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Abstract: Two Na(I) coordination polymers, namely, {Na(BA)2(µ‑H2O)2}n{adp}n (1) and {[Na2(µ‑
BA)(µ‑fum)(µ‑H2O)4](BA)}n (2) (where, BA = boric acid, adp = adipic acid, fum = fumarate),were
prepared and characterized using elemental analysis, TGA, FT‑IR, and single‑crystal X‑ray diffrac‑
tion techniques. Various unconventional supramolecular interactions, i.e., CH···HC and parallel
CO···CO interactions, stabilize the layered assembly of compound 1. Interesting dual enclathration
ofBAmolecules within the supramolecular host cavities formed by O‑H···O and C‑H···C interactions
stabilizes the crystal structure of compound 2. The H‑bonding interactions in 1 and 2 were further
studied theoretically using the quantum theory of atoms in molecules (QTAIM) and the noncovalent
interaction plot (NCI Plot) computational tools. The energy of the H‑bonds was estimated using the
potential energy density at the bond critical points. Theoretical calculations confirmed the presence
of O‑H···O H‑bonding interactions in both compounds, forming structure‑guiding R2

2(8) synthons
relevant for the stability of the compounds.

Keywords: Na(I) polymers; parallel CO···CO; dual enclathration; H‑bonding; QTAIM; NCI

1. Introduction
Coordination polymers represent the supramolecular architecture of metal ions and

organic moieties that extends in association with covalent bonding, as well as supramolec‑
ular contacts [1–3]. In the current research era, the design and synthesis of coordination
polymers involving supramolecular interactions has attracted immense attention owing to
their interesting physical, chemical properties, and potential applications [4,5]. Although
coordination polymers involving transition metals bridged by organic ligands have been
well explored [6,7], examples of polymers with s‑block elements such as sodium are still
scarce in the literature. The strategic synthesis of coordination polymers of such elements
is still challenging, which may be due to various factors such as varying coordination num‑
ber, size of the binding partners, and electrostatic interactions between the ligands and the
metal ions [8].

The design of boron‑based compounds has received a great deal of interest because
of their potential utilities as boron‑containing drugs and materials for medical diagnos‑
tics [9,10]. Boron compounds can be used as modulators for the bioactivity of biomolecules,
in boron capture neutron therapy (BNCT) for drug delivery, and in molecular modeling
of drug design [11,12]. Boric acid has been effectively utilized as a building block to con‑
struct a variety of compounds with interesting structural topologies [13,14]. Cebula et al.
recently highlighted the importance of supramolecular assemblies of boron‑mediated an‑
ionic clusters and their applications in biological fields [15]. In an organic crystal of 4‑
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pyridinylboronic acid, B···Cl σ‑hole triel bonding interactions were observed, established
using various computational tools [16].

To understand the role of noncovalent contacts in self‑assembly processes, innumer‑
able efforts have been undertaken due to their potential applications in a wide range of
fields such as catalysis, crystal engineering, pharmaceutical design, molecular biology, and
molecular recognition [17–19]. Although supramolecular interactions are weaker than co‑
valent bonds, their large numbers and cumulative effects make them potential candidates
in the design of crystal structures [20,21]. H‑bonding interactions can be considered as the
most common which play crucial roles in molecular self‑assembly processes [22], as well
as in the stabilization of biomolecules such as ‑DNA and proteins (Figure 1) [23]. In the sta‑
bilization of metal–organic compounds, the dipolar interactions between carbonyl groups
(CO···CO) are also equally important in the stability of the crystal structures [24].
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The saturated aliphatic dicarboxylate moieties, as important flexible bridging ligands,
can adopt conformational and coordination versatilities owing to their single‑bonded car‑
bon chains, which can be considered for the development of interesting metal–organic
compounds [25,26]. The dicarboxylate anions can exhibit multiple coordination motifs
such as uni‑bidentate, bis‑monodentate, bis‑bidentate, tridentate, and tetradentate etc.,
thereby interconnecting metal centers to form polynuclear complexes [27,28]. Saturated
dicarboxylic acids also serve as suitable H‑bonding acceptors [29,30], resulting in the devel‑
opment of bridging metal–organic compounds with various desired self‑assembled archi‑
tectures [31,32]. As a consequence, adipic acid has evolved as a potential bridging ligand
to form interesting coordination polymers with potential applications [33–35]. The dicar‑
boxylate groups of fumarate anion (an unsaturated dicarboxylate) also have the ability to
coordinate with the metal centers in multidentate fashion [36]. As a result, metal fumarate
complexes have been explored with interesting structural topologies [37]. In recent times,
a few boric acid‑mediated metal–organic compounds have also been reported with desired
applications [15,38].

