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Abstract: In this paper, the photosensitive Zr-MOF material Thiadiazole-modified UiO-68 (UiO-
68N2S) was used to prepare CdS@UiO-68N2S composites by MOF post-reaction. The chemical
composition is characterized using PXRD, FT-IR, XPS, SEM, and TGA. Rhodamine B was used as the
model dye for photocatalytic degradation to evaluate the performance of CdS@UiO-68N2S under
visible light irradiation. Experimental results show that the degradation rate of a 25 mg/L RhB
solution (10 mL) reached 94% with 10 mg CdS@UiO-68N2S as a photocatalyst under blue light
irradiation in 13 h at room temperature. The mechanism study revealed that O2

•− is the reactive
oxygen species for the degradation of Rhodamine B. Recycle experiments showed that CdS@UiO-
68N2S can be reused for three rounds without a significant reduction of its catalytic function.

Keywords: Zr-MOF material; cadmium sulfide; visible photocatalysis; Rhodamine B degradation

1. Introduction

The degradation of organic pollutants in wastewater by using a semiconductor as a
photocatalyst is an efficient method for wastewater treatment [1]. The direct use of visible
light to drive catalytic degradation requires an ambient condition with less secondary pol-
lution [2]. Since it has proven to be an effective and green approach, a great deal of research
effort has focused on designing efficient photocatalysts, such as titanium dioxide (TiO2) [3],
cadmium sulfide (CdS) [4], and bismuth trioxide (Bi2O3), which have been widely stud-
ied [5]. CdS is a representative semiconductor with an energy band gap of 2.42 eV, and its
excellent photoelectric properties have been widely used [6]. Nevertheless, there are still
some problems that limit the use of pure CdS particles, including the tendency for aggrega-
tion resulting in a reduction of the surface area [7], the recombination of photogenerated
electron-hole pairs [8], and photo corrosion during the photoreaction [9]. Many attempts
have been made to improve the activity and stability of CdS, such as embedding CdS parti-
cles into polymeric matrices [10], synthesizing CdS quantum dots [11,12], and combining
them with other components, such as noble metals [13,14], semiconductors [15,16], and
carbon materials [17].

Metal–Organic Frameworks (MOFs) are self-assembled from metal ions and organic
linkers, which have physical and chemical properties such as high surface area, structural
adaptability, and flexibility [18–22]. MOFs seem to be excellent carriers for CdS particles;
it was found that many MOFs, including ZIF−67 [23], MIL−101 [8], UiO−66(NH2) [24],
MIL−53(Fe) [25], MIL−125(Ti) [26], MIL−68(Fe) [27], etc., can utilize their nanosize cavity
or specific functional group to anchor the Cd(II) and further give birth to the CdS aggrega-
tion in their highly ordered cavity, which helps in affecting its catalytic activity through the
interplaying of MOFs and CdS [28,29]. This strategy is now opening up a new avenue for
enhancing the light-induced electron transfer between CdS and MOF and improving the
efficiency of photocatalysis [30,31].
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Zr-MOF possesses a Zr6 cluster group as a secondary building unit (SBU), and the Zr6
connection with multi-topic aromatic acid affords the Zr-MOF stable porous coordination
networks under a wide range of conditions, making it a potential candidate for nanoparticle
carrier [32]. UiO−68N2S is analogous to UiO−68 [33], and its framework is obtained by
linking the thiadiazole-modified tritylene-dicarboxylic acid (H2BTDB = 4,7-dicarboxylic
acid phenyl-2,1,3-benzothiadiazole) with Zr6 nodes (Figure 1) [34,35]. H2BTDB is a type
of linker for photo-sensitive MOF construction [36], and recent research showed that UiO-
68N2S can produce a fluorescence quenching effect toward foreign guest molecules such as
aniline and its derivatives; the chemical environment of the thiadiazole group is altered by
the hydrogen bonding interaction with amino groups, then generating electron leaps in
other pathways [37]. These findings suggest that the thiadiazole group is a good photosen-
sitive group when responding to external stimuli [38]. In addition to the aforementioned
photosensitive properties, the thiadiazole group of BTDB2- in UiO−68N2S contains S and N
atoms, which are good binding sites toward Cd(II) ions selectively [39]. Herein, we report
for the first time on coupling UiO−68N2S with CdS through the sequential incorporation
of Cd2+ and S2- into UiO−68N2S (Figure 1). Evaluation of the visible-light photoactivity
of CdS@UiO−68N2S through RhB degradation shows improved activity over CdS and
UiO−68N2S and good recyclability.

