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Abstract: Manipulating the flow of water wave energy is crucial for ocean wave energy extraction or
coastal protection, and the emergence of metamaterials paves a potential way for controlling water
waves. In this work, by introducing a local disorder in a cavity-type metamaterial constructed by
split-tube resonators, we show that water waves can be guided in an open channel with multiple
energy flow paths formed merely by surrounded disconnected concurrent resonators that can serve as
invisible walls without the requirement of a whole array system such as general periodic structures or
waveguides. Specifically, we numerically and experimentally validate that a T-shaped metamaterial
can achieve free guiding of water waves in a narrow band and a band-edge state along a distinct
path. This open-space water waveguiding is found to be dominated by Fano-type interference and
Fabry–Pérot resonance. Two distinct propagating modes, a low-frequency “trapping mode” and a
high-frequency “following mode”, are identified. By simply rotating two configuration-dependent
unit cells at the intersection of the metamaterial, we achieve a variety of water waveguiding paths
tuning along rectilinear or bending (splitting or turning) directions, which rely on the two different
propagating modes.

Keywords: metamaterials; guiding; water waves; Helmholtz resonators; local resonance; local disorder

1. Introduction

Steering and directing the path of propagating waves in a desired manner are essential
for utilizing or dissipating wave energy and have received considerable attention from the
wave research community [1–12]. A kind of classical wave, controlling water wave energy
is important, but very challenging, for energy extraction and costal protection in practical
ocean engineering. Following the progress of photonics and phononics, water surface
waves have recently been manipulated by interacting with periodic structures such as
cylinder arrays, rippled bottoms, or surface scatters [13–22]. To steer and guide water waves
through interaction with a periodic configuration, one can either manipulate water wave
propagation by creating a line defect based on the concept of bandgap defect modes [23]
or by forming a focusing lens through a homogenization of the periodic medium [18,24].
However, similarly to their classical bulk wave counterparts, it is almost impossible to
guide surface water waves in any desired manner without relying on arrangements of
walls or a large numbers of unit cells and their homogeneous modification at the level of
the entire periodic system.

Metamaterials are artificial unit cell systems with dimensions much smaller than the
wavelength of the propagating waves, which may provide solutions for water waveguiding
without the introduction of a large number of unit cells while releasing the dimensional
dependence of traditional periodic structures. Electromagnetic, acoustic, or elastic metama-
terials have aroused wide interest recently, including superlensing [25], cloaking [26,27],
and evanescent wave tuning [28,29], to name a few. Among different designs of metama-
terials, subwavelength waveguiding has been realized based on Fano-type interference
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in a medium arranged with Helmholtz resonators (HRs) (e.g., arrays of soda cans in [3]).
As a planar counterpart of metamaterials, a plasmonic Fano-resonance metasurface can
also be applied in colorimetric sensing [30]. In addition, waveguiding for imaging at a
subwavelength scale has also been achieved based on Fabry–Pérot (FP resonance) in a
holey-structured medium [29]. Compared with a defect mode-based waveguide (e.g., [31]),
the two abovementioned metamaterial waveguiding techniques indicate that water waves
might also be steered and guided in a way mainly dependent on wave coupling with res-
onators. However, bulk wave metamaterials cannot be directly applied to manipulate water
waves since water wave energy, unlike classical bulk waves in metamaterials with com-
plicated spatial geometries, is mostly confined to the surface. Thus, to control multi-band
water wave propagation on the surface with only a few unit cells, a proper structure has to
be identified to inherit the concept of multi-band low-frequency waveguiding utilized in
bulk wave metamaterials. The achievement of water waveguiding can pave a potential way
for steering and directing water wave energy for energy extraction and costal protection in
ocean engineering.

In this work, despite not being as efficient as topological waveguides, we numerically
and experimentally demonstrate that by arranging HR-based unit cells in a water wave
metamaterial in the configuration of a T shape, it is possible to directionally shape and
guide water waves as if flowing through an open-space virtual channel. The proposed
metamaterial consists of two rows and columns of resonators arranged as a T-shaped
configuration. These resonators are disconnected split cubes made of copper configured
by concurrent fan-shaped cavities with a designed symmetry. Inside the metamaterial,
a T-shaped path with three inlets is formed via these copper split tubes. By creating the
geometrical symmetry within the fan-shaped HRs cavities and introducing local disorder
in the metamaterial, we numerically and experimentally show that the proposed T-shaped
metamaterial serves as a waveguide at specific working frequencies. This work is of
significance in two aspects. One is that we show that Fano-type interference and Fabry–
Pérot resonance mechanisms can be simultaneously applied to achieve multi-band low-
frequency water waveguiding. The other more important aspect is that the design of the
proposed T-shaped metamaterial is rather simple and can be easily fabricated (e.g., metal
or polymer materials) to achieve distinct flow paths (e.g., symmetrical and asymmetrical
transmission) of water wave energy and even realize potential unidirectional propagations
that might be promising for constructing water wave circulators in the future.

