilled using a rotary evaporator. The conversion of the products (fatty acid alkyl esters)
was analyzed by 1H NMR spectroscopy.

3. Results and Discussion

X-ray diffraction was used to confirm the catalyst’s crystal structure and phase purity.
Figure 1 displays the XRD patterns of the synthesized (10 wt%)Ni–ZrO2, (25 wt%)Ni–
ZrO2 and (50 wt%)Ni–ZrO2 catalysts. The characteristic reflections observed in the X-ray
diffractograms of the samples with different compositions of Ni were situated at 2θ = 44.44◦,
51.71◦ and 76.41◦ belonged to planes (111), (200) and (220), respectively. This indicates
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that the prepared samples contain nickel in a face-centred cubic (fcc) form (JCPDS file no.
04-0850). [41] Whereas the reflections at 2θ = 40.00◦ and 46.58◦ could appear due to the
mixed hexagonal phase of metallic Ni [42]. Besides, the prepared materials exhibited a
series of reflections at 2θ = 30.32◦, 50.49◦ and 60.23◦, corresponding to (111), (220) and
(311) planes for the cubic ZrO2 structure, which is in high accordance with (JCPDS file no.
27-0997) [43].
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Figure 1. XRD analyses of the (a) (10%)Ni–ZrO2, (b) (25%)Ni–ZrO2 and (c) (50%)Ni–ZrO2 catalysts.

To recognize the functional groups existing on the surface of synthesized nano-
catalysts, we characterized the catalysts using FT-IR. FTIR spectra of (10 wt%)Ni–ZrO2,
(25 wt%)Ni–ZrO2 and (50 wt%)Ni–ZrO2 are presented in Figure 2. All three samples with
different amounts of Ni showed very similar surface functional groups. The major peaks
appeared at 3450, 1632, 1560 and 1440 cm−1. These could be assigned to the stretching
υ(–OH) and bending δ(–OH) vibration modes of the OH group due to the occurrence of
benzyl alcohol which acts as both solvent and surface stabilizing ligand [44]. Meantime, the
CH2 stretching vibration illustrates the sharp absorption bands of nearly 2940 cm−1 [45].
The absorption peak situated at 1040 cm−1 demonstrates the existence of the stretching
vibrations of υ(C−O) [46]. These absorption bands suggest the presence of benzyl alcohol
on the surface as stabilizing ligands. The stretching vibration band υ(Zr–O) of zirconia
displays the peaks centered approximately at 630 and 740 cm−1 [47]. Besides, the FT-IR
peaks in the 460–600 cm−1 could be due to the stretching vibration modes of υ(Ni–O) [48].

To determine the catalysts’ thermal stability, the samples were subjected to Thermal
gravimetric analysis at various temperatures. The thermal behavior of the as-synthesized
catalyst with compositions (10 wt%)Ni–ZrO2, (25 wt%)Ni–ZrO2 and (50 wt%)Ni–ZrO2
catalysts were studied up to 800 ◦C with a heating rate of 10 ◦C min−1 under N2 gas
flow, and the results are shown in Figure 3. The TGA thermogram of (50 wt%)Ni–ZrO2
catalyst was stable up to 340 ◦C with a slight mass loss of <3%, which can be attributed
to the evolution of adsorbed moisture and surface stabilizing ligand on the as-prepared
catalyst [47]. After this, a gradual weight loss of ~9% was observed in the temperature
range of 400–600 ◦C. Upon further increasing the temperature to 800 ◦C, an overall weight
loss of ~18% was observed. These analyses have revealed that, upon decreasing the
weight percentage of Ni in the composition of the catalyst, i.e., (10 wt%)Ni–ZrO2 and
(25 wt%)Ni–ZrO2, the thermal stability was considerably decreased. The total weight loss
for (10 wt%)Ni–ZrO2 and (25 wt%)Ni–ZrO2 was approximately 28% and 40%, respectively.
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Figure 3. TGA thermograms of the (a) (10 wt%)Ni–ZrO2, (b) (25 wt%)Ni–ZrO2 and (c) (50 wt%)Ni–
ZrO2 catalysts.