Figure 1. Construction and the pore structure of UiO-68N2S, as well as the strategy of loading
CdS particles.

2. Materials and Methods
2.1. Materials and General Methods

The organic ligand, reagents, and solvents were commercially available and were
used as received without further purification. Powder X-ray diffraction (PXRD) patterns
were recorded on a Rigaku Miniflflex600 diffractometer (Rigaku, Tokyo, Japan) with a
scanning angle of 3–60◦ and a scan rate of 5◦/min. IR spectra were recorded in the range of
4000–450 cm−1 on a Nicolet 6700 FT-IR spectrometer (Thermo Fisher Scientific, Waltham,
American) using the KBr disc technique. Scanning electron microscope (SEM) micrographs
were obtained using a Phenom™ Pro instrument (Phenom-World, Eindhoven, Netherland)
with a 5 kV accelerating voltage. Thermogravimetric analysis (TGA) for the polycrystalline
sample was performed on a SEIKO EXSTAR6000 (SEIKO, Kyoto, Japan) under an N2
atmosphere in the temperature range of 30–800 ◦C at a heating rate of 10 ◦C min−1. The
X-ray photoelectron spectroscopy (XPS) measurements were recorded on AXIS SUPRA
spectrometer (Shimadzu, Kyoto, Japan) using Al Kα radiation. Inductively coupled plasma
mass spectrometry (ICP-MS) analysis of the digested sample was performed on an Ag-
ilent 7700X ICP-MS (Agilent technology, Santa Clara, American). UV-Vis spectra were
recorded on an Agilent 8453 (Agilent technology, Santa Clara, American) UV-Vis for the
RhB degradation as well as the ultrasonically dispersed samples of the catalyst.
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2.2. Synthesis of the Complexes

Synthesis of UiO-68N2S. H2BTDB ligand (0.0244 g, 0.065 mmol) was immersed in
DMF (N,N-dimethylformamide) containing 6 mL in reaction tubes, and 100 µL of trifluo-
roacetic acid (TFA) was added. The solution was stirred magnetically and heated in an oil
bath at 120 ◦C until the ligand was dissolved. Then, ZrOCl2·8H2O (0.021 g, 0.065 mmol) and
100 mg (0.82 mmol) of benzoic acid were added. The reaction tube was placed in the oven
at 120 ◦C for 3 days. The obtained yellow precipitates were washed with DMF (10 mL × 3)
and then anhydrous methanol (10 mL × 3) at room temperature. The supernatant was
removed by centrifugation, and the sample was collected and dried at 50 ◦C to obtain the
final product of UiO-68N2S.

Synthesis of CdS@UiO-68N2S. UiO−68N2S (0.03 g, 0.011 mmol) was immersed in
a solution containing 0.5 g (1.62 mmol) of Cd(NO3)2·4H2O in 15 mL MeOH and stirred
magnetically in an oil bath at 50 ◦C for 12 h. The obtained precipitate was then washed
with anhydrous methanol (10 mL × 3), centrifuged, and the supernatant removed. The
precipitate was immersed in 6 mL of MeOH, and 0.5 mL of ammonium sulfide solution
was added dropwise under magnetic stirring in an oil bath at 50 ◦C for 12 h. The mixture
was processed by centrifugation, the supernatant was removed, and the resulting solid was
washed with anhydrous methanol (10 mL × 3) and dried at room temperature to obtain a
sample of UiO−68N2S loaded with CdS (CdS@UiO−68N2S).

Synthesis of CdS. Cd(NO3)2·4H2O (1.0 g, 3.24 mmol) was dissolved in 50 mL of
MeOH in a beaker, and then a solution of ammonium sulfide (1 mL, 14.68 mol/L) was
added dropwise under stirring at room temperature; the precipitates were washed with
MeOH (10 mL × 3) and dried at 50 ◦C to obtain the sample of CdS.

