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Abstract: A tripodal anion receptor has been obtained by an easy and fast single-reaction synthesis
from commercial reagents. The three ligand arms-bearing aromatic groups able to form anion–π
interactions define ligand clefts where large anions, such as perchlorate and perrhenate, are included.
We report here the synthesis of the ligand, its acid/base properties in an aqueous solution which has
been used to direct the synthesis of anion complexes, and the crystal structure of the free ligand and
its anion complexes H3L(ClO4)2·H2O and H3L(ReO4)2.
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1. Introduction

The design and synthesis of receptors for anionic species have attracted the interest of
synthetic chemists since the dawn of supramolecular chemistry. Receptors of increasing
complexity have been constructed, from simple linear or branched to more complex macro-
cyclic and macropolycyclic (cage-like) molecules, which have substantially contributed to
forming the general concept that, with few exceptions, more structured and preorganized
receptors form more stable anion complexes and provide more efficient molecular recog-
nition processes. Indeed, macrocyclic and macropolycyclic molecules have proved to be
very efficient anion receptors. Regrettably, they have the drawback that they often require
lengthy and onerous synthetic procedures [1–11].

In this paper, we turn our attention toward a receptor that is easily accessible (from a
synthetic point of view) and that, despite its open-chain structure, contains preorganized
molecular clefts in which anions can be efficiently housed. This receptor (HL, Figure 1)
is a tripodal molecule resembling the tetramine tren (tris(2-aminoethyl)amine), whose
protonated species are known to form stable complexes with anions [12], but have a
more rigid structure caused by the presence of three aromatic groups. HL can be eas-
ily prepared via a single-reaction functionalization of the commercial product N1,N1-
bis(pyridin-2-ylmethyl)ethane-1,2-diamine with 6-amino-3,4-dihydro-3-methyl- 5-nitroso-
4-oxo-pyrimidine (Figure 1 and Section 2).

In an acidic solution, HL undergoes protonation forming ammonium groups able to
bind anions via electrostatic attraction and the formation of salt bridges (hydrogen bonds
between oppositely charged species). In addition, HL can also use its aromatic groups to
bind anions via anion–π interactions. In particular, the pyrimidine inserted into the receptor
was chosen precisely for this reason: being highly electron-poor, it has a marked tendency
to form anion–π interactions, a characteristic confirmed by the crystal structures of several
anion complexes with receptors containing this group [13–17]. Moreover, protonated
pyridine groups have a non-negligible ability to form anion–π interactions [18–28].

In this paper, we perform a solid-state analysis of the anion-binding characteristics
of H3L2+, the diprotonated form of HL, toward the monocharged tetrahedral ClO4

− and
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ReO4
− anions, observed in the crystal structures of H3L(ClO4)2·H2O and H3L(ReO4)2.

These anions were chosen because, in addition to their technological, biomedical, and
environmental interest [29–37], they are challenging targets for binding as they have low
charge density and poor hydrogen bonding ability [38,39]. Nevertheless, binding and even
recognition of these anions was achieved in some cases, yet the receptors used were often
more structurally complex and laborious to prepare [38–41].
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Figure 1. The receptor HL and the schematic procedure for its synthesis.

2. Materials and Methods
2.1. General

All starting materials were high-purity compounds purchased from commercial
sources and were used without further purification. Compound 6-amino-3,4-dihydro-
3-methyl-2-methoxy-5-nitroso-4-oxopyrimidine (2) was prepared according to a reported
procedure [42]. Elemental analysis was performed with a FlashSmart™ Elemental Analyzer
(Thermo Fisher Scientific, Monza, Italy).