2. Unit Cells and the Corresponding Band Structure and Transmission Characteristics

The unit cell of our metamaterial is a water wave version of a Helmholtz resonator [32,33].
As shown in Figure 1a, the configuration of the unit cell is a concurrent single-degree-of-
freedom (SDOF) split tube, where each sub-cavity has a fan-shaped configuration that can
geometrically fit the other three components to form a circle-shaped unit cell. The geometric
parameters of the fan-shaped split tubes are determined according to the design of C-shaped
split tubes, whose resonance characteristics have been analytically obtained [32,33]. The
reference C-shaped split tube is characterized by three main parameters—the slit width
∆, the outer radius r1, and the internal radius r2—which correspond to a resonant wave
number kr =

√
∆

πr2
2(r1−r2)

. We set ∆ = 1 mm, r1 = 4 mm, and r2 = 3 mm and obtain a resonant

frequency fr = 4.4 Hz. The dimensions of the fan-shape split tubes are then designed to
match the resonance frequencies of the referenced C-shaped split tubes. The equivalent
fan-shaped split tube has an internal radius r′1 = 2r1 = 8 mm, an outer radius r′2 = 2r2 =
6 mm, and a slit width ∆ = 1 mm, respectively. The unit cell can be easily fabricated using
metal (e.g., a copper split tube shown in Figure 1b) or polymer materials.
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tive dispersive band (less than 4.5 Hz), which will be studied in our following work. 

Figure 1. Schematic of the unit cell. (a) The unit cell evolved from a circle-shaped Helmholtz resonator
(b) Front view of a unit cell made of copper split tubes.

Here, we conducted the simulation of the propagation of water waves using COMSOL
Multiphysics based on the fact that the vertical displacement of water wave ηeiωt satisfies
the two-dimensional Helmholtz equation [18,34] which reads as

∇2η + k2η = 0, (1)

where we consider the dispersion relationship

ω2 = gktanh(kh), (2)

in which h is the water depth.
We first consider the band structure of a two-dimensional water wave metamaterial

constructed by the concurrent split-tube unit cell (see the inset in Figure 2), also calculated
by a finite element solver (COMSOL Multiphysics). As shown in Figure 2a, along the ΓX
direction, we see a positive dispersion band above the local resonance frequency, which
spans a smaller frequency range of about 0.12 Hz (5.14 Hz–5.26 Hz, marked with green
N). This passband and the resonant frequency are all contained in a wide bandgap with a
range from 4.53 Hz to 6.47 Hz (between the blue dash lines). Note that with the unit cells,
water wave propagation in this band remains rather isotropic (comparing the dispersion
curves along the ΓX and ΓM directions). Interestingly, there is another negative dispersive
band (less than 4.5 Hz), which will be studied in our following work.

Next the effective refraction index with respect to the effective depth and effective
gravitational acceleration is considered to reveal the physical nature of the passbands. In
the long-wavelength range [18,21], the shallow water wave equation can be viewed as a
homogeneous liquid with a linear dispersion given by

ω2 = geketanh(kehe), (3)

where ke is the effective wave number of water waves. The refraction index can be ex-
pressed as

n =
ke

k
=

√
gh

gehe
. (4)
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influence of the reflected waves caused by the unit cells. A wide and deep bandgap is 
generated by the one-dimensional array of unit cells, compared to the Bragg scattering 
bandgap generated by the solid cylinders. It is found that there is an asymmetric resonant 
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Figure 2. (a) Band structure of the unit cell and (b) the corresponding effective refractive index.

The real part of the effective refractive index is shown in Figure 2b. Both the effective
depth and effective gravity must simultaneously maintain a positive or negative value
to ensure a real effective refractive index. We note that the effective refractive index
corresponding to frequencies larger than 5.25 Hz may need correction, since the long-
wavelength assumption may not be satisfied anymore. However, it still can be a useful
reference to explain important observations in the following sections.

