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Abstract: Bulk multiferroic ceramics have been extensively studied due to their great potential
for magneto-electric coupling applications such as low-power and multifunctional nano-electronic
devices. In most of these studies the macroscopic magnetic performance was investigated, while
the magnetic response on the micro- and nano-scale was not examined in detail. Local magnetic
phenomena can be studied using magnetic force microscopy (MFM), a technique derived from atomic
force microscopy. MFM measures the magnetic force between the magnetised tip and the magnetic
sample. It is one of the most used methods to characterise the structure of ferromagnetic domains,
because the sample preparation is simple, non-destructive and provides a relatively high-resolution
image. In this review paper we focus on the MFM analyses of bulk multiferroic ceramics. The core
of the article is divided into four sections: the introduction, the preparation of samples prior to
MFM examination, the reviews of MFM analyses performed on bulk multiferroic ceramics with and
without external magnetic fields, and finally the conclusions and an outlook for the future.

Keywords: magnetic force microscopy; multiferroics; bulk ceramic oxides; applied external magnetic field

1. Introduction

Multiferroics are materials where ferroelectric and ferromagnetic, ferrimagnetic or
antiferromagnetic ordering can coexist. Multiferroics in bulk ceramic form have a potential
in multicaloric applications, which require large quantity of active materials, for example
in future caloric cooling applications. Multicaloric effect could represent efficient solid state
cooling by magnetic and electric fields in the future [1]. Readers seeking more information
about multiferroics should refer to [2–8]. In this review, we focus on the magnetic domain
structure of multiferroic oxide bulk ceramics studied by magnetic force microscopy (MFM).
The question arises why there are not many MFM studies on multiferroic bulk ceramic
materials. The answer lies in three reasons: (1) MFM is still not a widely spread characteri-
zation tool, (2) there are only a few multiferroics that exhibit multiferroic properties at room
temperature [2,4] and (3) there are far less atomic force microscope (AFM) instruments that
allow MFM analysis at cryogenic temperatures [9].

The MFM belongs to the group of scanning-probe microscopies, and dates back to the
invention of the scanning-tunnelling microscope by Binnig and Rohrer in 1981. This won
them the Nobel Prize in Physics, and was one of the triggers for the era of nanoscience. Five
years later, Binnig, Quate and Gerber developed the AFM. From then on, various modes
were developed and added to the AFM, e.g., magnetic force microscopy, piezo-response
force microscopy, conductive AFM, and electrostatic force microscopy. The MFM was
developed in 1987 [10,11].

The AFM consists of the AFM tip on a cantilever, a piezoelectric scanner, a photodiode,
a data-acquisition unit and a controller (Figure 1a). The AFM tip, sometimes called the
AFM probe, is a sensor that detects the interaction force, i.e., the van der Waals forces,
between the tip and the surface of the sample being studied [12]. We can scan the surface
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in three different modes: contact mode, tapping mode and non-contact mode. In the first
case the AFM tip is in hard contact with the surface. The surface topography is detected
by the deflection of the cantilever from its original position, which is monitored by the
reflection of a laser from the photodiode. When scanning in tapping mode, the AFM tip
is periodically in contact or not with the surface of the sample. In non-contact mode, the
tip has no contact with the surface at all and the surface is detected only by the long-range
interaction forces between the tip and the sample [13].
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Figure 1. (a) Example of AFM system adapted for MFM measurements. (b) Schematic of the MFM
measurement principle.

In MFM, the interaction force is the magnetic force between the magnetised tip and
the magnetic sample. In addition to magnetic interactions, van der Waals interaction
forces are also present. These are responsible for the topography signal in the tapping and
non-contact modes. The signal contains both magnetic and topographic information. To
separate these two signals, the two-pass technique is normally applied. The dominant
force depends on the distance of the tip from the sample. The van der Waals forces are
short-range forces, while the magnetic forces act over longer distances between the tip and
the surface (i.e., tens of nanometres). Therefore, by scanning images at different heights we
can separate the magnetic and topographic signals. In the two-pass technique, the sample is
scanned twice. In the first pass, the topography (i.e., a height profile) is determined, usually
by tapping-mode scanning. In the second scan, the distance between the tip and the sample
is increased, while the tip maintains the same height profile as in the first scan. In this way
the distance and van der Waals interactions between the cantilever and the sample surface
remain constant. In this case the tip is subject only to changes in the magnetic interactions,
resulting in an MFM image. The principle of the two-pass MFM technique is shown in
Figure 1b.