In order to visualize the role of supramolecular interactions in polymeric complexes,
we report herein the synthesis and crystal structures of two Na(I) polymers, namely,
{Na(BA)2(µ‑H2O)2}n{adp}n (1) and {[Na2(µ‑BA)(µ‑fum)(µ‑H2O)4](BA)}n (2) (where,
BA = boric acid, adp = adipic acid, fum = fumarate), along with their characterization using
FT‑IR spectroscopy, TGA, and elemental analysis. The presence of various noncovalent
interactions such as C‑H···H‑C and parallel CO···CO interactions stabilizes the 2D archi‑
tecture of compound 1. Fascinating dual enclathration of guest BA molecules within the
supramolecular host cavities formed by O‑H···O hydrogen‑bonding and noncovalent C‑
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H···H‑C interactions provides rigidity to the crystal structure of compound 2. To explore
the energetic features and the characteristics of H‑bonding interactions, we use QTAIM
and NCI plot computational tools. The strength of the H‑bonding interactions is inves‑
tigated using the potential energy density in QTAIM, revealing the importance of R2

2(8)
synthons in the crystal structures.

2. Experimental
2.1. Materials and Methods

The chemicals used in the present study, namely, sodium hydroxide, boric acid, adipic
acid, and fumaric acid, were purchased from commercial sources and used as received. We
prepared the disodium salt of fumaric acid using standard laboratory methods. A Perkin
Elmer 2400 Series II CHNS/O analyzer was used to carry out the elemental analysis of
the compounds. KBr phase FT‑IR spectra were recorded using a Bruker Alpha Infrared
spectrophotometer (resolution = 4 cm−1; number of scans = 16), in the wavenumber range
4000–500 cm−1. Thermogravimetric studies were carried out under the flow of N2 gas us‑
ing a Mettler Toledo TGA/DSC1 STARe system at a heating rate of 10 ◦C·min−1. The TGA
curves were recorded in the temperature range 25–1000 ◦C with 2 µg resolution.

2.2. Syntheses
2.2.1. Synthesis of {Na(BA)2(µ‑H2O)2}n{adp}n (1)

Compound 1was synthesized via the reaction of sodium hydroxide (0.040 g, 1.0 mmol)
and boric acid (0.124 g, 2.0 mmol) in 10 mL of deionized water. The reaction mixture was
mechanically stirred at room temperature for about 2 h. Then, adipic acid (1 mmol, 0.146 g)
was slowly added, and the resulting solution was mechanically stirred for another hour
(Scheme 1). The resulting solution was kept unperturbed in cooling conditions (2–4 ◦C)
for crystallization, from which block‑shaped colorless single crystals were obtained after
a few days. Yield: 0.282 g (86.02%). Analysis calculated for C6H19B2NaO12:C, 21.98%; H,
5.84%; found: C, 21.82%; H, 5.75%. IR (KBr pellet, cm−1): 3401 (br), 3228 (sh), 3055 (s),
2963 (m), 2876 (m), 2860 (sh), 2579 (m), 1984 (m), 1922 (sh), 1697 (s), 1601 (s), 1506 (s),
1410 (s), 1288 (m), 1225 (s),1163 (w), 1090 (m), 998 (w), 944 (m), 850 (s), 780 (w), 717 (s),
646 (sh), 537 (m) (s, strong; m, medium; w, weak; br, broad; sh, shoulder).
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2.2.2. Synthesis of {[Na2(µ‑BA)(µ‑fum)(µ‑H2O)4](BA)}n (2)
For the synthesis of compound 2, a mixture of sodium hydroxide (0.08 g, 2.0 mmol)