To gain a deeper insight into the band structure, we further simulate the propagation
of the water wave field in a one-dimensional array of the split-tube unit cells with corre-
sponding wave patterns at different frequencies, as shown in Figure 3. In Figure 3a, the
transmission coefficient is calculated based on the ratio (Ttr/Ti)2, where Ttr is the amplitude
of the absorbed waves obtained from the line average of the amplitude distribution at the
right boundary of the rectangle computation domain and Ti is the amplitude of incident
waves that is set to 1 at the left boundary of the computation domain. Note that the am-
plitude of the wave field at the left boundary of the domain is chosen as unity to avoid
the influence of the reflected waves caused by the unit cells. A wide and deep bandgap
is generated by the one-dimensional array of unit cells, compared to the Bragg scattering
bandgap generated by the solid cylinders. It is found that there is an asymmetric resonant
peak centered at 5.17 Hz in the transmission, which we attribute it to the zero group-velocity
mode at 5.13 Hz that is observed in the band structure in Figure 2a. This asymmetric peak
can be more clearly observed when the global lattice constant a increases to 26 or 28 mm
(see discussions in Section 3). Note that a similar asymmetric peak in the transmission
has been found in the elastic metamaterial [35] and acoustic metamaterials [3,36,37] re-
cently, which is caused by Fano-like interference between the incoming waves and the
reflecting waves that radiate from the local resonators [3]. The present one-dimensional
split-tube array also reveals a similar Fano-type interference phenomenon characterized by
the abovementioned asymmetric profile in the transmission. In particular, the Fano-type
interference phenomenon leads to a narrow positive dispersion band in the transmission,
also known as the “transparency window” [38,39], which corresponds to the narrow band
in the band structure. In this narrow window, the group velocity is extremely slow (i.e., a
slow flow of water wave energy), which is indicated by the flat band structure in Figure 2a.
Note that the narrow window in the transmission has also been explained as the coupling
between locally resonant and Bragg bandgap in other work [38]. It can be observed that
the bandgap in the transmission is wider and deeper than that caused solely by the Bragg
scattering in the array of solid cylinders. Thus, it is not a typical bandgap generated from
the local resonance of the unit cell. Following the explanation on the formation of the
bandgap in many locally resonant metamaterials, here a hybridization bandgap [40] is
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used to address the coupling and interaction between the resonance scatters and their
surrounding propagating waves. The band near the upper bandgap edge (around 6.5 Hz
in Figure 2a) indicates water wave propagation is influenced by wavelength-scale multiple
scattering [28]. On the contrary, the local high transmission in the positive dispersion
band (Figure 2a) is induced by constructive Fano-type interference. Since in our design,
all the unit cells are identical with the same local resonance frequency, the presence of
the positive dispersion band indicates that a resonant defect [3,41] (detuning the resonant
frequency of one unit cell from that of the rest ones) operating at this frequency range
is not necessarily required to support a passband in the bandgap, which occurs in their
acoustic counterparts [3]. The positive refractive index at this band (Figure 2b), where
the group and phase velocity have the same direction, also proves the dominance of the
Fano-type interference. We note that the existence of the Fano-type interference-induced
positive dispersion can be robust to a local disorder of the unit cells that generally leads to
different multiple scattering conditions at wavelength scale, which will be discussed in the
next section.
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range from 4.14 Hz to 6.58 Hz). At points A1, A2, and A3, the water wave pattern appears 
to be shaped as being trapped between adjacent round unit cells, and thus this pattern is 
classified as a “trapping mode.” The trapped pattern results from the constructive Fano-
type interference at operating frequencies in the positive dispersion band, and the two 