The synthesized samples’ morphology was studied using scanning electron mi-
croscopy and transmission electron microscopy. Figure 4 shows the representative SEM
images of the (10 wt%)Ni–ZrO2 (Figure 4a), (25 wt%)Ni–ZrO2 (Figure 4b), (50 wt%)Ni–ZrO2
(Figure 4c) and transmission electron microscopy image of (10 wt%)Ni–ZrO2 (Figure 4d).
Although the SEM images show some spherical shape nanoparticles, overall, these par-
ticles are beyond the resolution limits of SEM. However, TEM shows small spherical
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nanoparticles with very well crystalline domains. Additionally, the elemental mapping of
(10 wt%)Ni–ZrO2 catalyst was confirmed using SEM at the rectangular area in Figure 5.
The data disclosed the presence of homogeneously distributed O (turquoise), Ni (yellow)
and Zr (red) atoms over the 20 µm sized cross-section area of the image. Moreover, the
elemental composition analysis of the as-prepared (10 wt%)Ni–ZrO2 catalyst is also studied
using the EDX technique, as viewed in Figure 5. The existence of zirconium, nickel and
oxygen has been indicated in the EDX spectrum.
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The catalysts’ surface area was analyzed by BET by taking the surface areas of the pure
ZrO2 as a reference. The BET of (10 wt%)Ni–ZrO2, (25 wt%)Ni–ZrO2 and (50 wt%)Ni–ZrO2
catalysts measured with N2 adsorption are presented in Figure 6. The transesterification
process is highly dependent on the surface area of the heterogeneous catalysts [49,50]. The
surface area of pristine ZrO2 was about 59.72 m2 g−1, whereas the surface areas of the
catalysts, i.e., (10 wt%)Ni–ZrO2, (25 wt%)Ni–ZrO2 and (50 wt%)Ni–ZrO2 catalysts were
117.83, 96.46, and 85.07 m2 g−1, respectively. The catalytic activity of the catalysts with Ni
NPs exhibited higher catalytic efficiency than pure ZrO2 NPs-based catalysts. The surface
area of all the studied catalysts was reduced upon increasing the weight percentage of
Ni NPs. The trend of the surface area reduction upon increasing the Ni content can be
attributed to the limited obstruction of the catalytically active catalyst sites by the Ni NPs.
This, in turn, affects the activity of the prepared catalysts. Interestingly, among various
catalysts, the catalyst with the highest surface area, i.e., (10 wt%)Ni–ZrO2, has exhibited the
superior conversion of WCO to biodiesel. Therefore, it can be concluded that the catalytic
behavior of the fabricated catalysts is powerfully affected by the specific surface area of
the material.
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3.1. Catalytic Investigation

(10 wt%)Ni–ZrO2 catalyst was investigated for transesterification using WCO as
a feedstock. The product formed during this transesterification reaction was analyzed
by using 1H-NMR spectroscopy. A schematic illustration of the process is described in
Scheme 2. The NMR spectrum displays two proton peaks at δ = 4.10–4.30 and 5.10 ppm,
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which can ascribe to the –CH2– and –CH– of the glycerol moiety in triglyceride, respectively.
In this case, the mono and the -di glycerides of the glyceride moieties were not considered,
as these compounds are soluble in MeOH and might have segregated during the separation
process. Notably, triglyceride exhibits various chemical shifts due to the effect of couplings
from –CH2– constituents under different chemical environments (δ = 1.30, 1.60, 1.95, 2.30
and 2.63 ppm). These types of all coupling peaks are commonly found in fatty acid methyl
ester (FAME) and triglycerides, in addition to the existence of other couplings which
occurred due to the non-conjugated and conjugated proton resonances (δ = 5.30, 5.35 and
6.03 ppm). The 1H-NMR spectrum of FAME exhibited a prominent peak at δ 3.65 ppm
due to the presence of the methoxy group. This peak was utilized to assess the conversion
percentage of biodiesel during the reaction using the equation below [51,52].

Conversion(%) = 100 × 2 × ACH3

/
3 × Aα − CH2 (1)

where ACH3—area of methoxy protons in the methyl esters, Aα−CH2— area of the CH2
protons adjacent to the carbonyl group.
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Scheme 2. Schematic diagram of transesterification of a triglyceride with MeOH.

Several experiments were performed to examine the influence of different reaction
parameters on the transformation of WCO to biodiesel, such as catalyst loading, molar
ratio of MeOH to WCO, duration of the reaction, and temperature of the reaction. These
parameters were systematically varied to find the optimum reaction conditions for the
production of biodiesel in high yield. The products produced from the transesterification
process were analyzed using 1H-NMR spectra by calculating the WCO conversion to
biodiesel, which was performed per the outcomes computed from glycerol attained. The
conversion obtained from glycerol quantity will be lesser, by 1–5 mol% compared with the
NMR results, since the higher glycerol viscosity prohibits the 100% regaining of it from the
reaction mixture [53].