and boric acid (0.124 g, 2.0 mmol) was mechanically stirred at room temperature for about
2 h in 10 mL of deionized water. Then, Na2‑fum (0.160 g, 1.0 mmol) was added slowly, and
the resulting solution was mechanically stirred for another hour (Scheme 1). The resulting
solution was kept unperturbed in cooling conditions below 4 ◦C, from which block‑shaped
colorless single crystals were obtained after a few days. Yield: 0.295 g (82.86%). Analysis
calculated for C4H16B2Na2O14: C, 13.49%; H, 4.50%; found: C, 13.41%; H, 4.39%. IR (KBr
pellet, cm−1): 3447 (br), 3283 (sh), 2494 (s), 2140 (m), 2070 (w), 1690 (s), 1600 (s), 1427 (s),
1374 (s), 1265 (s), 1187 (s), 975 (s), 842 (m), 812 (m), 795 (m), 764 (m), 685 (s), 592 (sh) (s,
strong; m, medium; w, weak; br, broad; sh, shoulder).
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2.3. Crystallographic Data Collection and Refinement
Single‑crystal XRD data of the compounds were recorded using a Bruker D8 Venture

diffractometer with a Photon III 14 detector, using an Incoatec high‑brilliance IµS DIA‑
MOND Cu tube. The Bruker APEX4 program was used for the data reduction and cell
refinements [39]. Scaling and merging of the datasets of the wavelength were carried out
using SADABS [39]. Crystal structures of the compounds were solved using the direct
method and refined using the full‑matrix least‑squares technique with SHELXL‑2018/3 [40]
inWinGX [41] software. The non‑hydrogen atoms of the crystal structures were refined
with anisotropic thermal parameters using full‑matrix least‑squares calculations on F2. Hy‑
drogen atoms were inserted at calculated positions and refined as riders. Diamond 3.2
software was used to draw the compounds [42]. Crystallographic data of the compounds
are presented in Table 1.

Table 1. Crystallographic data and structure refinement details for compounds 1 and 2.

Crystal Parameters 1 2

Empirical formula C6H19B2NaO12 C4H16B2Na2O14
Formula weight 327.82 355.77
Temperature (K) 100.0 294.0
Wavelength (Å) 1.54178 1.54178
Crystal system Triclinic Orthorhombic
Space group P1 Pnma

a (Å) 3.7723 (4) 14.0708 (12)
b (Å) 8.6376 (9) 6.7995 (6)
c (Å) 10.9248 (12) 14.9868 (12)
α (◦) 87.123 (4) 90
β (◦) 84.622 (4) 90
γ (◦) 82.919 (4) 90

Volume (Å3) 351.43 (7) 1433.9 (2)
Z 1 4

Calculated density (g/cm3) 1.549 1.648
Absorption coefficient (mm−1) 1.543 1.950

F(000) 172.0 736.0
Crystal size (mm3) 0.26 × 0.24 × 0.15 0.39 × 0.26 × 0.21

θ range for data collection (◦) 8.134 to 137.124 8.62 to 136.55

Index ranges
−4 ≤ h ≤ 4,
−10 ≤ k ≤ 10,
−13 ≤ l ≤ 13

−16 ≤ h ≤ 16,
−8 ≤ k ≤ 7,
−18 ≤ l ≤ 18

Reflections collected 7484 15,582
Unique data (Rint) 1276 1421

Refinement method Full‑matrix least squares on F2 Full‑matrix least‑squares on F2

Data/restraints/parameters 1276/0/118 1421/0/161
Goodness‑of‑fit on F2 1.074 1.065

Final Rindices [I > 2σ (I)] R1/wR2 0.0422/0.1152 0.0228/0.0616
Rindices (all data) R1/wR2 0.0427/0.1161 0.0229/0.0617

Largest diff. peak and hole (e·Å−3) 0.31 and −0.24 0.25 and −0.19

CCDC 2213579 and 2213580 contain the supplementary crystallographic data for the
compounds 1 and 2 respectively. These data can be obtained free of charge at http://www.
ccdc.cam.ac.uk or from the Cambridge Crystallographic Data Center (12 Union Road, Cam‑
bridge CB2 1EZ, UK; Fax: (+44) 1223‑336‑033; or E‑mail: deposit@ccdc.cam.ac.uk).