Figure 3. (a) Transmission characteristics of a one-dimensional water wave metamaterial. (b) The
corresponding transmitting patterns are at specific frequencies. The frequencies of water waves at
these points are 5.21 Hz, 5.23 Hz, 5.25 Hz, 6.46 Hz and 6.58 Hz, respectively. The wave propagation
fields are normalized by the maximum vertical displacement in the water wave field, corresponding
to the point A2. (c) The same wave propagation fields of the “following mode” at point B1, B2 in 3b,
normalized by the maximum vertical displacement in the wave filed corresponding to point B2.
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As shown in Figure 3b, we now study the propagation of water waves passing through
a finite unit cell array at the frequencies connected to three peak values inside the nar-
row passband (5.14–5.26 Hz) and those near the upper edge of the bandgap (around
6.46~6.58 Hz), corresponding to points A1, A2, A3, B1, and B2 that marked in Figure 3a,
respectively. Note that the red and blue regions in the field represent the vertical dis-
placement of the water waves. These wave fields are normalized by the maximum vertical
displacement of the water waves corresponding to the point A2. The differences of the wave
propagation at these frequencies lie in the propagation pattern of waves and the efficiency
of the transmission. Two distinct transmitting patterns are classified when the operating
wavelength varies from 61.3 mm to 32.8 mm (corresponding to a frequency range from
4.14 Hz to 6.58 Hz). At points A1, A2, and A3, the water wave pattern appears to be shaped
as being trapped between adjacent round unit cells, and thus this pattern is classified as a
“trapping mode”. The trapped pattern results from the constructive Fano-type interference
at operating frequencies in the positive dispersion band, and the two face-to-face fan-
shaped cavities in the unit cell function as an open-space water waveguide. We can observe
that the four fan-shaped cavities within the unit cell impose forces and serve as boundaries
to trap water wave energy. At points A1, A2, and A3, it is observed that the change in
interference conditions caused by the variation in wavelength of the incident waves, leads
to the variation of the wave amplitude and wavelength inside the one-dimensional array.
Note that at point A3, the constructive interference brings a lower peak value compared
to that of points A1 and A2, but still maintains the abovementioned “trapping mode” by
the modulation effect of the one-dimensional array. It is worth mentioning that arbitrary
frequencies inside the positive dispersive band should share similar wave propagation
patterns as those at points A1, A2, and A3 since their propagation modes are controlled
by the constructive interference effect. The differences between them lie in transmission
peak values and the propagating pattern of water waves. Overall, the unit cells trap the
water waves in the band of frequencies within the narrow transparency window. For
points B1 and B2 in Figure 3b,c (normalized by the maximum vertical displacement of the
water waves in the field corresponding to point B2) water waves can also propagate along
the unit cell array, but contrary to the trapping mode at A1, A2, and A3, the water wave
pattern appears to be shaped at the same location of the unit cell and the overall water
waves at both frequencies behave as if they can transmit along the array without being
disturbed by the presence of the unit cells. Thus, we classify this mode as a “following
mode”. In particular, at point B2, the unit cell array maintains the amplitude and phase
of the incident wave (wave length λ ≈ 32.8 mm) even after the water wave has left the
array, while at point B1 the transmission λ ≈ 33.7 mm is relatively weak, similar to that at
point A3. Here, Fabry–Pérot resonance (FP resonance), well known for optical cavities, is
given to explain the transmission characteristics at points B1 and B2, based on the observed
relatively perfect transmission and no delayed phase of the water wave in this closed
channel with the present one-dimensional unit cell array. The following reasons are given
for using FP resonance to account for the transmission: (i) the resonance condition (i.e., an
integer multiple of half-wave wavelength) is approximately satisfied due to the length
of whole one-dimensional array lx = 24× 4 + 16 = 112 mm ≈ 7× λ/2; (ii) the negative
refractive index close to −1 shown in Figure 2b at these frequencies provides proper strong
reflection points for water waves to maintain their phase (see Supplementary Note Figure
S1 for more details on the relation between negative refraction index and the maintenance
of the phase of water wave). Note that for point B1, the phase of the water wave at this
frequency (6.47 Hz) is better maintained inside the array compared to that of B2, since the
corresponding negative refractive index is a little bit closer to −1 (see Figure 2b), while for
point B2 the water wave at this frequency (6.58 Hz) satisfies the FP resonance condition
better where the one-dimensional array length is equal to 6.8 times of λ/2 and a higher
transmission is thus guaranteed. This closed channel thus acts as an “optical path” for
those water waves at frequencies (including points B1 and B2.) near the upper edge of the
bandgap. Note that the FP resonance has recently been applied to design a water wave
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concentrator [42]. Based on these observations, we find the cavity-type configuration and
its symmetry in the unit cell play a crucial role in forming the above trapping and following
modes. The behaviors observed in the unit cell also indicate that such a configuration can
possibly be used to shape, guide, or focus water waves with only a few unit cells.

3. Manipulating Band Properties via Introducing a Local Disorder

The effective refractive index, corresponding to a band of frequencies within the
transmission window of the bandgap, is closely related to the effective depth he and
effective gravitational acceleration ge. By adjusting the filling ratio fs

(
fs =

(
πr′21

)
/a2), the

two effective parameters can be tuned and the properties of the passband in the bandgap
as well as the band-edge state can be manipulated [18,32]. We now study the effect of the
periodicity (lattice constant α) and disorder (local unit-cell orientation variation) on the
transmission characteristics of the one-dimensional unit cell array. The two considered
variables can effectively influence the interior position relation among adjacent unit cells
and then the filling ratio fs. Thus, “the trapping mode” and “the following mode” can be
manipulated, since the variation of fs may change the Fano-type interference condition or
the Fabry–Pérot resonance condition, corresponding to the positive dispersive passband
and band-edge state, respectively. Using these transmission behaviors, in the next section
we design a water wave metamaterial to shape and guide the wave propagation based on
the “trapping mode” at points A1, A2, and A3 (see Figure 3a) (with an introduction of a
fixed local orientation perturbation) and the “following mode” at point B1 and B2 (with an
introduction of a fixed local spacing variation).

As shown in Figures 3a and 4a, the passband in the bandgap almost vanishes if the
lattice constant satisfies α > 24 mm when the influence of the Fano-type interference in
the array is weakened. Far away from the local resonant frequency, the positive effective
gravitational acceleration ge is produced inside the positive dispersive passband, which
can also be observed in [33] within similar frequencies (around 5.25 Hz) range, where
their HR-based unit cell possesses the same local resonant frequency ( fr = 4.4 Hz) with
the unit cell in the present work. As mentioned in Section 2, the effective depth he and
effective gravitational acceleration ge must remain the same sign to ensure a real effective
refractive index. Thus, the effective depth inside the positive dispersive passband must also
be positive, which here is due to the Bragg resonance (λ = 45.4 mm close to 2a) based on
the water wavelength-scale multiple scattering. Note that our simulation results indicate
that the effective refractive index inside the positive dispersive passband should be around
0∼1.1 (seen in Figure 2b), corresponding to the filling ratio ( fs =

