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Abstract: The connectivity and inherent frustration of the kagome lattice can produce interesting
electronic structures and behaviors in compounds containing this structural motif. Here we report
the properties of Pt3X2 (X = In and Tl) that adopt a double-layer kagome net structure related to that
of the topologically nontrivial high-temperature ferromagnet Fe3Sn2 and the density wave hosting
compound V3Sb2. We examined the structural and physical properties of single crystal Pt3Tl2 and
polycrystalline Pt3In2 using X-ray and neutron diffraction, magnetic susceptibility, heat capacity, and
electrical transport measurements, along with density functional theory calculations of the electronic
structure. Our calculations show that Fermi levels lie in pseudogaps in the densities of states with sev-
eral bands contributing to transport, and this is consistent with our Hall effect, magnetic susceptibility,
and heat capacity measurements. Although electronic dispersions, characteristic of simple kagome
nets with nearest-neighbor hopping, are not clearly seen, likely due to the extended nature of the Pt 5d
states, we do observe moderately large and non-saturating magnetoresistance values and quantum
oscillations in the magnetoresistance and magnetization associated with the kagome nets of Pt.

Keywords: kagome; platinum indium; platinum thallium; magnetoresistance; quantum oscillations

1. Introduction

The kagome lattice, a 2D network of corner-sharing triangles, has played an important
role in materials physics for decades. For nearest neighbor antiferromagnetic interactions,
the lattice provides strong geometrical frustration, and kagome systems became important
in the field of frustrated magnetism [1]. This has naturally led to a keen interest in kagome
lattice compounds as candidate quantum spin liquids, a key example being herbertsmithite,
ZnCu3(OH)6Cl2 [2–6]. Quite recently, renewed interest in the kagome lattice has been
sparked by its relatively simple but physics-rich electronic structure. The lattice symmetry
and connectivity produce Dirac nodes, van Hove singularities, and flat bands. Notably,
the flat bands are a result of frustrated electron hopping, reminiscent of the frustrated
antiferromagnetic interactions the lattice hosts. Thus, kagome compounds provide model
systems to explore the effects of these electronic structure features on a material’s behavior
when the Fermi level is located near them. Two clear motivations are the study of elec-
tronic topology and the effects of the large density of states associated with the flat band.
Topological and Chern insulating behavior is expected under certain circumstances [7–9],
and flat bands may provide a way of generating strong electron-electron interactions and
correlated ground states [10,11].

Of particular relevance to the present study are the binary intermetallic compounds
containing kagome layers such as that shown in Figure 1c, typically made up of a transition
metal M (on the kagome net) and a main group metal X [12,13]. If these M3X layers are
simply stacked, the Mg3Cd structure type is realized. This structure type is adopted by
many compounds, including the high-temperature ferromagnets Fe3Sn and Fe3Ge [14–17]
and chiral antiferromagnets Mn3Sn and Mn3Ge [18–20]. Alternating these kagome layers
with honeycomb layers of the main group element (Figure 1d) results in the CoSn structure
type in which the kagome nets are isolated from one another. Examples include FeGe, FeSn,

Crystals 2023, 13, 833. https://doi.org/10.3390/cryst13050833 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13050833
https://doi.org/10.3390/cryst13050833
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-1762-9406
https://orcid.org/0000-0003-0389-7039
https://orcid.org/0000-0002-0493-7568
https://doi.org/10.3390/cryst13050833
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13050833?type=check_update&version=1


Crystals 2023, 13, 833 2 of 13

CoSn, NiIn, RhPb, and PtTl, and these compounds have been studied in the context of flat
bands, magnetism, and topology [12,13,21–24]. Materials with a third type of stacking have
also received recent attention, including those with two adjacent kagome layers separated
by single honeycomb layers. This structure type is represented by two materials: the
topologically nontrivial high-temperature ferromagnet Fe3Sn2 [25–27] and the compound
V3Sb2, which undergoes a density wave transition near 160 K [28]. Recently several Ti-based
compounds of this type were predicted theoretically [29].

a
b
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(a) (b)

(c) (d)

(e) (f)

Pt3In2, Pt3Tl2
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Figure 1. Crystal structure of Pt3X2 for X = In and Tl. (a) A crystal of Pt3Tl2 grown for this study
showing the hexagonal growth habit. (b) The hexagonal unit cell showing layers of composition
Pt3X and X2. (c) A single Pt3X layer made up of Pt and X3 sites and containing a kagome net of Pt.
(d) The honeycomb net made up of X1 and X2 sites that separate the double kagome slabs. (e) A view
of the Pt3X2 structure showing only the Pt atoms and highlighting the double kagome slabs.
(f) For comparison, a view highlighting the double kagome slabs found in structures of Fe3Sn2
and V3Sb2 with only the transition metal sites shown.