2.4. Theoretical Methods
The single‑point calculations were carried out using the Turbomole 7.7 program [43]

and the PBE0‑D3/def2‑TZVP [44–46] level of theory. The crystallographic coordinates were
used to evaluate the interactions in compounds 1 and 2 since we were interested in studying
the H‑bonding interactions in the solid state. Since the structures were polymeric, finite

http://www.ccdc.cam.ac.uk
http://www.ccdc.cam.ac.uk
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models extracted from the solid‑state structures were selected to study the formation of
the H‑bonding interactions. The Bader’s “Atoms in molecules” theory (QTAIM) [47] and
noncovalent interaction plot (NCI Plot) [48] were used to study the interactions discussed
herein using the Multiwfn program [49] and represented using the VMD visualization
software [50]. For the calculation of the H‑bond energies, we used the equation proposed
by Espinosa et al. (E = ½Vr) [51].

3. Results
3.1. Synthesis and General Aspects

{Na(BA)2(µ‑H2O)2}n{adp}n (1) was synthesized via a reaction involving NaOH, BA,
and adp in 1:2:1 ratio at room temperature in deionized water. Similarly, {[Na2(µ‑BA)(µ‑
fum)(µ‑H2O)4](BA)}n (2) was prepared by reacting NaOH, BA, and Na2‑fum in 2:2:1 ratio
at room temperature in deionized water. Compounds 1 and 2were soluble in water, as well
as common organic solvents. The crystal structure of compound 2was already reported by
Ozer et al. [52] (Table S1). However, we synthesized the compound by employing a com‑
paratively simple synthetic pathway at room temperature. We also explored the detailed
structural characteristics of the compound, which revealed the unusual dual enclathration
of BA moieties in the supramolecular host cavity of the compound (vide infra). Moreover,
the energetic features of the H‑bonding interactions were investigated in the crystal struc‑
ture using computational tools (vide infra).

3.2. Crystal Structure Analysis
The molecular structure of compound 1 is depicted in Figure 2. Table S2 contains

the bond lengths and bond angles around the Na(I) centers. The compound crystallized
in the triclinic P1 space group. Compound 1 comprises two 1D polymeric chains. The
first one possesses Na(I) centers bridged by two water molecules. Two BA molecules are
also coordinated with the Na(I) centers. Thus, each Na(I) center is hexacoordinated with
two O atoms from the BA molecules (O2B and O2B’) and four Oatoms from the bridged
water molecules (O1W, O1W, O1W’, and O1W’’). The coordination geometry around each
Na(I) center is ideal octahedron, where the axial positions are filled by two bridged water
molecules, whereas the equatorial sites are occupied by the other bridged water molecules
and the two Oatoms of BA moieties. Moreover, the second 1D polymeric chain holds adp
molecules bridged by the hydrogen atom of adp (H3A). X‑ray crystallographic analysis in‑
dicates that the 1D polymeric chain of Na(I) centers possesses a crystallographic inversion
center at the midpoint of two neighboring Na(I) centers. The 1D polymeric chain of adp
also possesses crystallographic inversion at the midpoint of the C–C bond of adp.

The 1D polymeric chain of compound 1 consisting of the Na(I) centers is stabilized by
noncovalent intramolecular O‑H···O hydrogen‑bonding interactions (Figure S1 see
Supplementary materials). The O4B atoms of the coordinated boric acid molecules are in‑
volved in O‑H···O hydrogen‑bonding interactions with the bridged water molecule O1W,
with O1W‑H1WB···O4B having a distance of 2.09 Å.