In the second scan when there are no magnetic interactions between the sample and
the tip the cantilever oscillates with frequency v1, amplitude a1, and phase φ1. However,
when a magnetic interaction occurs between the magnetic sample and the MFM tip, the
cantilever starts to oscillate with frequency v2, amplitude a2, and phase φ2. Therefore, the
change in the magnetic interaction is monitored by shifts in the frequency (∆v = v1 − v2),
amplitude (∆a = a1 − a2), and phase (∆φ = φ1 − φ2). Usually, an MFM image is presented as
∆v or ∆φ scans. The changes in frequency and phase are related to the magnetic interactions
between the tip and the sample (F) according to the following equations [9]:

∆v ≈ − v1

2k
dF
dz

(1)

∆φ ≈ Q
k

dF
dz

(2)
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where z is the cantilever displacement and Q and k are the quality factor and the spring
constant of the cantilever, respectively. An overview of the different approaches to quantify
MFM signals can be found here [9].

Figure 2 shows some examples of MFM frequency, amplitude and phase-signal images
of a glass slide, a computer hard disk and a videotape. The glass is a non-magnetic material
that serves as a reference material. As expected, only noise is observed in the MFM signals
of the glass slide (Figure 2c–e). The MFM frequency, amplitude and phase images of the
hard disk (Figure 2h–j) and videotape (Figure 2m–o) show magnetic features that are not
related to the topographic height or any deflection of the sample surfaces (Figure 2f,g,k,l).
The MFM scans of the hard disk and videotape show periodic magnetic domains, which is
consistent with the literature [14,15]. The most sensitive rendition of the magnetic domain
structure is achieved in MFM frequency images.

1 
 

 
 
 
 
 

 

Figure 2. AFM topographic height, deflection and MFM frequency v, amplitude a and phase φ

signal images of (a–e) glass slide, (f–j) computer hard disk (Maxtor D740X-6L 40GB HDD) and
(k–o) videotape.

There are two options for the MFM tips: they can be made entirely of magnetic
materials, such as iron, or they can be standard AFM tips that are coated with magnetic
materials (e.g., CoCr, CoPt, FePt and NiFe alloys). Prior to the MFM measurements, the
MFM tip must be magnetised to detect the magnetic interactions. Magnetisation can be
achieved by bringing a permanent magnet close to a pristine MFM tip. To further confirm
that the detected signal does indeed correlate with the magnetic properties of the material
under investigation, an experiment can be performed with the opposite polarity of the tip
(Figure 3a). Two scans of the same area can be performed. Before the first scan, the MFM
tip is magnetised using a specific pole of the external magnet, while before the second scan,
the MFM tip is magnetised with the opposite pole of the magnet. If the comparison of
the two scans shows an inverted MFM signal, this is confirmation that the MFM signal
results from the magnetic properties of the sample and is not due to crosstalk with the
topography, an electrostatic contribution, or other experimental errors (Figure 3b). The
removal of electrostatic artifacts by controlled magnetisation of the MFM tip is studied in
more detail in [16].
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Figure 3. (a) Schematic of the experiment with different tip polarities. (b) AFM topographic height
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2. Polishing and Cleaning of Multiferroic Ceramic Specimens Prior to MFM Analysis

The MFM analysis of multiferroic thin films can be performed without pre-treatment [17–21],
because the thin films are flat with the roughness below or in nanometre range. On the other
hand, single crystals or bulk ceramics must be cut and polished [22–25]. Proper polishing
and cleaning of crystal or ceramic samples are necessary to obtain the roughness of the
samples below micrometre range and therefore to minimize the cross-talk of the MFM
signal with the topography, leading to high-quality MFM images. A similar polishing-and-
cleaning procedure for the bulk samples is also required for high-quality piezo-response
force microscopy (PFM) images, as explained in [13].