Catalytic reactions. The photocatalyst of CdS@UiO-68N2S (0.01 g, 0.0027 mmol) was
placed in 10 mL of RhB solution at a concentration of 0.025 mg/mL and magnetically stirred
under a light-proof environment for about 2 h until the adsorption–desorption equilibrium.
The photocatalytic performance experiments were carried out at room temperature with
a blue light-emitting diode (LED) lamp (λ = 480 nm, 80 W) as the light source, and the
absorbance of the RhB solution was measured at a certain time interval after the start of
light exposure to calculate the degradation rate. The photocatalytic activity is reflected by
the plots of c/co vs. t (time), where co is the initial RhB concentration and c is the remaining
RhB concentration at time t.

Catalyst recovery and reuse. The photocatalyst CdS@UiO-68N2S was recovered by
centrifugation after the photocatalytic reaction, washed repeatedly using methanol, and
dried. The photocatalytic experiments were repeated under the same conditions.

3. Results and Discussion
3.1. Characterization

PXRD patterns had been recorded for samples to confirm the crystalline phase of
UiO–68N2S and CdS@UiO–68N2S composites. Figure 2a shows the PXRD patterns of the
UiO–68N2S, where the diffraction peaks at 2θ of 4.6, 5.3, 7.5, 8.9, and 9.5◦ correspond to the
diffractions of the (111), (200), (220), (311), and (222) planes of UiO−68 [33], suggesting the
as-prepared UiO−68N2S is isostructural to UiO-68. Slight diffraction peaks at 2θ of 24.9,
25.9, 27.6, 43.6, 47.4, and 51.6◦ were also found in accordance with the diffractions of the
(100), (002), (101), (102), (2-10), and (103) crystal planes of CdS (JCPDF 41-1049), suggesting
a possible low CdS content in the CdS@UiO–68N2S sample. The IR spectra of the CdS
and CdS@UiO–68N2S were recorded in the wavelength range of 4000–400 cm−1 using
KBr compacts. Figure 2b shows the IR spectra of CdS@UiO−68N2S, where the typical
Cd–S bond vibrations at 1012 cm−1, 845 cm−1, and 627 cm−1 were found [23,40], further
indicating the successful loading of CdS in UiO−68N2S.
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Figure 2. PXRD patterns (a) and IR spectra (b) for CdS@UiO-68N2S and CdS.

To probe the elemental composition and its relative content in CdS@UiO−68N2S,
we carried out X-ray photoelectron spectroscopy (XPS), as shown in Figure 3. The XPS
pattern has strong absorption at an electron binding energy of 183 eV, corresponding to the
absorption of 3d electrons of element Zr (Figure 3a) [41], strong absorption at an electron
binding energy of 165 eV, corresponding to the absorption of 2p electrons of element S
(Figure 3b), and absorption at an electron binding energy of 405 eV, corresponding to the
absorption of 3d electrons of element Cd (Figure 3c) [42]. The ratio of Zr/S/Cd of CdS@UiO-
68N2S given by XPS analysis was calculated to be 6.0/4.3/0.11. ICP-MS element analysis
was conducted on the digested sample of CdS@UiO−68N2S, which reveals a precise Zr/Cd
ratio of 6/0.21. Using this ratio, the chemical formula of CdS@UiO−68N2S can be deduced
by combination with the chemical formula of UiO−68 as [Zr6O4(OH)4)(BTDB)6(CdS)0.21].
It should be noted that the ratio of Zr/S/Cd deduced from the XPS is slightly lower than
the theoretical value of Zr/S/Cd = 6.0/6.2/0.21 in CdS@UiO-68N2S, and this difference is
expected to arise from the fact that the signal response of the XPS is mainly derived from
the elements on the surface of the sample.

Figure 3. XPS spectra of elements in CdS@UiO-68N2S: Zr (a), S (b), and Cd (c).