The 1D polymeric chains of the compound 1 also propagate along the ab plane to stabi‑
lize the layered assembly aided by CH···HC and parallel CO···CO interactions (Figure S2).
H atoms (H4AA, H4AB, H5AA, and H5AB) of the adp molecules are involved in CH···HC
bonding interactions, with H4AA···H4AB and H5AA···H5AB separations of 2.40 and 2.34
Å respectively. There are unusual parallel CO···CO interactions among the carbonyl groups
of adp molecules having a Cg1(defined by centroid of C2A and O1A)···Cg2 (defined by
centroid of C2A and O1A)separation of 3.77 Å.

The 1D polymeric chains of Na(I) centers of the compound propagate along the crys‑
tallographic ab plane and form the layered assembly stabilized by O‑H···O hydrogen‑
bonding interactions (Figure 3). O‑H···O interactions are observed between O2B and O3B
atoms of coordinated boric acid molecules (O2B‑H2B···O3B = 1.95 Å).
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Both the polymeric chains of adp moieties and Na(I) centers are interconnected along
the bc plane to stabilize the layered assembly (Figure 4b) aided by C‑H···O and O‑H···O in‑
teractions. The –CH (C4AH4A) moiety of adp is involved in C‑H···O hydrogen‑bonding in‑
teractions with O4B atom of coordinated BA of the Na(I) centers, having a C4A‑H4A···O4B
distance of 2.74 Å. The supramolecular ring motif formed is represented using Etter’s
graph set notation, i.e., R2

2(8) [53].
Moreover, the O1A and O3A atoms of adp moieties are involved in O‑H···O hydrogen‑

bonding interactions with coordinated BA moieties of the Na(I) centers, having O3B‑H3B···
O1A and O4B‑H4B···O3A distances of 1.89 and 2.06 Å, respectively (Figure 4a). These
interactions were further studied theoretically (vide infra).

Figure 5 depicts the molecular structure of compound 2. Tables S3 and S4 contains
bond lengths and bond angles around Na(I) centers. Compound 2 crystallized in the or‑
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thorhombic Pnma space group. The crystal structure of compound 2 consists of a 1D poly‑
meric chain and one uncoordinated BA moiety (Figure 5). The polymeric chain possesses
two crystallographically unique Na(I) centers (Na1 and Na2) having a similar coordination
environment with minor differences in bond lengths and bond angles. Two neighboring
Na(I) centers are bridged by two water molecules, along with one BA and one fum moi‑
ety. Na1 centers are hexacoordinated with four bridged water molecules (O1W, O1W′,
O2W, and O2W′), the O1 atom from the bridged fum, and the O2A atom from the bridged
BA molecule.
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However, Na2 centers are also hexacoordinated with four bridged water molecules
(O1W, O1W′, O2W, and O2W′), the O8 atom from bridged fum, and the O3A atom from
the bridged BA molecule. The coordination geometry around each Na1 center is distorted
octahedron, where the axial sites are filled up by O1 and O2A, while equatorial sites are
filled by the four bridged water molecules. The O1W, O1W′, O2W, and O2W′ atoms de‑
viate from the mean equatorial plane with a rms deviation of 0.0304 Å. Similarly, for Na2
centers, axial sites are filled by O8 and O3A, whereas the equatorial positions are filled by
four bridged water molecules. The structural properties such as bond lengths and bond



Crystals 2023, 13, 895 8 of 15

angles of the compound are found to be slightly different from those of the previously
reported compound (Tables S3 and S4).
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Figure 5. Molecular structure of polymeric complex 2.

Analysis of the crystal packing of compound 2 revealed that O7 and O8 atoms of
bridged fum are involved in intramolecular O‑H···O interactions with bridged BA moi‑
eties, having O4A‑H4A···O7 and O2A‑H2A···O8 distances of 1.71 and 1.80 Å, respectively
(Figure 6). The uncoordinated BA moiety is involved in intermolecular O‑H···O interac‑
tions with the O1 and O3 atoms of bridged fum, having O3B‑H3B···O3 and O2B‑H2B···O1
distances of 1.75 and 1.77 Å, respectively. Moreover, uncoordinated and bridged BA moi‑
eties are also involved in O‑H···O interactions (O3A‑H3A···O2B = 1.86 Å, O4B‑H4B···O4A
= 1.81 Å) (Figure 6). The H‑bonded ring motif formed in compound 2 is represented by
Etter’s graph set notation, i.e., R2

2(8) [53]. These R2
2(8) synthons were further studied the‑

oretically (vide infra).
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Figure 6. The 1D polymeric chain of compound 2 involving intramolecular and intermolecular
O‑H···O hydrogen‑bonding interactions.