The ceramics are usually cut to the correct dimensions and polished to obtain a flat
surface for the MFM examination. The procedure requires several steps. The first is
embedding the ceramic sample in polymer resin, for example in epoxy resin (Figure 4a),
and grinding with silicon-carbide abrasive papers (5–20 µm SiC particles). The second step
is polishing the sample on a cloth with a polishing paste, gradually reducing the size of
the diamond abrasive to 0.25 µm. The third step is fine polishing with a colloidal SiO2
suspension containing particles down to tens of nanometres (Figure 4b) [22]. The bulk
sample is then removed from the epoxy resin by heating so that the epoxy resin softens
and the sample can be removed (Figure 4c,d). The sample is then prepared for MFM
measurements (Figure 4e). One option is also to coat the surface of the multiferroic sample
with a gold layer a few tens of nanometres thick to eliminate the electrostatic interactions
between the ferroelectric domains and the MFM tip [26].

Surface contamination between the MFM tip and the multiferroic sample can interfere
with the magnetic signal, as shown in Figure 5. The sample can be cleaned with an
ultrasonic cleaner, UV ozone cleaner, lens-cleaning cloth or acetone, depending on the type
of sample and the surface contaminants. Note, however, that acetone can leave stains on
the surface of the sample. Removing contaminants is not always easy, so it is advantageous
to work in a dust-free area such as a clean room.
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Figure 5. (a) AFM topography height and MFM (b) frequency and (c) phase images of a
Bi0.88Gd0.12FeO3 multiferroic ceramic containing an Fe-rich secondary phase after polishing with a
paste on a cloth and fine polishing with a colloidal SiO2 suspension. Some examples of dust particles
on the sample surface are marked with red arrows.

3. MFM Studies of Magnetic Domains in Multiferroic Bulk-Ceramic Samples

We focus here on the MFM of ceramic samples of multiferroic oxide. There are only a
few studies on this topic [22,27–30], as discussed in more detail below. Other investigations
deal with the MFM of multiferroic thin films [17–21,31–33], single crystals [25,26,34,35],
nanowires [36,37], composites and heterostructures [23,24,27,38,39], all of which are beyond
the scope of this review.

A large group of single-phase multiferroic materials is based on the bismuth ferrite
BiFeO3 (BFO), which exhibits antiferromagnetic ordering with a Néel temperature of
~380 ◦C and ferroelectric behaviour with a ferroelectric Curie temperature of ~825 ◦C [40].
Rare-earth-element-modified BFOs are interesting because they can exhibit an enhanced
ferromagnetic response compared to the parent BFO [22]. Their multiferroic domain
structure, i.e., ferroelectric and magnetic domains, can be observed by PFM and MFM, as
shown in Figure 6f–k for Bi0.88Gd0.12FeO3 ceramics. The PFM out-of-plane amplitude and
phase images (Figure 6f,g) show the ferroelectric domain structure of the BFO matrix and
the non-piezoelectric Fe-rich secondary phase. On the other hand, the MFM frequency and
phase images show that both the BFO matrix and the Fe-rich secondary phase are magnetic
(Figure 6h,i). As is shown here, microstructural analysis using MFM plays a crucial role in
the characterization and interpretation of macroscopic magnetic measurements. The MFM
experiment with opposite tip polarities (Figure 6j,k) shows an inverted MFM frequency
signal (highlighted by the arrows) of the BFO matrix and the Fe-rich secondary phase,
proving that the sample–tip interaction is indeed magnetic and not the result of topography
or other non-magnetic phenomena.
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Bi0.88Gd0.12FeO3 bulk ceramics. The blue square marks a region of Fe-rich secondary phase, mag-
nified in panels (d–i) and indicated by a yellow line. Panels (f,g) show PFM amplitude and phase
images, and (h,i) show MFM frequency and phase images of this region. Panels (j,k) show MFM
frequency of a region where an experiment with opposite magnetic tip polarities was performed [22].
Copyright 2020 Elsevier (Creative Commons CC-BY license).

A MFM analysis of the Li-modified BFO ceramic LixBi1−xFeO3 with x = 0.03 and
x = 0.09 is also reported in the literature [27]. An X-ray diffraction analysis revealed that
the Li0.09Bi0.91FeO3 ceramic prepared by convectional solid-state synthesis contains two
secondary phases, namely LiFe5O8 (15 vol%) and Bi12.5Fe0.5O20 (6.2 vol%). MFM experi-
ments on this sample revealed magnetic domains from nanometre to micrometre size. The
density of the magnetic domains decreased with decreasing Li concentration from x = 0.09
to 0.03 [27]. In addition, a MFM analysis was performed on Bi0.85Sm0.15Fe0.97Sc0.03O3 ce-
ramics prepared by hot pressing [28]. Long-range magnetic ordering was observed in these
samples at room temperature (Figure 7). In a similar way, the long-range magnetic ordering
was observed in Nd-modified BFO ceramics (Bi1-xNdxFeO3) with high Nd concentrations
(x > 0.14) [29].