There is, in addition, the Pt3Tl2 structure type, a variant of the Fe3Sn2 structure with
the same stacking sequence but a distinct stacking arrangement (Figure 1e,f). This structure
is adopted by Pt3Tl2 and Pt3In2. The structures of these compounds were reported more
than fifty years ago [30], but no information about their electronic or magnetic properties
was found in the literature. Here we examine the behavior of these two compounds
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using X-ray and neutron diffraction, density functional theory, and electrical transport,
magnetization, and heat capacity measurements. We find that the Fermi level resides in a
pseudo-gap in the density of states, and this theoretical result is in good agreement with
our heat capacity and magnetization data. Multiple bands and carrier types appear to
contribute to the conduction based on the calculated electronic structure and measured
Hall effect. Due in part to the low density of states, we observe diamagnetic behavior,
and we see no signature of phase transitions of any kind between room temperature and
2 K. The anisotropic magnetoresistance in Pt3Tl2 at 2 K, longitudinal and transverse, shows
no sign of saturation up to 13.5 T and reaches values exceeding 200%. The longitudinal
magnetoresistance shows quantum oscillations (Shubnikov–de Haas oscillations), which are
also seen in isothermal magnetization data (de Haas–van Alphen oscillations), indicating
reasonably high mobility carriers in the materials.

2. Materials and Methods
2.1. Synthesis

Starting materials were Pt tubes and sheets (Refining Systems, 99.9%), In shot (Alfa
Aesar 99.999%), and Tl rods (Alfa Aesar 99.99%). The Pt was cut into 1–2 mm-sized pieces
before use to reduce time needed to react/dissolve during the syntheses. The In was used
as received. The Tl was stored, cut, and weighted inside a He or Ar-filled glove box to
minimize oxidation. Note that Tl is toxic and should be handled with care to prevent
exposure. All reactions were performed in alumina crucibles sealed inside fused silica
ampoules under vacuum.

Pt3Tl2 decomposes peritectically at 900 ◦C. Single crystals of Pt3Tl2 were grown using
the self-flux technique based on the published Pt-Tl binary phase diagram [31]. Pt and Tl
were loaded into a Canfield crucible set [32] in a 45:55 molar ratio. At this ratio, the liquidus
is near 880 ◦C. Pt3Tl2 is in equilibrium with the liquid down to 752 ◦C, at which point
PtTl begins to precipitate. The reaction was heated over about 4 h to 950 ◦C, held at
this temperature for 48 h to obtain a homogeneous melt, cooled to 800 ◦C at a rate of
2.3 ◦C/h, then inverted into a centrifuge to separate the Pt3Tl2 crystals from the liquid
phase. Figure 1a shows a crystal grown in this way. Polycrystalline Pt3Tl2 was synthesized
by first heating a stoichiometric mixture of the elements to 850 ◦C for several days, then
1080 ◦C for several hours. The sample was removed from the hot furnace into lab air to
cool, then heated to 850 ◦C and held for five days. The sample was then ground, pressed
into a pellet, and annealed at 850 ◦C for five days.

The Pt-In binary phase diagram is significantly more complicated than the Pt-Tl phase
diagram [33]. Pt3In2 is reported to be stable only below a peritectoid reaction at 550 ◦C.
Thus, crystals are not attainable by self-flux techniques, and only polycrystalline Pt3In2 is
studied here. This was made by reacting a stoichiometric mixture of the elements to 1050 ◦C
for 3 days, then 525 ◦C for 6 days. Unreacted Pt was noted when grinding the product, so
the sample was heated to 1100 ◦C for two days, then quenched in water. The sample was
then ground, pelletized, and annealed at 525 ◦C for one week.