3.2. Impact of Catalyst Loading

The catalytic activity of the (X wt%)Ni–ZrO2 catalysts (where X = 0, 10, 25 and 50)
was studied while other catalytic parameters were kept unchanged, i.e., the temperature at
180 ◦C, MeOH-to-oil ratio15:1, 10 wt% catalysts and reaction temperature of 8 h. The conver-
sion of transesterification of WCO by MeOH was monitored using 1H-NMR spectroscopy.
Pure ZrO2 was also used in the conversion of WCO with MeOH to produce biodiesel; the
biodiesel yield was approximately 7.43% under the above-mentioned conditions. However,
the presence of 10 wt% of Ni–ZrO2 catalyst could improve the conversion of WCO up to
90.5%. The enhanced biodiesel yield can be ascribed to the significant improvement in the
specific surface area of the catalyst, as illustrated in the BET data [54]. The high surface area
of the catalyst allowed better adsorption of the reactants on its surface, which ultimately
enhanced the efficiency of the reaction [55]. As shown in Figure 7a, the (10 wt%)Ni–ZrO2
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catalyst exhibits the highest conversion among all three catalysts. The conversion of WCO
was gradually decreased by loading more weight percentages of Ni on the ZrO2 catalyst.
The catalysts (25 wt%)Ni–ZrO2 and (50 wt%)Ni–ZrO2 yielded 79.2% and 75.0% conversion,
respectively. This could be due to the decline in the surface area or blocked active sites
upon the addition of Ni, as mentioned earlier. However, the surface area of the synthesized
catalyst plays a pivotal role in the catalytic efficiency towards biodiesel production. There-
fore, the (10 wt%)Ni–ZrO2 catalyst was found to be the optimum catalyst, and hence it is
employed in future investigations to enhance other catalytic variables.
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8 h reaction time and 180 ◦C temperature.

3.3. Impact of Molar Ratio

Among various parameters the methanol amount concerning the oil. i.e., the molar
ratio of MeOH to oil is regarded as one of the most crucial factors in the transesterification
process, which can potentially inhibit the formation of biodiesel. The common stoichiomet-
ric ratio of the transesterification process requires 3 moles of MeOH to generate 3 moles
of methyl ester and 1 mole of glycerol. However, as the transesterification process of
triglyceride is reversible, an excess volume of MeOH can potentially drive the equilibrium
towards the right. Therefore, in these reactions, the methanol to oil molar ratio is higher
than that of the stoichiometric ratio of 3:1is maintained. The process was performed by
changing methanol to oil molar ratios from 6:1 to 18:1 under unchanged operational condi-
tions (180 ◦C, 8 h and 10 wt% catalysts to oil ratio), as displayed in Figure 7b. Upon raising
the MeOH to oil molar ratio from 6:1 to 15:1, the biodiesel yield was enhanced considerably
from 28.8% to 90.5%.

Nevertheless, a further increase in alcohol to oil molar ratio from 15:1 to 18:1 decreased
the biodiesel formation. This is probably attributed to the dilution catalyst effect, which
led to the insolubility of the MeOH [56]. Therefore, in this study, the prime molar ratio of
methanol to WCO was established to be 15:1.

3.4. Impact of Reaction Time

Figure 8 a represents the conversion of WCO at 180 ◦C for numerous reaction times.
Reaction time plays a fundamental role in biodiesel yield, especially for the catalytic trans-
esterification processes. Typically, the rate of reaction is highly dependent on the existence
of the catalyst; furthermore, the participation of the mass transfer rate happened during
the reaction utilizing a heterogeneous catalyst [57]. As the reaction duration increases, the
biodiesel yield increases significantly. A lower WCO conversion of 13.5% was obtained
after 2 h. The optimal WCO conversion of 90.5% was achieved when the reaction time
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was increased to 8 h. Upon further prolonging the reaction period to 10 h, there was an
insignificant decline in the yield of biodiesel. This is typically feasible when the equilibrium
is obtained at the optimal biodiesel yield, and the reverse reaction considerably occurs.
Besides, some side reactions occur after the optimal reaction time [58,59]. Based on this
data, the ideal reaction time for the transesterification procedure in the present study is 8 h.
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Figure 8. (a) Conversion of WCO at different reaction times (2–10 h), 15:1 methanol/oil molar
ratio, 10 wt% catalyst concentration and 180 ◦C temperature and (b) Conversion of WCO at differ-
ent temperatures (120–180 ◦C), 15:1 molar ratio of methanol:oil, 8 h of reaction time and 10 wt%
catalyst concentration.

3.5. Impact of Reaction Temperature

Apart from this, the temperature of the reaction is also a significant factor which can
influence the transesterification reaction. Therefore, evaluation of the catalytic performance
at different temperatures was carried out under optimized conditions, such as a reaction
time of 8 h, 15:1 as MeOH-to-oil ratio and the number of catalysts as 10 wt% of WCO. The
increment in the reaction temperature favored the formation of methyl ester, as displayed
in Figure 8b. The influence of temperature was also examined on the esterification reaction
by varying the temperature from 120 ◦C to 200 ◦C. The plotted results showed that the
conversion of WCO to methyl ester increased from 6.3% to 90.5% when the upsurge reaction
temperature increased from 120 to 180 ◦C, respectively.