(
π × 82)/242 = 0.349) in

the current configuration. This result is also confirmed by the relevant discussion in [18,32].
An alternative explanation may also be given to describe the source of the positive disper-
sive band, which is the interplay between the local resonance and Bragg resonance. This
has already been observed as the transparency in the relevant bandgap of the acoustic
metamaterials in [38] and also serves as a water wave analogue of electromagnetically
induced transparency (EIT) by quantum interference [39]. This positive passband trans-
parency occurs when the local resonant frequency is close to the Bragg one. Note that
this explanation on the source of the positive dispersive band does not contradict the one
we describe in Section 2 (Fano-type interference). They are different theories that attempt
to explain the physical origin of the narrow dispersive passband. The close frequencies
between the local resonance and Bragg one should also be necessary conditions for the
occurrence of constructive Fano-type interference to ensure the existence of the narrow
positive dispersive passband. Furthermore, the bandwidth of the bandgap increases as
the lattice constant α reduces. This is due to the fact that a decreasing lattice constant
a causes a phase shift in the resonance-induced reflecting wave and the corresponding
passband is generated by the corresponding constructive interferences with the incoming
wave. For the frequency region near the upper edge of the bandgap (Figure 4a, around
6–7 Hz), the transmission is significantly affected by the variation in the lattice constant,



Crystals 2023, 13, 826 8 of 16

since these short waves are more sensitive to the change in wavelength-scale multiple
scattering conditions.

We further investigate the effect of the orientation in some unit cells on the passband
in Figure 3a. As shown in Figure 4b, the fourth and the fifth (not illustrated) unit cell
in the array is rotated clockwise to introduce local disorder. It is shown in Figure 4b
that the passband shifts toward the high-frequency region with a slight reduction in the
transmission in magnitude as the rotation angle of the fourth unit cell increases (note that
75◦ corresponds to 15◦). This slightly reduced transmission indicates/suggests that the
flow and accordingly the direction (i.e., the rectilinear path along the rectangle channel)
of the water wave energy is influenced. In other words, water wave energy does not
perfectly flow along the one-dimensional metamaterial in this scenario. We note that the
local disorder here actually changes the lattice constant in that region, but does not cause
the disappearance of the window. This is a different aspect compared to the global change
of the lattice constant.
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Similarly, the upper edge of the passband continues to shift to a relatively higher
frequency when the fifth unit cell is also rotated clockwise, as shown in Figure 4b. Near the
upper edge of the bandgap, we observe a fluctuation in the water wave transmission, but
water waves can still maintain the working frequencies. Thus, the local rotated unit cells
will not affect the water wave propagation in this frequency range at which the propagating
pattern is supported by the Fabry–Pérot resonance. The relations of the bandwidth between
the global lattice constant and the local rotation angles of the fourth and fifth unit cells are
further plotted in Figure 4c,d, respectively. Unlike the lattice constant, the bandwidth does
not linearly vary with respect to the rotation angle. Due to the symmetry of the fourth and
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fifth unit cells, the transmission should maintain the same result for ϕ = 15◦ and ϕ = 75◦,
and this fact is observed in Figure 4d.

4. T-Shaped Waveguide with a Local Disorder

In Section 3, it is observed that with a proper global lattice constant, a local change in
the orientation of the unit cell in the one-dimensional array can lead to a slight lowering
and shift of the transmission peak inside the transmission window, which means the
propagation of the water wave energy on the initial path (along the rectangle channel)
might be controlled. However, the wave energy is still trapped between the unit cells for
the band of frequencies in the transmission window. The trapped water wave might be
able to be released from the non-rectilinear path. Thus, it is rational to imagine that water
waves might change their propagation directions if alternative paths (i.e., not the initial
rectilinear path) are available for them. In this case, the flow of the water wave energy
can be manipulated and even designed. Inspired by this idea, we now show that the two
propagating modes mentioned above can be used to manipulate water waves to propagate
along different paths. We utilize the property of the positive dispersion passband and
the band-edge state to design a T-shaped water waveguide, consisting of only two arrays
of unit cell with a lattice constant a = 24 mm, as shown in Figure 5a. This specific lattice
constant is chosen to match the previous given filling ratio criteria. The two unit cells at
the intersection (“1” and “1′” as shown in the dashed box in Figure 5a) are symmetrically
rotated by 45◦ to serve as a local disorder. Note that a T-shaped water waveguide owns
three inlets (or outlets), which is an ideal metamaterial to show that water waves with
certain frequencies are able to propagate along different paths within the metamaterial.