2.2. Synthesis of HL (HL·EtOH·H2O)

HL was synthesized as schematically shown in Figure 1. 0.58 g (3.1 mmol) of solid 2
was added in successive portions to a stirred solution of 1 (0.60 g, 2.5 mmol) in methanol
(30 cm3) at room temperature. After compound 2 was completely dissolved (about 90 min),
0.5 cm3 of 37% NH3 was added at room temperature to convert the excess of 2 into the
insoluble 2,4-diamino-1-methyl-5-nitroso-6-oxopyrimidine derivative, and the resulting
solution was left overnight at 4 ◦C. The suspension was then filtered and the solution was
evaporated to dry under vacuum at room temperature to obtain HL as a deep purple solid
compound that was recrystallized from ethanol. Yield 67%. 1H NMR (D2O, 400 MHz) δ
8.72 (d, 2H), 8.54 (t, 2H), 8.10 (d, 2H), 7.96 (t, 2H), 4.34 (s, 4H), 3.87 (t, 2H), 3.40 (s, 3H), 3.00
(t, 2H). Anal. calcd. for C21H30N8O4 (HL·EtOH·H2O): C, 55.01; H, 6.59; N, 24.44. Found: C,
54.34; H, 6.52; N, 24.37. The crystals of this sample were suitable for X-ray.

2.3. Synthesis of H3L(ClO4)2·H2O

20 mg (0.044 mmol) of HL·EtOH·H2O was dissolved in 5 cm3 of water and the pH
of the solution was brought to about 2.5 by the addition of diluted HClO4. The crystals
of H3L(ClO4)2·H2O suitable for X-ray analysis were obtained by slow evaporation of this
solution at room temperature. The crystals were filtered and air-dried. Yield 47%. Anal.
calcd. for C19H26N8O11Cl2: C, 37.21; H, 4.27; N, 18.27. Found: C, 37.09; H, 4.31; N, 18.16.
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2.4. Synthesis of H3L(ReO4)2

20 mg (0.044 mmol) of HL·EtOH·H2O was dissolved in 5 cm3 of water and the pH of
the solution was brought to about 2.5 by the addition of diluted HCl. A two-fold excess
of NaReO4 was then added and the resulting solution was allowed to evaporate at room
temperature to form the crystals of H3L(ReO4)2 suitable for X-ray analysis. The crystals
were filtered and air-dried. Yield 59%. Anal. calcd. for C19H24N8O10Re2: C, 25.45; H, 2.70;
N, 12.49. Found: C, 25.13; H, 2.78; N, 12.41.

2.5. Potentiometric Measurements

Ligand (HL) protonation constants were determined by means of potentiometric (pH-
metric) titrations in 0.1 M NMe4Cl aqueous solution at 298.1 ± 0.1 K using an automated
apparatus and a procedure previously described [43]. The acquisition of the emf data was
performed with the computer program PASAT [44,45]. The combined electrode (Metrohm
6.0262.100, Metrohm, Herisau, Switzerland) was calibrated as a hydrogen-ion concentration
probe by titration of known amounts of HCl with CO2-free NaOH solutions and by deter-
mining the equivalent point by Gran’s method [46], which gives the standard potential, E◦,
and the ionic product of water (pKw = 13.83(1) in 0.1 M NMe4Cl at 298.1 K). The stability
constants were calculated from the potentiometric data by means of the computer program
HYPERQUAD [47]. The concentration of HL was about 1 × 10−3 M in all experiments.
The studied pH range was 2.0–11.5. Three measurements were performed and used to
determine the protonation constants. Titration curves and relative fittings are reported in
Figure S1.

2.6. Spectroscopic Measurements

UV-vis absorption spectra were recorded at 298 K by using a Jasco V-670 spectropho-
tometer (Jasco Europe, Lecco, Italy). Ligand solution was [HL] = 2 × 10−5 M. Spectra were
recorded in the pH range 0.80–7.24 (a) and 7.24–12.58 (b). FT-IR spectra were recorded at
room temperature on crystalline samples in attenuated total reflectance (ATR) mode with
an IRAffinity-1S instrument (Shimadzu, Milan, Italy).