Unusual dual enclathration of lattice boric acid moieties within the supramolecular
host cavity aided by O‑H···O and C‑H···C interactions (Figure 7a) stabilize the layered
assembly of the compound. The O7 atom of bridging fum and the O2W molecule arein‑
volved in O‑H···O interactions (O2W‑H2WB···O7 = 2.08 Å). Noncovalent C‑H···C contacts
are observed between ‑C5H5 moieties and C4 atoms of fum of two neighboring 1D poly‑
meric chains, having a C5‑H5···C4 distance of 3.88 Å [C(sp2)–C(sp2), C5···C4 = 3.95 Å].
Moreover, enclathration of two BA moieties takes place with the help of O‑H···O interac‑
tions involving the O1 and O3 atoms of bridging fum, as well as the O3A and O4A atoms
of bridging BA (O2B‑H2B···O1 = 1.77 Å, O3B‑H3B···O3 = 1.75 Å, O3A‑H3A···O2B = 1.87 Å,
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and O4B‑H4B···O4A = 1.82 Å). In addition, O3B and O4B atoms of enclathrated boric acids
are also involved in O‑H···O interactions with bridging O1W and O2W molecules, hav‑
ing O2W‑H2WA···O3B and O1W‑H1WB···O4B distances of 1.92 and 2.22 Å, respectively
(Table 2).
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Table 2. Selected hydrogen bond distances (Å) and angles (◦) for compounds 1 and 2.

D–H···A d(D–H) d(D···A) d(H···A) <(DHA)

Compound 1

O1W‑H1WB···O4B#1 0.86 2.91 2.09 159.4
O2B‑H2B···O3B#3 0.82 2.769 1.95 175
C4A‑H4AB···O3A 0.99 3.02 2.64 103.1
C4A‑H4AA···O4B 0.99 3.726 2.74 175.1
O3B‑H3B···O1A#2 0.77 2.658 1.89 175
O4B‑H4B···O3A#2 0.83 2.891 2.06 176.5

Compound 2

O4A‑H4A···O7#6 0.89 2.6 1.71 178
O2A‑H2A···O8#6 0.87 2.665 1.8 174
O2W‑H2WB···O7#4 0.83 2.902 2.08 168.9
O2B‑H2B···O1 0.88 2.646 1.77 178
O3B‑H3B···O3 0.9 2.638 1.75 172
O3A‑H3A···O2B#7 0.81 2.677 1.87 177
O4B‑H4B···O4A#6 0.87 2.682 1.82 176
O2W‑H2WA···O3B#5 0.86 2.777 1.92 175.3
O1W‑H1WB···O4B#5 0.8 3.016 2.22 169.1

#1 1 + X, +Y, +Z; #2 −1 + X, 1 + Y, +Z; #3 1 − X, 1 − Y, 1 − Z; #4 1 − X, − 1/2 + Y, 1 − Z; #5 1/2 − X, 1 − Y, −1/2 + Z;
#6 −1/2 + X, 3/2 − Y, 1/2 − Z; #7 1/2 + X, 3/2 − Y, 1/2 − Z.

Interestingly, dual enclathration of uncoordinated BA molecules within the
supramolecular host cavities forms the 2D architecture of 2 along the ac plane (Figure 7b).
Such dual enclathration of BA moieties within supramolecular host cavities is rare.