As shown in Figure 5b,c, when a point source is located near the left inlet of the
T-shaped waveguide, water waves at some frequency ranges in the passband propagate
uniformly between the two unit cell arrays as if being confined in a virtual channel in the
open space. This open-space virtual channel is formed by the previous defined “trapping
mode” between the adjacent four unit cells. With the designed T-configuration and the
two symmetrically oriented unit cells, three distinct water wave propagation patterns
are obtained: bending, asymmetrical splitting, and symmetrical splitting, as shown in
Figure 5b–d. When the point source is at the left inlet, the water wave is bent from the
horizontal to vertical branch after passing the intersection at f = 5.29 Hz (Figure 5b). In
addition, the water wave is asymmetrically split into the horizontal and vertical branches
at f = 5.33 Hz (Figure 5c). When the point source is located at the bottom inlet as shown in
Figure 5d, the water wave is symmetrically split into the two horizontal virtual channels.
The results in Figure 5 indicate that it only calls for two arrays of unit cells in open space
to guide water waves in the passband. In addition to the shaped propagating pattern, we
note that each propagation mode remains rather isotropic, which has been addressed in the
discussions for Figure 2a.

The change in the propagation direction shown in Figure 5 can be inspired by the
transmission property of the one-dimensional metamaterial array shown in Figure 3a
(a disorder-free array) and Figure 4b (with a local orientation-dependent disorder), in
which the transmission window is slightly tuned to the high-frequency region with the
presence of the locally rotated resonators (see the green line in Figure 4b). As shown in
Figure 4b, the local disorder at certain unit cells changes the width of the transmission
window as well as some peak values at certain frequencies in the window. However,
it does not influence the existence of the “trapping mode” of water waves. This means
that the water wave energy is still trapped between the unit cells with lower peaks in the
modified window, which might be able to be released from other paths different from
the initial one. Note that the propagation of the water waves is rather isotropic in the
transmission window, as shown by the dispersion curves along the ΓX and ΓM directions
in Figure 2a. This indicates that in the transmission window water waves have a potential
ability to propagate along other directions with the same “trapping mode” in other similar
windows. Here, the rotation of the unit cell provides this possibility, that is, changing the
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propagation direction of the water waves by imposing “force” with different directions
on the waves. Thus, a 90

◦
bending of water waves in Figure 5b for the frequencies in

the window is possible by rotating the unit cells at the intersection by an angle of 45◦, in
which the rotating unit cell acts as a mirror with an equal incidence and reflection angle
(i.e., 45◦). However, it is observed in Figure 4b that for certain frequencies in the window,
there are still some water waves that can maintain a relatively large transmission peak
to some extent under the influence of the rotated unit cells, which means a part of wave
energy still flows along the initial rectilinear path. Thus, the asymmetrical transmission
in Figure 5c is also observed. In other words, one can determine if the energy flow of the
water wave at a specific frequency in the window changes its rectilinear propagation by
the observation of its transmission peak in the one-dimensional array with the rotated unit
cells. A small transmission peak in the transmission window means a large portion of
wave energy flows into non-rectilinear paths, while a relatively large peak means a part of
wave energy can still flow along the initial direction (i.e., along rectilinear path). A similar
principle also applies for the identification of the symmetrical transmission in Figure 5d,
where the wave source is located near the inlet of the vertical branch. Thus, different water
wave-propagating paths depend on the transmission in their initial rectilinear propagation
direction. The origin of these different transmitting patterns for water waves is the Fano-
type interference mechanism that induces the transmission window characterized by the
narrow band and the extremely high transmission. Different rotation angles of unit cells
modify the Fano-type interference conditions inside the arrays, indicated by the change in
the vertical displacement of the water wave near the intersection of the metamaterial, which
redistributes the lower and high peaks in the initial transmission window and eventually
leads to different degrees of the variation on the propagation direction of the water waves.
Thus, the key to steering and guiding water waves with the “trapping mode” is to use
different orientations to control the direction of forces imposed by the rotated unit cells. In
the present work, our unit cell consists of four identical fan-shaped cavities. To steer water
waves toward more directions, it is necessary to construct more fan-shaped cavities in the
same unit cell.

The numerical results indicate that the water wave can be either totally (λ = 44.9 mm,
Figure 5b) or partially (λ = 44.5 mm, Figure 5c) bent towards the vertical virtual channel.
Despite such an inevitable change for the propagation directions at the “trapping mode”,
the “following mode” passing after the T-intersection can possibly still be realized, as
shown in Figure 5e, when the working frequency is near the upper edge of the bandgap.
The metamaterial fails to bend the water wave at the “following mode” between the vertical
face-to-face resonators since the rotated resonators “1” and “1′” are symmetric in geometry
without the variation in global lattice constant and basically do not influence the Fabry–
Pérot resonance condition to a large extent. We note that the effective refractive index
of the T-shaped waveguide in this mode (close to −1 as shown in Figure 2b) ensures a
rectilinear propagation, which makes the proposed T-shaped waveguide a perfect lens to
focus water waves at these frequencies (see Supplementary Note Figure S1). The band-edge
“following mode” allows water wave propagation along the arrangement direction of the
unit cell array based on the reflecting effect at the outlet of each unit cell in a virtual channel.
Similarly, water waveguiding under the “following mode” is also realized as that under
the “trapping mode” without any solid boundaries. This may be of great importance in
ocean engineering, since it is more practical to use a few large-scale cylinders to realize
Fabry–Pérot resonance compared with the assistance of solid boundaries [42]. Note that a
part of the water wave energy flow may leak from the virtual channel into surrounding field
under both modes, compared to the relatively perfect transmission in the one-dimensional
metamaterial with solid walls. as shown in Figure 3a,b. Compared to the “following mode”,
the “trapping mode” shows larger dependence on the number of cavities and thus a clearer
leakage is present. The loss of water wave energy when flowing along the virtual channel
will be weakened when the global lattice constant becomes smaller, which means that the
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T-shaped configuration is more compact and the virtual channel tends to evolve into one
with solid walls.