2.7. Single-Crystal X-ray Diffraction Analyses

Purple crystals of HL·EtOH·H2O and orange crystals of H3L(ReO4)2 and
H3L(ClO4)2·H2O were used for X-ray diffraction analysis. A summary of the crystal-
lographic data is reported in Table 1. The integrated intensities were corrected for Lorentz
and polarization effects and an empirical absorption correction was applied [48]. The
structures were solved by direct methods (SHELXS-97) [49]. Refinements were performed
by means of full-matrix least-squares using SHELXL Version 2014/7 [50]. All non-hydrogen
atoms were anisotropically refined. Hydrogen atoms were usually introduced in a cal-
culated position and their coordinates were refined according to the linked atoms. Two
different conformations were found for the nitroso group in the perrhenate salt. Their
population parameters were refined constraining their sum to 1 (0.538/0.462 at the end of
refinement). The acidic hydrogen atoms and one water hydrogen in H3L(ClO4)2·H2O were
localized in the Fourier difference maps, introduced in the calculation, and freely refined. In
H3L(ReO4)2, the acidic hydrogen atoms were introduced in the calculated position, linked
to the pyridine nitrogens as found in the perchlorate salt, while in HL·EtOH·H2O both
water hydrogen atoms were not localized in the Fourier difference map and not introduced
in the calculation. The labeling schemes for anion complexes are reported in Figure S2.
Selected H-bond contacts are listed in Table S1. CCDC numbers 2253138-2253140.
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Table 1. Crystal data and structure refinement for HL·EtOH·H2O, H3L(ReO4)2, and H3L(ClO4)2·H2O.

HL·EtOH·H2O H3L(ReO4)2 H3L(ClO4)2·H2O

Empirical formula C21H30N8O4 C19H24N8O10Re2 C19H26Cl2N8O11
Formula weight 458.53 896.86 613.38
Temperature (K) 100(2) 100(2) 100(2)

space group P-1 P21/n P21/n
a (Å) 9.3960(4) 14.9381(9) 13.8500(5)
b (Å) 9.7782(4) 12.8194(6) 13.2210(5)
c (Å) 13.6308(6) 14.9659(7) 15.3154(6)
α (◦) 76.058(2) 90 90
β (◦) 70.650(2) 115.548(2) 113.661(2)
γ (◦) 89.521(2) 90 90

Volume (Å3) 1143.29(9) 2585.7(2) 2568.67(17)
Z 2 4 4

Independent reflections/R(int) 3500/0.1297 12,541/0.0662 4670/0.0583
µ (mm−1) 0.789/(Cu-kα) 9.423/(Mo-kα) 2.948/(Cu-kα)

R indices [I > 2σ(I)] * R1 = 0.0546 R1 = 0.0639 R1 = 0.0851
wR2 = 0.1759 wR2 = 0.1575 wR2 = 0.2241

R indices (all data) * R1 = 0.1682 R1 = 0.0963 R1 = 0.0882
wR2 = 0.2481 wR2 = 0.1802 wR2 = 0.2265

* R1 = Σ ||Fo| − |Fc||/Σ |Fo|; wR2 = [Σ w(Fo2 − Fc2)2/Σ wFo4] 1
2 .

2.8. Hirshfeld Surface Analysis

The Hirshfeld surface and the fingerprint plots were calculated using the Crystalex-
plorer17 software [51].

3. Results and Discussion
3.1. Ligand Protonation

The acid/base properties of HL were determined in order to know in which pH
regions the different protonated forms of the receptor are formed and, thus, to be able to
select the appropriate conditions for the synthesis of the anion complexes.

The analysis of the potentiometric titration curves, performed with the program
HYPERQUAD [47], showed that HL undergoes one deprotonation in alkaline solutions
and three protonations in acidic solutions: the corresponding equilibrium constants are
reported in Table 2.

Table 2. Protonation constants determined in 0.1 M NMe4Cl aqueous solution at 298.1 ± 0.1 K.
Standard deviations are reported in parentheses.