3.3. FT‑IR Spectroscopy
The FT‑IR spectra of compounds 1 and 2 (KBr phase) were recorded in the region

4000–500 cm−1 (Figure 8). The comparatively broad absorption peaks in both compounds
at around 3401 and 3447 cm−1 can be attributed to O–H stretching vibrations of water
molecules [54,55]. FT‑IR spectra exhibited peaks due to ρr (H2O) (712 cm−1) and ρw (H2O)
(645 cm−1), which indicates the presence of coordinated water molecules [55]. For 1, strong
absorption bands at 1601 and 1410 cm−1 are due to the asymmetric and symmetric stretch‑
ing vibrations of the carboxylate moieties of adp [56]. Peaks at 2963 and 2876 cm−1 in 1
are due to the asymmetric and symmetric C–H stretching vibrations of–CH2 moieties of
adp [57,58]. Peaks for C–C stretching of the adpcan be observed at 1225 (asymmetric) and
1090 (symmetric) cm−1 in 1 [59]. ∆ν = νassym − νsym of fum (greater than 200 cm−1) can be
attributed to the monodentate coordination of the carboxylate groups to the Na(I) centers
in compound 2 [60]. The medium‑intensity peaks at 812 and 795 cm−1 in compound 2 are
due to the OCO bending vibrations of fum [60]. The sharp peak at 1710 cm−1 in 1 indicates
that the carboxylate group of adp does not undergo deprotonation, whereas its absence in
2 supports the deprotonation of carboxylate moieties [61].

3.4. Thermogravimetric Analysis
TG analysis of the compounds was carried out in the temperature range 25–1000 ◦C

under N2 atmosphere at aheating rate of 10 ◦C/min (Figure 9). For compound 1, in the tem‑
perature range 50–100 ◦C, two coordinated water molecules were decomposed
(observed = 11.56%; calculate = 10.98%) [62]. In the temperature range 101–270 ◦C, one co‑
ordinated BA molecule was decomposed with the observed weight loss of 17.04%
(calculated = 18.86%) [63]. The observed weight loss of 62.24% (calculated = 62.76%) in the
temperature range 271–930 ◦C can be attributed to the loss of one coordinate BA molecule
and one coordinated adp moiety [63,64]. For compound 2, four coordinated water molecules
were decomposed between 51 and 180 ◦C (observed = 19.80%, calculated = 20.24%) [62]. In
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the temperature range 181–326 ◦C, two BA moieties and one fum moieties were lost (ob‑
served = 66.20%, calculated = 67.36%) [63,65].

Crystals  2023, 13, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 8. FT-IR spectra of compounds 1 and 2. 

3.4. Thermogravimetric Analysis 
TG analysis of the compounds was carried out in the temperature range 25–1000 °C 

under N2 atmosphere at aheating rate of 10 °C/min (Figure 9). For compound 1, in the 
temperature range 50–100 °C, two coordinated water molecules were decomposed (ob-
served = 11.56%; calculate. = 10.98%) [62]. In the temperature range 101–270 °C, one coor-
dinated BA molecule was decomposed with the observed weight loss of 17.04% (calcu-
lated = 18.86%) [63]. The observed weight loss of 62.24% (calculated = 62.76%) in the tem-
perature range 271–930 °C can be attributed to the loss of one coordinate BA molecule and 
one coordinated adp moiety [63,64]. For compound 2, four coordinated water molecules 
were decomposed between 51 and 180 °C (observed = 19.80%, calculated = 20.24%) [62]. 
In the temperature range 181–326 °C, two BA moieties and one fum moieties were lost 
(observed = 66.20%, calculated = 67.36%) [63,65]. 

 
Figure 9. Thermogravimetric curves of the compounds 1 and 2. 

3.5. Theoretical Study 

Figure 8. FT‑IR spectra of compounds 1 and 2.

Crystals  2023, 13, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 8. FT-IR spectra of compounds 1 and 2. 