The microstructural investigation of bulk ceramics by MFM is very important to
distinguish different phenomena between the matrix and the inclusions. A very interest-
ing features in relaxor ferroelectrics are polar nanoregions that have the ability to form
ferroelectric and magnetic regions, also known as multiferroic clusters (MFC) [30]. In
relaxor ferroelectric single-phase (BiFe0.9Co0.1O3)0.4–(Bi1/2K1/2TiO3)0.6 ceramics, the MFC
originate from magnetically strong Bi(Fe,Co)O3-rich regions with sizes in the range of
0.5–1.5 µm (Figure 8). Using the MFM technique a magnetic dipolar response of the



Crystals 2023, 13, 838 7 of 14

MFC was confirmed by the switching an external (out-of-plane) magnetic field (±0.48 T)
(Figure 8c–e). In addition, the MFM signal was altered by an in situ DC electric field (20 V)
poling (Figure 8e,f, converse magnetoelectric effect). The direct magnetoelectric effect was
also confirmed and even quantified for the MFC by using PFM and a variable external
magnetic field [30].
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(a–c) MFM phase images of the MFC (a) before and (b,c) after ex situ switching with out-of-plane
magnetic fields of ±0.48 T as indicated by blue arrows. The symbols above the images represent
single magnetic domains according to the dipolar magnetic MFM response. (e,f) PFM images of
MFC recorded after ex situ magnetic switching, (e) before and (f) after electric field (20 V) poling
by scanning a rectangular area as indicated by the red dashed rectangle. Configurations of MFC’s
polarization are illustrated by symbols below the PFM images. (d) MFM phase image after electric
field poling, showing magnetoelectric switching [30]. Copyright 2016 Wiley.

One must be very careful when interpreting MFM results, especially when the experi-
ment involves in situ electric field poling. Liu et al. [39] have used in situ electric field poling
on thin film BiFeO3/La0.67Sr0.33MnO3 heterostructures, which resulted not only in a strong
contrast of the PFM signal (Figure 9c), but also in a strong contrast of the MFM phase signal
(Figure 9d). However, the “magnetic” signal of the MFM phase image does not originate
from the electric-field-induced magnetization (converse magnetoelectric coupling), but
from electrostatic interactions between the sample surface and the MFM tip, which arise
due to the excess surface charges during the poling process. The electrostatic interactions
were confirmed by scanning Kelvin probe microscopy (SKPM) in Figure 9e. Moreover, a
solution to neutralize the excess surface charges was proposed, namely, scanning the poled
region several times with a grounded tip in contact mode [39]. Although this example
shows that excess surface charges are introduced into thin films by poling with an electric
field, a similar phenomenon can also occur in polished bulk ceramic samples.
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phase image and (e) SKPM potential image, respectively, after double-box polarization. Scale bars
represent 1 µm [39]. Copyright 2017 AIP Publishing.
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4. Magnetic-Force Microscopy Measurements under an Applied External Magnetic Field

Atomic force microscopes can be equipped with options for applying external magnetic
fields to specimens, including out-of-plane and in-plane magnetic fields. With this option,
the magnetic domain structure of the materials can be studied inside or outside the external
magnetic field. Such a setup is shown schematically in Figure 10, where the magnetic field
applied to the sample depends on the rotation angle of the magnet. When the angle of
rotation is zero, the magnetic flux is deflected away from the sample. When the magnet is
rotated 90◦, the magnetic flux is directed through the sample [14,41].
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Figure 10. Schematic of the experimental setup for (a,b) out-of-plane and (c,d) in-plane magnetic
field measurements. When the rotation angle of the magnet is zero, no external magnetic field is
applied to the sample, as shown in panels (a,c). After the magnet is rotated 90◦, the sample is brought
into the external magnetic field, as shown in panels (b,d).