Equilibrium LogK

L− + H+ = HL 11.88(1)
HL + H+ = H2L+ 5.82(3)

H2L+ + H+ = H3L2+ 3.04(3)
H3L2+ + H+ = H4L3+ 2.17(3)

In agreement with the behavior previously observed for other polyamines containing
the same pyrimidine and pyridine groups [13,17,52–55], protonation occurring at high pH
values (logK = 11.88, Table 2) is attributable to the secondary amine group, bound to the
pyrimidine ring, which is deprotonated in very alkaline media, while protonation occurring
in the lowest pH range (logK = 2.17, Table 2) is expected to involve the pyrimidine nitroso
group (Scheme S1). The spectra of HL recorded in the near-UV at different pH values
(Figure 2a,b) confirm this attribution of protonation sites. These spectra are characterized
by three bands around 230, 257, and 330 nm which can be assigned to the allowed π–π*
transitions between the π orbitals of the pyrimidine group and the overlap of the pyridine
band at approximately 260 nm. As can be seen in Figure 2c, the pyrimidine bands undergo
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important variation with pH in acidic (pH < 3) and alkaline (pH > 11.5) solutions when
protonation involves the pyrimidine chromophore while the spectra are almost invariant
in the intermediate region. This intermediate region is dominated by the presence of the
HL and its monoprotonated H2L+ species (Figure 2). As the pyridine band at 260 nm
is expected to increase upon protonation [56], the invariance of this band suggests that
protonation of HL to give H2L+ occurs on the tertiary amine group (Scheme S1). Further
protonation to form H3L2+ necessarily involves a pyridine group and, indeed, the 260 nm
band increases but the increase is accentuated by the almost concomitant formation of
H4L3+ in which, as already commented, the pyrimidine chromophore becomes protonated
on the nitroso group.
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As for the location of the two ammonium groups in H3L2+, different alternatives
should be considered: (i) one proton is located on the tertiary nitrogen atom (as in H2L+)
and one on a pyridine; (ii) both pyridine groups are protonated; and (iii) protonation
involves all three basic centers and there are several species in equilibrium with each other.
The first alternative would be favored by the higher basicity of the tertiary amino group
but could generate a strong repulsion between the neighboring ammonium groups, while,
in the case of the second alternative, this electrostatic repulsion would be reduced since
the two pyridines are the protonation sites which can stay at the maximum distance from
each other. The third alternative would be a compromise between the first two. The crystal
structures of perchlorate salt described below show that H3L2+ contains two pyridinium
groups, thus corroborating the second alternative (ii) (Scheme S1).

Based on the solution results, we decided to prepare the anion complexes at pH 2.5
in order to have in the solution the maximum abundance of the H3L2+ species (Figure 2c).
Although at such pH, H2L+ and H4L3+ are also present in significant amounts, only



Crystals 2023, 13, 823 6 of 16

the H3L(ReO4)2 and H3L(ClO4)2·H2O salts were obtained and in fairly good yields (see
Sections 2.3 and 2.4 above).

3.2. Crystallographic Study
3.2.1. Crystal Structure of HL·EtOH·H2O

The crystal structure of the free ligand (HL), featuring co-crystallized ethanol and
water molecules, is dominated by π–π stacking forces.

The arms of the tripodal ligand assume an overall Y conformation (Figure 3). One
of the clefts of the ligand fully closes as one of the pyridine pendants gives face-to-face
π–π stacking interaction with the nitroso–pyrimidine moiety (Figure 3, the dihedral angle
between the rings’ planes is 15.8 deg, the distance between ring centroids is 3.81 Å, and
the shortest contact is C2···C11 3.389(4) Å), resulting in a local U fold. Above and below,
the same aromatic groups are involved in pyrimidine–pyrimidine (ring centroids distance
3.46 Å) or pyridine–pyridine (ring centroids distance 3.89 Å) π-stacking contacts connecting
centrosymmetric molecules which stack upon each other forming columns (Figure 4).