For further analyzing the guest composition of CdS@UiO-68N2S, the thermogravi-
metric analysis (TGA) was conducted as shown in Figure 4, where the first mass loss of
20 wt% in the temperature range of 25–250 ◦C was witnessed for CdS@UiO-68N2S, which
can be attributed to MeOH incorporated during the solvent exchange and CdS incorpora-
tion processes. Compared with guest content of 40 wt% in pristine UiO−68N2S samples,
the reduction in guest content is believed to result from the incorporation of CdS, which
reduces the space for guest molecules in UiO−68N2S. After the decomposition of the linker
at around 500 ◦C, the TG curve goes into a mass plateau with the rest mass of 25 wt% and
18.5 wt% for CdS@UiO−68N2S and UiO−68N2S, respectively. The increase in the rest mass
of CdS@UiO−68N2S is believed to have arisen from the residue of CdO in addition to ZrO2
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(ca. 21 wt%). The TG data of CdS@UiO−68N2S helps in deducing the possible composition
of CdS@UiO−68N2S as [Zr6O4(OH)4)(BTDB)6](CdS)0.21(MeOH)23.

Figure 4. Thermogravimetric analysis of UiO-68N2S and CdS@UiO-68N2S.

Scanning electron microscopy (SEM) was used to characterize the morphology of the
samples. UiO68−N2S presents an octahedron morphology (Figure 5), which is similar to
that reported for UiO−68 previously [33]. As for CdS@UiO−68N2S, the morphology did
not change significantly after the CdS loading experiment. According to the XPS elemental
analysis, the small particle found on the surface of the octahedron mostly came from the
partial octahedron that crashed during the mechanical string in the complex preparation.

Figure 5. SEM images of (a) UiO-68N2S and CdS@UiO-68N2S (b).

The optical absorption properties of UiO−68N2S, CdS, and CdS@UiO−68N2S samples
were examined by UV-Vis spectrometer after the ultrasonic dispersion in MeOH, and the
results are presented in Figure 6. It can be seen that UiO-68N2S has a significant absorption
effect in the ultraviolet region of 292 nm and 394 nm [37], and CdS has a broad absorption
band in the region of less than 540 nm. After loading CdS into UiO−68N2S, the composite
shows a better absorption effect in the visible light region around 428 nm. Therefore,
the incorporation of CdS made the absorption peak of UiO-68N2S red-shifted, which
obviously broadens the light response range and improves the utilization of visible light.
According to the relation Eg = 1240/λ [43], the band gap energies of CdS, UiO−68N2S, and
CdS@UiO−68N2S can be calculated to be 2.3, 3.1, and 2.9 eV, respectively.
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Figure 6. UV-Vis spectra of UiO-68N2S, CdS, and CdS@UiO-68N2S.

3.2. Catalytic Experiments

The photocatalytic activity of the CdS@UiO68N2S catalyst was estimated by means
of the oxidation of RhB as a model substrate. The reaction conditions were conducted in
the presence of air and CdS@UiO−68N2S (10 mg) as photocatalysts in a water solution
of RhB (25 mg/L, 10 mL) under blue light LED irradiation at room temperature; the
degradation of RhB was monitored by the absorbance change at 551 nm through UV-
Vis spectrometry (Figure 7a). To our delight, the photocatalytic reactions went smoothly,
affording an RhB degradation rate of 94% within 13 h (Figure 7b). To further reveal the
kinetics of photocatalytic degradation, the degradation of RhB dye could be applied to a
pseudo-first-order kinetic reaction (ln(co/c) = kt) due to R2 > 0.9 [44] (Figure S1), where k is
the rate constant. The liner fit gave a k value of 0.1636 h−1 (or 0.0027 min−1) (Figure 7c).

Figure 7. Time−dependent UV−Vis spectra of RhB phtotodegradation via CdS@UiO−68N2S (a), the
dynamic process of the RhB concentration change (b), and the photodegradation kinetics (c).