2.2. Characterization

Powder X-ray diffraction data were collected using a PANalytical X’Pert Pro MPD with
monochromatic Cu Kα1 radiation in the Bragg–Brentano geometry. The neutron diffraction
experiment was conducted on the time-of-flight powder diffractometer, POWGEN, located
at the Spallation Neutron Source of the Oak Ridge National Laboratory [34,35]. The sample
environment adopted was a POWGEN Automatic Changer. Approximately 1.1 g of powder
sample was loaded into a 6 mm diameter vanadium can filled with helium gas. A neutron
bank with a center wavelength of 1.5 Å was employed to collect the high-resolution neutron
diffraction data covering a Q range of 0.48–12.9 Å−1. FullProf was used for Rietveld
refinement of X-ray and neutron diffraction data [36]. Energy dispersive spectroscopy
(EDS) was performed using a Bruker Quantax 70 detector with a Hitachi TM3000 scanning
electron microscope for semiquantitative chemical analysis.
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Magnetization, electrical transport, and heat capacity data were measured using com-
mercial cryostats from Quantum Design (PPMS, MPMS-3, Dyancool, San Diego, CA, USA).
For magnetization measurements, both Vibrating Sample Magnetometer and DC SQUID
options from Quantum Design were used. For electrical transport (resistivity, Hall effect,
and magnetoresistivity), Resistivity and AC-Transport options from Quantum Design were
used. Electrical contacts to the samples were made using silver paste and platinum wires. All
transport measurements were done with four contact points, and 2-point resistances between
leads were confirmed to be ∼1 Ω before measurements, and contacts were separated by
distances on the order of 1 mm. Heat capacity was measured using the relaxation method,
with samples mounted using Apiezon N-grease. Property measurements vs. temperature
were done on cooling. Isothermal magnetization measurements were done starting from
the maximum positive fields. Magnetoresistance and Hall effect data were measured from
the maximum positive field to the maximum negative field and then back to the maximum
positive field. The data were then appropriately symmetrized or antisymmetrized to remove
offset voltages and voltages arising from misalignment of the contacts.

2.3. Calculations

To gain insight into the electronic properties of Pt3In2 and Pt3Tl2, we carried out den-
sity functional theory (DFT) calculations using the Vienna Ab initio Simulation Package
(VASP) [37,38], which uses the projector augmented wave (PAW) approach [39] with the gen-
eralized gradient approximation in the parametrization of Perdew, Burke, and Ernzerhof [40]
for exchange correlation. Throughout the DFT calculations, the spin-orbit coupling was turned
on. To calculate the electronic ground state of these compounds, we used the structural data ob-
tained in this work (space group # 194: P63/mmc), a regular 12× 12× 6 k-point mesh centered
at the Γ point, an energy convergence criterion 10−6 eV, and an energy cutoff 500 eV. For Pt, we
used a standard PAW potential (Pt in the VASP distribution), while for In and Tl, we used PAW
potentials in which the d semi core states are treated as valence states (Ind and Tld in the VASP
distribution). After the electronic ground state was obtained, we carried out non-selfconsistent
calculations to compute the density of states (DOS) using a denser 20× 20× 10 k-point mesh
with the smearing parameter 0.1 eV and the electronic band structure along high-symmetry
lines using the optimized charge density.

3. Results and Discussion
3.1. Crystal Structure

X-ray diffraction confirmed that the samples adopt the previously reported struc-
tures [30]. This hexagonal structure is illustrated in Figure 1b. It can be decomposed into
layers in the ab-plane of composition Pt3X and of composition X2. These layers are shown
in Figure 1c,d, respectively. The Pt3X layer contains a kagome net of Pt sites with X atoms
at the centers of the hexagonal holes. The X2 layer is a honeycomb net. In the full structure,
two Pt3X layers are stacked together, forming a double kagome net of Pt, and these double
layers are separated from one another by a single X2 layer.

This structure is similar to, but distinct from, the structure of the recently investigated
double kagome net compounds Fe3Sn2 and V3Sb2. The comparison is facilitated by ex-
amining Figure 1e,f, in which only the transition metal atoms are shown. The different
stacking of the double kagome nets is apparent, and nicely illustrates the differences in the
compounds’ space group symmetries. In Pt3X2, the 63 screw axis rotates each double layer
around the c-axis by 180◦ as they are stacked. In the Fe and V compounds, the stacking is
defined by the rhombohedral centering, which simply translates each successive layer in
the ab-plane relative to the previous layer.

To obtain reliable structural information and investigate the possibility of site disorder
in Pt3X2, Rietveld refinement of powder diffraction data was performed. Since Pt and
In have significantly different atomic numbers, X-ray diffraction is suitable for this. Pt
and Tl, however, have little X-ray scattering contrast, so neutron powder diffraction was
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used for this compound. The results are shown in Figure 2, and structural parameters and
agreement indices are summarized in Table 1.