As required by both intrinsic ring polarity and consequent space group symmetry,
both pyridine–pyridine and pyrimidine–pyrimidine contacts feature the two neighboring
rings in antiparallel disposition. Antiparallel stacks are then connected by NH2···Nar
H-bonds (N2···N7′ 2.909(5) Å).

The second pyridine arm is not involved in face-to-face π–π stacking contacts, but
it rather protrudes from, and panels, said stacked columns, being, moreover, involved
in hydrogen bonding with solvent molecules. Beyond the N8···O3′ hydrogen bond
(2.875(4) Å), neighboring hydrogen-bonded stacks interact with each other through fur-
ther co-crystallized solvent-mediated (O3···O4 2.735(4) Å) H-bonds, namely N5···O3 and
O4···N1′ (2.791(3) Å and 2.963(4) Å, respectively (Figure S3, Table S1).
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Figure 4. Repeats of antiparallel stacks of ligands (orange/green) featuring alternate head-to-tail
pyridine/pyridine or pyrimidine/pyrimidine π–π stacking contacts in HL·EtOH·H2O. H-bonded
dimers alternate between inter- and intra-strand. The third arm of each ligand, not involved in strand
formation, is shown as a wireframe. Hydrogen atoms and co-crystallized solvent molecules are
omitted for clarity. Distances in Å.

3.2.2. Crystal Structures of the Anion Cleft Complexes H3L(ReO4)2 and H3L(ClO4)2·H2O

The two structures can be considered isomorphous, having the same space group and
almost the same cell parameters. The diprotonated ligand and the two anions (Figure 5)
define very similar structural motifs: the U-shaped conformation seen for the not protonated
ligand is now open and the three aromatic rings give two clamps gripping the two anions
via anion–π interactions. The acidic hydrogens, which have been localized in the ∆F map
for the perchlorate complex, are linked to both the pyridine nitrogen atoms, as expected
from solution studies, and converge towards the nitroso oxygen of an adjacent symmetry-
related ligand molecule (perchlorate complex: N7···O1 2.700(5) Å, N8···O1 2.793(6) Å;
perrhenate complex: N7···O1 2.67(1) Å, N8···O1 2.62(1) Å, Table S1, see Figures S4 and S5
for the labeling scheme of both structures).

The pyrimidine–pyridine–pyridine ring sequence gives rise to the following dihedrals:
71.9/87.6 deg and 58.2/81.7 deg for the perchlorate and the perrhenate salt, respectively
(Figure S6). Beyond these little differences, the ligand conformations are virtually identical
(RMSD all atoms 0.2013), with their superposition, as shown in Figure 6, allowing us to
discuss details of the anion-binding modes. The anion held by the pyridine–pyridine clamp
has a very similar coordination mode, its central atom (Cl1 or Re2) being essentially located
in the same position with respect to the ligand. These anions are equidistant from the two
pyridine rings (Cl1 distance from pyridines centroids 4.089/4.108 Å, Re2 distance from
pyridines centroids 4.172/3.958 Å) and give short contacts with the protonated nitrogen
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atoms and with the neighboring aromatic carbon (shortest contacts range from 3.007(5) Å
to 3.146(6) Å in the perchlorate salt and from 2.90(1) Å to 3.18(1) Å in the perrhenate salt).
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Figure 5. Synopsis of the perchlorate (top) and perrhenate (bottom) complexation inside the ligand
clefts in the crystal structures of H3L(ClO4)2·H2O and H3L(ReO4)2.

The second cleft features two different aromatics, the polysubstituted pyrimidine
being the most apt to anion–π binding. As a matter of fact, Cl2 perchlorate is closer to
the pyrimidine ring (O24···N4 2.977(4) Å, O23···C2 3.290(6) Å) than to the pyridine ring
(O22···N7 3.123(6) Å), as expected (Figure S4). Instead, the Re1 perrhenate anion is almost
equally distant from both rings (O11···C13 3.18(1) Å, O13···N4 3.169(9) Å, Figure S5). The
mutual positions of these anions with respect to the ligand cleft is arguably the major
difference between the two crystal structures, the difference being manifest in Figure 6.
Such tuning of the ligand–anion interactions seem to stem from two other supramolecular
forces at work, hydrogen bonding, and anion–anion contacts among perrhenate species, as
shown in Figure 7.
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Figure 7. Details of further intermolecular contacts determining the exact disposition of anions
bound within the pyrimidine–pyridine cleft in the crystal structures of H3L(ClO4)2·H2O (above) and
H3L(ReO4)2 (below).