Further reaction temperature upsurge from 180 to 200 ◦C led to a slight decrease in
methyl ester yield. This behavior is per several other published studies which proposed
that the saponification process of triglyceride may take place at high temperatures, which
subsequently form an enormous number of bubbles that inhibit the reaction on the three
phases (alcohol/oil/catalyst) interphase; therefore, decreased the biodiesel yield [60]. Thus,
the optimal biodiesel yield can be attained at a temperature of the reaction 180 ◦C.

3.6. Impact of Catalyst to Oil Ratio

Usually, catalyst concentration remarkably affects the transformation of WCO to
biodiesel. An insufficient quantity of the catalyst led to an incomplete transesterification
reaction [61]. To assess the influence of catalyst dosage, the quantity of the catalyst was
varied from 6 to 14 wt% while keeping the other operational conditions persistent. Upon in-
creasing the catalyst amount, the yield of the biodiesel also upsurges. Since with increasing
the quantity of the catalyst, the amount of O2− anion sites also increases, which facilitates
the adsorption of more hydrogen ions (H+) from CH3OH, leading to the formation of
a higher number of active sites [62]. This will ultimately lead to an increased number
of contacts between the reactants and the active sites, enhancing the resulting yield of
biodiesel. Overall, the increase in catalyst percentage from 6 to 10 wt% resulted in the
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conversion from 44.6% to 90.5% (Figure 9a). The results in Figure 9a demonstrate that the
conversion of WCO to biodiesel is negatively impacted upon further increasing the amount
of catalysts to more than 10%.
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Figure 9. (a) Conversion of WCO at different catalyst doses (6 to 14 wt%), 15:1 methanol/oil molar
ratio, 8 h reaction time and 180 ◦C temperature and (b) Reusability results of the synthesized
(10 wt%)Ni–ZrO2 catalyst toward biodiesel production from WCO, 15:1 methanol/oil molar ratio,
10 wt% catalyst concentration, 8 h reaction time and 180 ◦C temperature.

In some cases, a high amount of catalyst in the identical ratio of oil and methanol
led to a lower mixing producing higher viscosity of the mixture of reactants and catalyst.
The resultant increase in mass transfer resistance could reduce the biodiesel yield [63].
Therefore, the optimal catalyst dosage utilized for biodiesel production was selected to be
10 wt%.

3.7. Catalyst Recovery Evaluation

The recyclability tests were carried out by employing the (10 wt%)Ni–ZrO2 catalyst
for several reactions (up to five cycles) under the optimized conditions (Figure 9b). After
the accomplishment of every reaction, the residual catalyst was isolated by centrifugation
and washed away with hexane. Furthermore, to clean the catalysts from other impurities,
the catalysts were also washed with methanol [64]. The results showed that the WCO
conversion was reduced by almost 6% after 5 reactions. The reduced catalytic activity
can presumably be credited to the inevitable catalyst weight loss during purification.
However, the fabricated catalyst was active and recyclable even after five cycles of the
transesterification process.

4. Conclusions

In this paper, we have synthesized (X%)Ni–ZrO2 (X = 10, 25 and 50 wt%) catalysts
using the green and scalable solvothermal procedure. The prepared materials were em-
ployed for the transesterification reaction of WCO with methanol to obtain biodiesel. The
structures and compositions of the as-synthesized materials were characterized by differ-
ent microscopic and spectroscopic techniques. The influence of several reaction factors,
including catalyst loading, MeOH to oil molar ratio, reaction time, the catalyst to oil ratio,
and reaction temperature, are thoroughly optimized. The optimal conditions for biodiesel
production are a MeOH to oil molar ratio of 15:1, a catalyst to oil ratio of 10 wt%, a re-
action temperature of 180 ◦C and a reaction time of 8 h. under these conditions. The
transesterification resulted in a high FAME yield of 90.5%. The (10 wt%)Ni–ZrO2 catalyst
possesses the highest surface area compared to the un-doped catalyst (i.e., pure ZrO2), and
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the higher Ni-containing catalyst exhibited the maximum conversion of WCO to biodiesel.
In addition, the (10 wt%)Ni–ZrO2 catalyst was stable and could be successfully recycled
five subsequent times with a marginal decline in its effectiveness. Additionally, the easy
separation and recyclability of the catalyst after the reaction added another advantage to
the prepared catalyst.
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