Table 1. Crystal structure refinement results for Pt3X2 using data collected at room temperature. The space
group is P63/mmc. Pt is at (x, 2x, z). X1 is at (1/3, 2/3, z). X2 is at 1/3, 2/3, 1/4). X3 is at (0, 0, 1/4).

Pt3In2 Pt3Tl2

radiation X-ray neutron
a (Å) 5.5763(2) 5.63736(4)
c (Å) 13.6919(5) 13.8450(2)
xPt 0.169(1) 0.1667(8)
zPt 0.0890(2) 0.0854(1)
zX1 0.9132(6) 0.9055(2)
Rp 10.8 10.5
Rwp 15.7 6.71
χ2 2.44 7.19
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Figure 2. Rietveld refinement of powder diffraction data from Pt3X2 showing measured data points (red),
fitted curves (black), and tick marks (green) locating Bragg reflections, along with difference curves (blue)
at the bottom of each panel. (a) X-ray diffraction results for Pt3In2. The upper ticks correspond to the main
phase, and the lower ticks correspond to a Pt13In9, an secondary phase present at the level of approximately
3 weight percent. (b) Time-of-flight neutron diffraction results for Pt3Tl2. Both data sets were collected at
room temperature.

The Pt3In2 sample contained a secondary phase identified to be Pt13In9. The refine-
ment indicated the concentration of this impurity to be near 3% by weight. The peak
shapes indicated the presence of anisotropic strain broadening, likely induced by grinding
the sample. This was modeled in FullProf using the quartic form of the general strain
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formulation in Laue class 6/mmm and dramatically improved the fit. The Pt3Tl2 sample
appeared single phase by neutron diffraction.

The structural parameters are in reasonable agreement with those previously re-
ported [30]. For both compounds, the refined x coordinate of the Pt atom is within experi-
mental error of 1/6, which corresponds to an ideal kagome net. No evidence of significant
site mixing was seen in the data. To test this, refinements were performed with In or Tl
mixed onto the Pt site, and separately with Pt mixed onto the three In or Tl sites. For Pt3In2,
in the former case, the composition of the Pt site was refined to include only 6% In. In the
latter case, refinement returned a maximum amount of Pt on any In site of less than 4%.
Neither scenario resulted in an improvement in the fit quality judged by the χ2 values.
For Pt3Tl2, all the sites were refined to their nominal stoichiometric occupancies within the
estimated standard deviations, and χ2 was not improved by the site mixings. In addition,
the overall average compositions of the two materials were determined by semiquantita-
tive EDS measurements to be Pt3.0(1)In2.0(1) and Pt3.0(1)Tl2.0(1). This was calculated using
spectra from 14 points across multiple Pt3Tl2 crystals and single points on 7 different grains
of polycrystalline Pt3In2. Thus, based on the present study, both Pt3In2 and Pt3Tl2 appear
to be stoichiometric compounds with limited intrinsic disorder.

3.2. Electronic Structures

The calculated electronic structures of Pt3In2 and Pt3Tl2 are shown in Figure 3. As ex-
pected, states within a few eV of the Fermi level are dominated by Pt-5d orbitals, especially
the valence bands. In both compounds, multiple bands cross the Fermi level, with several
hole-like pockets along the k-path traced in Figure 3a,b, and an electron-like pocket near
the K point. The Fermi levels lie at pseudogaps in the densities of states (DOS). At EF, the
total DOS per unit cell (12 Pt atoms, 8 In, or Tl atoms) is calculated to be 2.8 eV−1 for Pt3In2
and 1.8 eV−1 for Pt3Tl2.

The flat bands, van Hove singularities, and Dirac nodes characteristic of kagome
nets in the tight-binding and nearest-neighbor-hopping limits are not easily identifiable in
Pt3X2. This is likely due to the extended nature of the Pt-5d orbitals, which results in strong
covalent and beyond nearest neighbor interactions. This was similarly seen in CoSn-based
compounds with heavier elements [22], where these features were much less distinct in
PtTl when compared to CoSn and NiIn, or even to the 4d transition metal compound RhPb.