For both anions, the N5 nitrogen is involved in the binding. In the perrhenate case, this
translates to a direct Re1–O14···HN5 hydrogen bond (O···N distance 3.044(8) Å, Table S1).
The same interaction in the monohydrate perchlorate complex is mediated by the solvent
molecule, which also bridges two symmetry-related anions (H-bond distances: N5···OW1
2.756(6) Å, Cl2–O21···OW1 2.831(6) Å, OW1···O22–Cl2 2.885(5) Å, Table S1). Perrhenate
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anions are also involved in weak mutual interactions with the establishment of a mutual
O···Re/Re···O contact (O14···Re1′ 3.602(6) Å), which happens through one of the faces
of the ReO4

− tetrahedron. Similar contacts have been previously observed and recently
dubbed matere bonds [57,58].

3.2.3. FT-IR Spectra Analysis

FT-IR spectra recorded on the crystalline samples of HL·EtOH·H2O, H3L(ClO4)2·H2O,
and H3L(ReO4)2 are shown in Figure S7. If we exclude the signals attributable to ethanol
(900, 1157, 1219, 1238 cm−1), which are present in the spectrum of HL·EtOH·H2O, and
some alteration of the relative intensity of the bands, the three spectra are essentially very
similar, the main differences consisting in the presence of the typical bands of ClO4

− (3361,
1065, 613 cm−1) and ReO4

− (895 cm−1) [59]. The intense bands at 1065 cm−1 and 895 cm−1

due to the characteristic Cl-O and Re-O asymmetric stretching vibrations of ClO4
− and

ReO4
− in the spectra of H3L(ClO4)2·H2O and H3L(ReO4)2, respectively, are red-shifted as

compared to spectra reported for MClO4 (1076–1100 cm−1, M = Li+, Na+, NH4
+ [60–62])

and MReO4 (913–928 cm−1, M = Na+, K+, NH4
+ [63,64]), manifesting the effect of anion

complexation within the protonated ligand clefts.

3.2.4. Hirshfeld Surface Analysis

The Hirshfeld surface of the free ligand and corresponding fingerprint plot are reported
in Figure 8.
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The Hirshfeld surface of HL is a rather flat block, delimited on top and bottom sides
by intracolumn π–π stacking interactions and, on its sides, by intercolumn interactions, the
most significant of which are the above-mentioned N2···N7 hydrogen bonds.

The fingerprint plot shows both typical H-bond tips and a manifest π–π stacking area
(green portion of the graph centered at {1.7,1.7} coordinates). These are the same interaction
types emerging from overall contact percentages (Table S2), with the further addition of
H···O contacts due to hydrogen bonding to solvent molecules. The pseudosymmetry of
the fingerprint graph is only slightly broken by the presence of the co-crystallized solvent
molecules.

The Hirshfeld surface of the diprotonated ligand in the perchlorate and perrhenate
complexes and corresponding fingerprint plots are shown in Figures 9 and 10, respectively.
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Figure 9. (Top): views of the H3L2+ Hirshfeld surface (dnorm coloring) in the H3L(ClO4)2·H2O crystal
structure with main contacts highlighted and the full fingerprint plot. (Bottom): focus on the anion
binding inside the clefts with detail of the C . . . O contact portion of the fingerprint plot. A shape
index coloring scheme is also used to highlight the anion inclusion inside the binding pockets.
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Figure 10. (Top): views of the H3L2+ Hirshfeld surface (dnorm coloring) in the H3L(ReO4)2 crystal
structure with main contacts highlighted and the full fingerprint plot. (Bottom): focus on the anion
binding inside the clefts with detail of the C . . . O contact portion of the fingerprint plot. A shape
index coloring scheme is also used to highlight the anion inclusion inside the binding pockets.