To gain further insight into the photocatalytic mechanism, photo-oxidation of RhB
was carried out under different conditions. The control experiments revealed that the
photocatalyst was required for the RhB degradation (entries 1 and 2, Table 1). It is important
to clarify the photocatalytic ability of the individual components in the CdS@UiO−68N2S.
Under the same condition, UiO-68N2S and CdS showed moderate degradation of 39% and
6%, respectively (entries 3 and 4, Table 1). The result revealed a better photocatalytic ability
through the incorporation of CdS into UiO−68N2S. It is also important to clarify what
kind of active species are involved in photocatalytic RhB degradation. Generally, two main
active intermediates, such as ·OH and O2

•−, have been proposed for the photocatalytic
degradation of RhB [25]. The experiment revealed that only 4% of RhB was degraded when
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0.37 mmol of benzoquinone was added to the reaction solution as a scavenger of O2
•−,

ref. [45], indicating that significant suppression of the RhB degradation occurred (entry 5,
Table 1) and that O2

•− may be a key participant in the reaction. In contrast, the equal
dosage of tert-butanol as a scavenger of ·OH [46] in the reaction system resulted in only
slight suppression of the RhB degradation (entry 6, Table 1).

Table 1. Photocatalytic degradation of RhB under different conditions a.

Entry Catalyst Additive Light Degradation

1 CdS@UiO-68N2S N.D. Blue light 94%
2 N.D. N.D. Blue light 1%
3 UiO-68N2S N.D. Blue light 39%
4 CdS b N.D. Blue light 6%
5 CdS@UiO-68N2S Benoquinone c Blue light 4%
6 CdS@UiO-68N2S tert-butanol d Blue light 86%

a Condition: RhB solution (25 mg/L, 10 mL), UiO-68N2S (0.01 g, 0.011 mmol), CdS@UiO-68N2S (0.01 g,
0.0027 mmol), light (blue LED light: wavelength = 480 nm, power = 80 W), R.T. (30 ◦C), reaction time: 13 h. b CdS
(0.01 g). c Benoquinone (0.04 g, 0.37 mmol). d tert-butanol (0.37 mmol) (Figures S2–S6 show the original UV-Vis
spectra for entries 2–6, respectively).

Based on the band gap analysis and the controlled experiment, a possible mechanism of
charge transfer or reaction mechanism of the photocatalysis system is proposed in Figure 8.
As seen first, under visible light irradiation, due to the appropriate band structures, both
CdS and UiO−68N2S can be excited to generate electrons in the CB, leaving holes (h+) in the
VB. The photogenerated electrons can be effectively transferred from the CB of CdS to that of
UiO−68N2S, while the holes remain in the CdS particles [27]. The photogenerated electrons
transferred to the surface of the composite could react with the adsorbed dissolved oxygen
to produce free radicals, such as O2

•−, resulting in the degradation of RhB [47]. At the same
time, the remaining h+ would transfer from the VB of UiO−68N2S to that of CdS and then
be combined with H2O to produce active ·OH radicals, which can directly oxidize RhB to
some extent. According to the UV-Vis spectra of the RhB degradation process, a continuous
reduction of the absorption peak of RhB without new peaks appeared, suggesting that the
RhB decomposes into small molecules and finally CO2 and H2O [48]. The major reaction
steps in RhB photocatalytic degradation are summarized by the following equations:

CdS@UiO-68N2S + hv→ CdS (h+)/UiO-68N2S (e−) (1)

e− + O2 → O2
•− (2)

h+ + H2O→ ·OH + H+ (3)

O2
•− (·OH) + RhB→ several steps→ CO2 + H2O (4)

The performance of CdS@UiO−68N2S in photo RhB degradation is compared with the re-
cently reported photosensitive MOFs or CdS−MOFs complex, including Ag/AgCl@CFNMT [44],
1.5−CdS/MIL−53 [48], BiOBr@Bi−MOF [49], Cu(II)−based MOF [50], and CdS/g−C3N4/
MIL−125(Ti) [51]. Their activity toward RhB photocatalytic degradation is summarized in
Table 2. In all these cases, the conjugation of semiconductor particles with MOFs showed
enhanced catalytic performance over the single components. In addition to the photo-
catalyst, the process of RhB photocatalytic degradation is also highly dependent on the
power of the light source and the homogeneous state of the oxygen source. In this work,
CdS@UiO−68N2S shows moderate photocatalytic ability with a first-order kinetic constant
of 0.0027 min−1. Given the slight difference in dosage and the same oxygen source of
air, the power of the LED light would take responsibility for the photocatalytic ability of
CdS@UiO−68N2S. In another aspect, compared to the widely used xenon lamp, the LED
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light used in our case suggests that dye photodegradation for wastewater treatment can be
performed in a more convenient and economical way.