3.3. Physical Properties

Results of electrical resistivity measurements are shown in Figure 4a. The data are
plotted relative to values at 300 K. The Pt3In2 sample was a piece cut from a polycrystalline
pellet that had been pressed and sintered as described in the Materials and Methods
section. The sample was small and not ideally shaped for accurately determining the
cross-sectional area for the current flow. This, along with the polycrystalline nature of
the sample, make any precise value of the resistivity unreliable, but measurements near
room temperature suggest the powder-averaged resistivity of Pt3In2, is in the 10−4 Ωcm
range. A Pt3Tl2 crystal was used for the measurements, and the current was applied in
the ab-plane. The value measured at 300 K was 1.2× 10−4 Ωcm. Both compounds behave
like metals with resistivity increasing approximately linearly with a temperature above
about 50 K. The residual resistivity ratio defined as R(300 K)/R(2 K) is about 4 for Pt3In2
and about 5 for Pt3Tl2.
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Figure 3. Electronic structure of Pt3X2 from density functional theory calculations. Band structures
are shown in (a,b), and the bands are colored based on their relative Pt-d and Pt-p character. Total and
orbitally projected densities of states (DOS) are shown in (c,d), and are plotted on a per unit cell basis.
One unit cell contains 12 Pt atoms and 8 In or Tl atoms (4 formula units). Dashed lines indicate the Fermi
levels. The Brillouin zone and k-path used in the band structure diagrams are shown in the inset of (b).

The Hall effect was measured for Pt3Tl2, and the results are shown in the inset of
Figure 4a. For these measurements, the field H was applied out of the plane of the crystal.
The data are plotted as ρyx = Vyt/Ix, where the current I and measured voltage V are in the
plane, and t is the thickness of the crystal. The observed nonlinearity of ρyx vs. H indicates
the contribution from both electron and hole bands to the conduction. The Hall effect
changes strongly with temperature as well, with the low field Hall coefficient changing
sign between 100 and 2 K.

The Hall effect data suggest a relatively complex Fermi surface, with the contribu-
tions from multiple carrier pockets changing with temperature. The resistivity data are
consistent with typical behaviors seen in “bad” metals, semi-metals, or degenerately doped
semiconductors. Both of these observations are consistent with the calculated electronic
structures discussed above, which show the Fermi level resides in a pseudo-gap region but
is crossed by multiple bands.

The heat capacity is shown in Figure 4b. The data show no indications of phase
transitions, consistent with the transport results discussed above and the magnetization
data below. At high temperatures, the specific heat capacities (cP) per mole of formula unit
(f.u.) approach the Dulong–Petit limit of 3R per mole of atoms or 124.7 J mol-f.u.−1K−2.
The low temperature behavior is shown in the inset of Figure 4b, with the data plotted
as cP/T vs. T2. The linear fits shown on the plot give the Sommerfeld coefficient γ from
the intercept, and the Debye temperature θD can be determined from the slope. For Pt3In2
this gives γ = 2.0(2) mJ mol-f.u.−1K−2 and θD = 254(6) K. For the Pt3Tl2 crystal this gives
γ = 0.52(5) mJ mol-f.u.−1K−2 and θD = 218(1) K. The polycrystalline sample of Pt3Tl2 used
for neutron diffraction was also measured, and gave similar values of γ = 0.5(2) mJ mol-
f.u.−1K−2 and θD = 213(4) K. The Debye temperatures are relatively low, consistent with
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the heavy element constituents, and, as expected, somewhat higher in the In compound
than the Tl compound. Note that the inset in Figure 4b contains data collected in zero fields
(used for the linear fitting) and also in relatively highly applied magnetic fields. The results
show no significant magnetic field effect on the heat capacity.
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Figure 4. Electrical transport and heat capacity results from Pt3X2. The resistivities in (a) were
measured in zero applied magnetic field and are shown normalized to their values at 300 K. Room
temperature values are 1.2× 10−4 Ωcm for Pt3Tl2 (current in the plane) and on the order of 10−4 Ωcm
for Pt3In2 (polycrystalline). Transverse magnetoresistance (Hall effect) results for Pt3Tl2 are shown
in the inset of (a). The heat capacity (b) was measured at the fields indicated in the legend using
a single crystal of Pt3Tl2 and polycrystalline Pt3In2. The low temperature heat capacity is shown
in the inset of (b), with linear fits to cP/T vs. T2 used to extract the Sommerfeld coefficients and
Debye temperatures.