Main interaction hotspots, as judged from the dnorm parameter, belong to the ligand–
ligand H-bonds, namely among pyridinium sites and NO oxygen.

Anions are found in molecular clefts. The anion–π interaction is not as immediately
manifest due to the simultaneous presence of H-bond type interactions, which, being both
stronger and more directional, are easier to spot both from dnorm hotspots on the Hirshfeld
surface and as sharp tips in the fingerprint plots. However, if C···O, i.e., anion–π type
contacts, are highlighted, the interaction is observed to be significantly represented in
the fingerprint plot [22], and to account for a significant portion of the global Hirshfeld
surface area (5.9% and 6.3% for ClO4

− and ReO4
−, respectively, Tables S3 and S4). The

supramolecular hosting of anionic species is here perhaps better visualized through the
shape index coloring, which is effective at showing inward/outward local bending of the
Hirshfeld surface itself. As can be observed, anion-binding clefts are among the areas that
show the most significant inward bending (red), signaling how the ligand’s surface engulfs
the anions (Figures 9 and 10 bottom).

Of course, the contribution of these weak forces combines and synergizes with the
electrostatic attraction generated between anions and ligands as a consequence of the
positive charge introduced by protonation on the pyridine groups, which reverberates
throughout the ring as evidenced by the calculated potential electrostatic surfaces (ESP)
shown in Figure S8.
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4. Conclusions

Tripodal ligands are convenient building blocks for easy and fast synthesis of efficient
anion receptors. An example is given here by the HL ligand, characterized by a tren-
like (tren = tris(2-aminoethyl)amine) structure bearing two pyridine and one pyrimidine
terminal functionalities, whose synthesis was accomplished by means of a single reaction
from commercial products. The crystal structure of the free ligand shows that the three arms
decorated with aromatic groups define molecular clefts where host species can be included.
Upon protonation, the ligand opens these clefts as wide as necessary for tight inclusion of
large anions such as perchlorate and perrhenate, as shown in the solid state by the crystal
structures of H3L(ClO4)2·H2O and H3L(ReO4)2. The ligand arms act as clamps gripping
the two anions via anion–π interactions which are the main forces, in addition to the
electrostatic attraction exerted by the ammonium groups that participate in strengthening
the host–guest association. Intermolecular hydrogen bonding, π-stacking, and anion–anion
interactions, in the case of perrhenate, contribute to stabilizing the crystal packing.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13050823/s1, Figure S1: Titration curves. Figure S2: Labelling
schemes for anion complex structures. Figure S3: Pairs of hydrogen-bonded ligands (same color)
joined in an H-bond network via co-crystallized solvent molecules. Figure S4: Selected short contacts
(H-bonds and anion–π) in the perchlorate complex. Figure S5: Selected short contacts (H-bonds
and anion–π) in the perrhenate complex. Figure S6: Details of the dihedral angles formed by the
pyridine–pyridine–pyrimidine rings’ sequence in the perchlorate and perrhenate salts. Figure S7: FT-
IR spectra of crystalline HL·EtOH·H2O, H3L(ClO4)2·H2O and H3L(ReO4)2. Figure S8: Electrostatic
potential surfaces of HL and H3L2+. Scheme S1: Ligand protonation scheme. Table S1: Selected
H-bond contacts. Table S2: Atoms in contact with the HL Hirshfeld surface in the HL·EtOH·H2O
crystal structure. Table S3: Atoms in contact with the H3L Hirshfeld surface in the H3L(ClO4)2·H2O
crystal structure. Table S4: Atoms in contact with the H3L Hirshfeld surface in the H3L(ReO4)2 crystal
structure. Cif files of the three structures.
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