Figure 8. Proposed mechanism of RhB photocatalytic degradation in the presence of CdS@UiO-68N2S
and blue-light LED irradiation.

Table 2. Comparison of RhB photodegradation performance of MOF-based catalysts.

Catalyst Catalyst
Dosage

RhB
Concentration Light Source Oxygen

Source
Catalytic
Activity k a/min−1

Ag/AgCl@CFNMT b [44] 0.08 g/L 20 mg/L
Visible–light

LED
(100 W)

H2O2 (20 uL) 98.8%
(10 min) 0.103

1.5-CdS/MIL53 [48] 1.0 g/L 10 mg/L Xenon lamp
(500 W) Air 86% (1.5 h) 0.0158

BiOBr@Bi-MOF [49] 0.6 g/L 20 mg/L Xenon lamp
(300 W) Air 99.4%

(60 min) 0.07009

Cu(II)-based MOF [50] 30 mg Cat. for 40 ppm RhB UV light Air 80% (100 min) 0.01358

CdS/g-C3N4/
MIL125(Ti) [51] N.D. N.D.

Xenon lamp
(300 W,

λ > 420 nm)
Air 90.2%

(90 min) 0.0414

CdS@UiO-68N2S
[this work] 1.0 g/L 25 mg/L

Blue light LED
(80 W,

λ = 480 nm)
Air 94% (14 h) 0.0027

a First-order kinetic constant, b CFNMT = CoFe2O4/NH2-MIL-125(Ti).

3.3. Photocatalytic Recycle Experiments

The recovery and reuse of a heterogeneous catalyst are of great importance from
the perspective of wastewater treatment. The high photocatalytic RhB degradation of
CdS@UiO–68N2S under visible light encouraged us to examine its recyclability. After
each cycle, CdS@UiO−68N2S was recovered by centrifugation and washed with H2O
three times. The ICP-MS analysis of the reaction solution showed that only negligible
amounts of Zr(IV) and Cd(II) were detected, indicating the reaction was a heterogeneous
process. As depicted in Figure 9a, when the recovered catalyst CdS@UiO−68N2S was
subsequently used for another three successive cycles, the RhB degradation was found to
be just slightly reduced to 84%, which was believed to result from the mass lost during the
centrifugation. PXRD patterns of the reused catalyst showed that the structural integrity
of the CdS@UiO−68N2S framework was still maintained after the first and third recycle
reactions (Figure 9b), indicating that the CdS@UiO−68N2S framework was robust and
stable under the reaction conditions.
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Figure 9. Recycling experiments for photo-degradation of RhB by CdS@UiO-68N2S (a), PXRD
patterns for the pristine and recovered samples of CdS@UiO-68N2S after the first and third recycle
uses (b).

4. Conclusions

In the work, the CdS@UiO−68N2S complex was successfully constructed through the
incorporation of CdS into the cavities of UiO−68N2S via sequential adsorption of Cd2+

and S2−, and the conjugation of CdS and UiO−68N2S with thiadiazole groups helped in
improving the visible light absorption. The photocatalytic activity of CdS@UiO−68N2S
was evaluated by the degradation of dye RhB in aqueous solutions under blue light LED
irradiation and ambient temperature, which revealed that up to 94% RhB degradation
could be achieved under the conditions of 1.0 g/L catalyst dosage and 25 mg/L initial RhB
concentration. The photocatalytic activity of CdS@UiO−68N2S was better than that of the
individual components, suggesting efficient charge separation via the conjugation. Besides,
the CdS@UiO−68N2S could be reused for four cycles without a significant decrease in
activity, revealing its potential application as a green catalyst for environmental use.

Supplementary Materials: Supplementary data in the following supporting information can be
downloaded at: https://www.mdpi.com/article/10.3390/cryst13050785/s1. Figure S1: Kinetic anal-
ysis for the RhB photo degradation with CdS@UiO68-N2S; Figures S2–S6: Photocatalytic degradation
of RhB under varied conditions.
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