Comparing the values of γ between the two compounds indicates a higher electronic
density of states at the Fermi level in Pt3In2 than in Pt3Tl2. This is supported by the electronic
structure calculations in Figure 3, and may partially explain why the resistivity values in the
two samples are similar despite the polycrystalline nature of the Pt3In2 sample. The Som-
merfeld coefficient can be calculated from the DOS at EF [D(EF)] by γ = (π2/3)k2

BD(EF).
Using D(EF) = 0.70 eV−1f.u.−1 and 0.45 eV−1f.u.−1 for the In and Tl compounds, respectively,
gives γ(Pt3In2) = 1.7 mJ K2f.u.−1 and γ(Pt3Tl2) = 1.1 mJ K2f.u.−1. These values are similar to
those extracted from the low-temperature heat capacity data, and the similarities suggest the
compounds have relatively weak electron-electron correlations.
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The magnetic behaviors are summarized in Figure 5. The main panel shows the
magnetic susceptibility of single crystals of Pt3Tl2 measured with the field applied parallel
and perpendicular to the crystallographic c-axis and of polycrystalline Pt3In2. The data
have been corrected to account for contributions from the sample holders. All of the data
sets contain Curie tails, low-temperature upturns upon cooling, that may be attributed
to low concentrations of local moments associated with defects or impurities. Otherwise,
the data are negative and relatively temperature independent (some weak but notable T
dependence is seen for H along the c-axis in Pt3Tl2).
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Figure 5. Results of magnetization measurements on Pt3X2. Magnetic susceptibility (M/H) was
measured upon cooling in an applied field of µ0H = 2 T for a powder sample of Pt3In2 and 1 T for
single crystals of Pt3Tl2. Isothermal magnetization curves are shown in the inset.

Estimating the core or Larmor diamagnetic contribution using the values tabulated for the
noble gas cores in Ref. [41] gives −1.9 × 10−4 cm3mol-f.u.−1 for Pt3In2 and
−2.2× 10−4 cm3mol-f.u.−1 for Pt3Tl2. The remaining magnetism is attributed to the conduction
electrons. This includes Landau diamagnetism due to electronic orbits and Pauli paramagnetism
due to electron spin. Both are proportional to the density of states at the Fermi level. For a band
with effective mass m∗, this magnetic susceptibility is given by χ0 = µ2

BD(EF)[1− 1
3(me/m∗)2],

where the first term is the Pauli contribution and the second the Landau contribution. Since
the Landau diamagnetism depends on the effective mass, it can overcome the positive Pauli
contribution if the effective mass is small (less than me/

√
3 for a spherical Fermi surface) [42]. It

can also be anisotropic, and may account for the anisotropic behavior seen for Pt3Tl2 in Figure 5
and in some related CoSn-type kagome compounds [22].

The expected temperature-independent susceptibility from the conduction electrons
can be estimated using D(EF) values determined from the DFT calculations and assuming
an effective mass of unity so that χ0 = 2

3 µ2
BD(EF). In this case the combined Pauli and

Landau susceptibility χ0 (in units of cm3mol-f.u.−1) is calculated from D(EF) in units of
eV−1f.u.−1 by χ0 = 2.15× 10−5D(EF). This gives 1.5 × 10−5 cm3mol-f.u.−1 for Pt3In2 and
9.7 × 10−6 cm3mol-f.u.−1 for Pt3Tl2.

The above estimates of the Larmor susceptibility calculated from the noble gas cores
and the Pauli + Landau contributions calculated from D(EF) can be combined for com-
parison with the measured values in Figure 5. The calculated total susceptibility for
Pt3In2 is −1.8 × 10−4 cm3mol-f.u.−1, and the measured value at room temperature is
−2.2× 10−4 cm3mol-f.u.−1. The calculated value for Pt3Tl2 is −2.1× 10−4 cm3mol-f.u.−1.
This should be compared to the isotropic average of the measured susceptibility given
by [2χ(H ⊥ c) + χ(H‖c)]/3, which is −2.6× 10−4 cm3mol-f.u.−1 at room temperature.
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Considering the approximations and assumptions, the calculated and experimental values
compare quite favorably.