Next, we experimentally validate the four classified possible patterns (bending, asym-
metrical splitting, symmetrical splitting, and rectilinear transmission). As shown in
Figure 6a,b, a T-shaped water wave metamaterial waveguide consisting of 22 split tubes is
set up in a water tank (see Methods for detailed description) on a vibration isolation table.
Each concurrent split tube is made of copper with an outer radius r′1 = 8 mm and an inner
radius r′2 = 6 mm. The height of the resonator is 15 mm and the slit width is ∆ = 1 mm.
The lattice constant is 24 mm. To avoid high viscosity and large surface tension, a liquid
(CFC-113) is utilized to replace the water. The depth of the liquid (CFC-113) is kept at 8 mm
during the experiments.

Crystals 2023, 13, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 5. Configuration dependence of the T-shaped waveguide with a local disorder. (Point 
source is placed with a 4 mm spacing from each inlet). (a) Schematic of the T-shaped waveguide 
consisting of the unit cell “A.” (b) Bending at 5.29 Hz ( λ  = 44.9 mm). (c) Asymmetrical splitting at 
5.33 Hz ( λ  = 44.5 mm). (d) Symmetrical splitting at 5.29 Hz ( λ  = 44.9 mm). (e) Rectilinear trans-
mission at 6.46 Hz ( λ  = 33.7 mm). 

Next, we experimentally validate the four classified possible patterns (bending, 
asymmetrical splitting, symmetrical splitting, and rectilinear transmission). As shown in 
Figure 6a,b, a T-shaped water wave metamaterial waveguide consisting of 22 split tubes 
is set up in a water tank (see Methods for detailed description) on a vibration isolation 
table. Each concurrent split tube is made of copper with an outer radius 1r′  = 8 mm and 
an inner radius 2r′  = 6 mm. The height of the resonator is 15 mm and the slit width is Δ  
= 1 mm. The lattice constant is 24 mm. To avoid high viscosity and large surface tension, 
a liquid (CFC-113) is utilized to replace the water. The depth of the liquid (CFC-113) is 
kept at 8 mm during the experiments. 

Figure 5. Configuration dependence of the T-shaped waveguide with a local disorder. (Point source
is placed with a 4 mm spacing from each inlet). (a) Schematic of the T-shaped waveguide consisting
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Figure 6. Experimental setup for the observation of the water wave propagation in a T-shaped
waveguide in a water tank. Schematics of the experimental configuration: (a) front view; (b) top view.
(c) Point-shape laser spots. (d) Line-shape laser spots.

A point source is located 4 mm away from the inlet of the waveguide. The ripple
generator has a frequency resolution of 0.1 Hz and can operate at frequency ranges from 1
to 50 Hz. Ten rod-type laser pointers are put 2 cm above the top surface of the resonators at
prescribed locations to measure the low-frequency vertical vibration on the water surface
with the help of a digital image correlation (DIC) technique. An aluminum plate (not
shown in Figure 6a) is put 7 cm above the top of the resonators on which holes are drilled
to support the laser pointers. The laser spots are reflected to a projection screen and the
widest laser spot has a dimension of ~2 mm. The two resonators at the intersection of
the T-shaped waveguide are rotated clockwise and anticlockwise, respectively, with an
angle of 45◦ to serve as a local disorder (see the inset in Figure 6b). When validating the
“trapping mode”, each laser pointer is located above the center of our adjacent resonators,
and the point-wise laser spots are shown in Figure 6c. On the other hand, when validating
the “following mode”, each laser pointer is shifted to be located above the center of two
face-to-face resonators and the laser spots become a line shape due to a larger surface
tension from the walls of the unit cells, as shown in Figure 6d. For the DIC technique,
a digital camera (Nikon D3300, Nikon Corporation, Tokyo, Japan) is used to record the
vibration of each laser spot for approximately 30 s at each frequency in 1920 × 1080 pixels
at 50 frames per second (see Supplementary Movies M1–M4). Then, a MATLAB code is
developed to extract the recorded frames for the DIC technique to calculate the amplitudes
to demonstrate the propagating patterns.