Figure 11 shows MFM frequency images of the computer hard disk and the Bi0.88Gd0.12FeO3
bulk ceramic. The images were acquired at in-plane external magnetic fields from 0 G
to 7000 G and −7000 G. The ferromagnetic domain structure of the hard disk remains
unchanged up to 4300 G, while at a higher external magnetic field of 7000 G, the ferro-
magnetic domains switch and become more irregularly shaped. In contrast, the magnetic
domains of the Bi0.88Gd0.12FeO3 bulk ceramic do not switch, even at the highest magnetic
field of 7000 G. When we change the polarity of the external magnetic field (from 7000 G
to −7000 G), we can observe an interesting phenomenon. The MFM experiment on the
Bi0.88Gd0.12FeO3 bulk ceramic (Figure 11b, compare 7000 G and −7000 G) shows a complete
inversion of the MFM frequency signal, while the shape of the magnetic domain structure
remains the same. This indicates, first, that the MFM signal is related to the magnetic
interaction between the sample and the tip, and not to the topography cross-talk [14],
and, second, that switching of the in-plane external magnetic field causes a change in the
polarity of the tip rather than the movements of the ferromagnetic domain walls of the
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Bi0.88Gd0.12FeO3. The domain structure of Bi0.88Gd0.12FeO3 ceramics is stable due to the
high coercive magnetic field of this sample [22].
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performed using an AFM Jupiter, Asylum Research, Santa Barbara, USA with a MFM tip Asymfmlc-
R2. The white square is only a guide for the eyes.

5. Conclusions and Outlook

Our understanding of the multiferroic properties of ceramic materials has improved
in recent decades [4–7]. However, there are still many topics that require further research.
These include (I) the coupling of the electromechanical and magnetic response in ceramic
multiferroics and (II) multiferroic films in cross-section.

The first topic is important because it relates to the coupling of the electromechanical
and magnetic responses in ceramic multiferroics at the nanoscale/microscale. An example
of such an experiment is shown in Figure 12. The ferroelectric domain structure of the
Bi0.88Gd0.12FeO3 bulk ceramic is shown in Figure 12a and is consistent with previous
reports [22,42]. The contrasting bright and dark regions in the amplitude images correspond
to areas with higher and lower piezoelectric responses. When the sample is subjected to
an in-plane external magnetic field, as schematically shown in Figure 12g, the ferroelectric
domain structure of the multiferroic Bi0.88Gd0.12FeO3 bulk ceramic does not change, even
when the magnetic field is switched to the negative direction. This is related to the low
magnetoelectric coefficients at room temperature [43,44] and the high coercive electric field
of Gd-modified BiFeO3 ceramics [42].

The second idea for future work in this area is to study multiferroic thick films by
MFM in cross-section. The procedure for preparing the thick film specimen prior to MFM
examination differs slightly from the procedure for preparing the ceramic specimen shown
in Figure 4. Therefore, Figure 13 shows a schematic of this idea. The multiferroic films
can be cut in half (Figure 13b,c), embedded in epoxy resin (Figure 13d), and polished in
cross-section (Figure 13e). After polishing, the surfaces of the specimens should be cleaned,
preferably with distilled water, and dried in air. The specimens are removed from the
cast by cutting away the epoxy resin around the films (Figure 13f,g). The specimen is
placed in a specimen holder with a polished cross-sectional surface on top (Figure 13h). In
the last step, MFM scanning should be performed on the cross-sectional surface. Using a
PFM mode, a similar experiment was performed for ferroelectric thick films, where the
ferroelectric properties of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 thick films in cross-section
were investigated [45].
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Figure 12. Piezo-response force microscopy of Bi0.88Gd0.12FeO3 bulk ceramics in an external in-plane
magnetic field. (a–f) PFM out-of-plane amplitude image under external in-plane magnetic field from
0 to ±8000 G. (g) Schematic representation of the setup for PFM measurements in a magnetic field.
(h) Enlarged view of the areas marked by the white square in panels (a,f).

In conclusion, we believe that MFM analyses combined with other techniques such as
piezo-response force microscopy, electrostatic force microscopy, conductive atomic force
microscopy, thermal scanning microscopy and others, can lead to a deeper understanding
and provide a link between the fundamental and functional properties of multiferroic
ceramic materials and films at the nanoscale in the future.
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