Since single crystals of Pt3Tl2 were available, anistropic magnetoresistance measure-
ments were performed at 2 K and fields up to ±13.5 T. For these measurements, the current
I was always applied in the plane of the platelike crystals (I ⊥ c). The field was applied in
three directions relative to the current and the crystal. The longitudinal magnetoresistance
(L-MR) was measured by applying the field parallel to the current (H‖I). The transverse
magnetoresistance (T-MR) was measured by applying the field perpendicular to the current
(H ⊥ I), with the field directed either out of the plane (H‖c) or in the plane (H ⊥ c).
The measurements were performed at 2 K and the results are summarized in Figure 6.
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Figure 6. Isothermal magnetoresistance data from Pt3Tl2 crystals. The magnetoresistance MR is
defined as MR(H) = [R(H)− R(0)]/R(0). The current was applied within the ab-plane (⊥c). For the
longitudinal (L-MR) configuration the field was applied along the direction of the current. For the
transverse configurations the field was applied along the c-direction (T-MR, H||c) and in the plane
but perpendicular to the current direction (T-MR, H ⊥ c). Data for all three configurations, measured
at T = 2 K, are shown in (a). L-MR data is shown in (b) from measurements on two different crystals.

Each magnetoresistance curve shows interesting behaviors. The T-MR for H‖c reaches
a remarkably high value of 204% with no indication of saturation. The T-MR with H ⊥ c
is approximately linear for fields above a few Tesla, and also reaches a high value of 65%.
Large magnetoresistance is often associated with high carrier mobility and/or semimetal-
like band structures with nearly compensated electron and hole pockets [43]. The latter
may apply to Pt3Tl2 based on the band structure and properties described above.

The most remarkable features in the data are the undulations seen in the L-MR at high
fields. This is shown in Figure 6b, where data measured on two different crystals are plotted.
These are interpreted as quantum oscillations arising from the Shubnikov–de Haas effect,
where the frequency of the oscillations (in 1/µ0H) relate to the area of closed extremal orbits
on the Fermi surface [44]. These oscillations are not as easily observed in magnetoresistance
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data in other orientations, likely because of the overall larger field dependence of the resistivity
in those cases.

A quadratic background was fit to the L-MR data from 4 to 13.5 T and then subtracted
to reveal the oscillatory nature. This is shown in Figure 7a, where the background sub-
tracted data is plotted as a function of the inverse magnetic field. The same physics that
produces the Shubnikov–de Haas effect in transport data is expected to produce the de
Haas–van Alphen effect in magnetization [44]. Therefore, the isothermal magnetization
curve measured at 2 K with H ⊥ c was similarly examined. The resulting field dependence
is plotted in Figure 7a, and it matches well the oscillations in resistivity. Three local max-
ima can be seen in the resistance data, at 0.086, 0.122, and about 0.16 T−1. From this, an
approximate frequency of 27 T can be estimated. The magnetization of Pt3In2 at 2 K was
also examined to see if quantum oscillations could be observed. The results are shown
in Figure 7b. Oscillations are indeed seen, with a period of 0.020 T−1 or frequency of 50 T.
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Figure 7. Quantum oscillations in Pt3X2 measured at 2 K. (a) Oscillations of magnetization m and
resistivity ρ in Pt3Tl2 crystals. The field was applied in the ab plane and parallel to the current
direction in the resistivity measurements. (b) Oscillations of the magnetization in a polycrystalline
sample of Pt3In2. Quadratic backgrounds (ρbkg, mbkg) were subtracted from the measured data to
isolate the oscillatory features. Note the data are plotted against 1/(µ0H).

4. Summary and Conclusions

Pt3X2 (X = In and Tl) are double-layer kagome metals with structures similar to but
distinct from that of the topologically nontrivial high-temperature ferromagnet Fe3Sn2
and the density wave hosting compound V3Sb2. Here we have reported results from our
investigation of these materials, including the growth of Pt3Tl2 producing large single
crystals and a thorough examination of the structures and electronic properties of the
two compounds. Our main findings are (1) the materials are stoichiometric with limited
site mixing between Pt and In/Tl, (2) no phase transitions are identified between room
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temperature and 2 K, (3) the Fermi level lies in a pseudogap in the band structure of both
compounds, (4) despite the absence of characteristic kagome-related band structure features
interesting electronic behaviors are observed, including relatively large, linear, and non-
saturating magnetoresistance and quantum oscillations related to the Shubnikov–de Haas
and de Haas–van Alphen effects at 2 K in the magnetoresistance and magnetization data,
respectively. Because the electronic structures near the Fermi levels are dominated by Pt
bands, these behaviors are necessarily related to the kagome networks in the compounds
and expand our overall picture and understanding of kagome metal systems.
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