The measuring vibration amplitudes of the four patterns, normalized by that at the
first detection location close to the inlet, are shown in Figure 7a–d. The corresponding
10 detection locations are also illustrated in the insets of Figure 7a–d for a clear observation
of the water shaping effect. Figure 7a shows the first bending pattern (at 5.1 Hz), where
the amplitudes at the vertical branch (the points 8, 9, and 10) are larger than those at the
branch in the original propagation direction (the points 5, 6, and 7). At 5.3 Hz (Figure 7b),
comparing the amplitude at point 5 with that at point 8, the water wave is split to the
two channels (horizontal and vertical ones) after passing the T-intersection (asymmetrical
splitting). The dissipation of the water wave can be seen from the results at points 5
to 7 along the horizontal channel and points 8 to 10 along the vertical channel. When
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the point source is located close to the inlet of the vertical branch at 5.2 Hz as shown in
Figure 7c, the amplitudes at the points 5 to 7 are almost comparable to those at points 8
to 10. Thus, the amplitude results indicate that the water wave is equally split to the two
horizontal branches of the T-shaped waveguide (symmetrical splitting). Finally, at 6.6 Hz
(corresponding to Figure 6d for line-shape laser spots and Figure 7d), the amplitude at
point 5 is larger than that at point 8, which indicates that the water wave mainly maintains
the rectilinear propagation with a larger dissipation. The above four identified frequencies
and patterns agree well with the numerical predictions.
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ter, the amplitudes of the vibration after the water wave passing through the unit cell are 
still significantly dissipated. The surface tension distorts the laser spots and magnifies the 
DIC measurement errors for the “following mode” at 6.6 Hz between the face-to-face res-
onators (see Supplementary Note Figure S2). In addition, in the experiments, the wave 
fields outside the waveguide inevitably affect those inside the virtual channels, and this 
leads to larger vibration amplitudes at certain points (such as the measuring results at 
points 9 and 10 in Figure 7a). It should be noted that the low-frequency resolution of the 
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Figure 7. Experimental observation of the water wave propagation in a T-shaped waveguide in a
water tank. (a) Bending at 5.1 Hz (λ = 47.9 mm). (b) Asymmetrical splitting at 5.3 Hz (λ = 45.5 mm).
(c) Symmetrical splitting at 5.2 Hz (λ = 46.7 mm). (d) Rectilinear transmission at 6.6 Hz (λ = 33.7 mm).
The color of symbols for the 10 points in each inset is related to that in the subplot.

Although the liquid CFC-113 has low viscosity and surface tension compared to water,
the amplitudes of the vibration after the water wave passing through the unit cell are
still significantly dissipated. The surface tension distorts the laser spots and magnifies
the DIC measurement errors for the “following mode” at 6.6 Hz between the face-to-face
resonators (see Supplementary Note Figure S2). In addition, in the experiments, the wave
fields outside the waveguide inevitably affect those inside the virtual channels, and this
leads to larger vibration amplitudes at certain points (such as the measuring results at
points 9 and 10 in Figure 7a). It should be noted that the low-frequency resolution of the
wave source (0.1 Hz) also limits the accuracy of the experimentally identified patterns.

5. Conclusions

In this study, we numerically and experimentally investigated the shaping and guiding
of low-frequency water waves in a metamaterial consisting of concurrent fan-shaped
split tubes. By introducing local disorder, the water wave can be shaped and guided
between the T-shaped disconnected resonators in an open space without reliance on walls
of resonators. We identified the existence of Fano-type interference in the present water
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wave metamaterial, and analyzed the “transmission window” induced by this interference
phenomenon inside the bandgap. A band-edge state, corresponding to a Fabry–Pérot
resonance near this bandgap, is also found. We experimentally validated the classified
water wave propagation patterns. The proposed unit cell provides an avenue to design
compact water wave devices capable of multi-band and multi-path free guiding, which is
crucial in focusing and dispersing ocean wave energy in ocean engineering. Introduction of
the local disorder for controlling surface water waves removes dimensional dependence of
similar physical mechanisms existing in bulk wave metamaterials. This locally disordered T-
shaped water wave metamaterial may be even capable of realizing potential unidirectional
propagations that might be promising for constructing water wave circulators in the future
when the created symmetry in the unit cells is broken and asymmetrical unit cells are used
to construct the water wave metamaterial.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cryst13050826/s1. Figure S1: a A perfect lens formed by a
virtually resonant tunnel, supported by Fabry–Pérot resonance. b Schematic of the lens. The effective
refractive index is −1, which can be guaranteed when the spacing between point O and inlet d is
equal to 1/2 a (lattice constant). At this mode, the red circles show that the resonators serve as stable
reflecting points; Figure S2: Amplitude comparisons. Experimental and numerical demonstration of
vibration amplitude of corresponding points in the T-shaped water wave metamaterial. a Bending b
Asymmetrical splitting. c Symmetrical splitting. d Rectilinear transmission; Movie S1 (separate file):
Movie S1_a 5.1 Hz; Movie S2 (separate file): Movie S2_b 5.3 Hz; Movie S3 (separate file): Movie S3_c
5.2 Hz; Movie S4 (separate file): Movie S4_d 6.6 Hz.
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