3.4. Thermogravimetric Analysis 
TG analysis of the compounds was carried out in the temperature range 25–1000 °C 

under N2 atmosphere at aheating rate of 10 °C/min (Figure 9). For compound 1, in the 
temperature range 50–100 °C, two coordinated water molecules were decomposed (ob-
served = 11.56%; calculate. = 10.98%) [62]. In the temperature range 101–270 °C, one coor-
dinated BA molecule was decomposed with the observed weight loss of 17.04% (calcu-
lated = 18.86%) [63]. The observed weight loss of 62.24% (calculated = 62.76%) in the tem-
perature range 271–930 °C can be attributed to the loss of one coordinate BA molecule and 
one coordinated adp moiety [63,64]. For compound 2, four coordinated water molecules 
were decomposed between 51 and 180 °C (observed = 19.80%, calculated = 20.24%) [62]. 
In the temperature range 181–326 °C, two BA moieties and one fum moieties were lost 
(observed = 66.20%, calculated = 67.36%) [63,65]. 

 
Figure 9. Thermogravimetric curves of the compounds 1 and 2. 

3.5. Theoretical Study 

Figure 9. Thermogravimetric curves of the compounds 1 and 2.

3.5. Theoretical Study
The theoretical study was devoted to the analysis of the H‑bonding interactions ob‑

served involving boric acid, both as a donor and as an acceptor, that are relevant to the
stability of the solid state of the compounds. The polymeric nature of the complexes com‑
plicated the theoretical analysis. Therefore, we used finite models of the compounds and
took advantage of the QTAIM method that allows the quantification of the H‑bonds us‑
ing the potential energy density values at the bond critical points (CPs). To do so, the Vr
values at the bond critical points that characterize each synthon and the equation E = ½Vr
were used. As a representative fragment of compound 1, we used the model represented
in Figure 10a, composed of a central Na atom coordinated to four water molecules and two
monodentate boric acids and two sets of H‑bridged adipate dimers. Such a model included
the most relevant H‑bonds observed in compound 1. The QTAIM analysis combined with
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the NCI plot analysis is shown in Figure 10a, where each H‑bond is characterized by a
bond critical point (CP, red sphere) and a bond path connecting the H‑atoms to the O‑
atoms. Moreover, green (weak) and blue (strong) RDG isosurfaces also characterize the
H‑bonds. One important synthon corresponds to the supramolecular R2

2(8) ring, where
the BA forms two strong H‑bonds with one fum. The formation energy of this synthon is
−11.7 kcal/mol due the contribution of both OH···OH‑bonds, where the boric acid acts as
a double H‑bond donor. The equatorial water molecules participate in two H‑bonds, one
intramolecular with the BA and the other one intermolecular with the adp. The intermolec‑
ular one is stronger (−4.6 kcal/mol), likely due to the anionic nature of the H‑bond acceptor.
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The oligomeric model used for compound 2 is shown in Figure 10b, composed of a
total of six hexacoordinated sodium atoms, three coordinated BAs, two free BAs, and three
bidentate fum ligands. It is interesting to highlight the formation of three different R2

2(8)
synthons in the solid state, which have very large interaction energies. One of the synthons
is generated by the interaction of the coordinated and non‑coordinated BAs, with a forma‑
tion energy of −17.8 kcal/mol. The other two R2

2(8) synthons correspond to the interaction
of the non‑coordinated and coordinated BAs with the fumarate ligands. Both synthons ex‑
hibit very strong formation energies due to the anionic nature of the H‑bond donor and the
strong acidity of the H‑bond donor atoms. In fact, the strongest synthon (−25.4 kcal/mol)
corresponds to the coordinated BA, where the acidity of these OH groups is enhanced by
the coordination to the sodium cation.

4. Conclusions
Two Na(I) polymeric compounds were synthesized and characterized using single‑

crystal X‑ray diffraction, FT‑IR, and TG analyses. Compound 1 comprises two polymeric
chains: one water‑bridged polymeric Na(I) chain and another chain formed by adp
molecules with bridging hydrogen atoms. Compound 2 contains a polymeric Na(I) chain
bridged by BA and fum moieties. The coordination environment around the Na(I) atoms in
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both polymers is octahedral. Unconventional supramolecular contacts, namely, C‑H···H‑
C and parallel CO···CO interactions, stabilize the layered assembly of compound 1. In‑
teresting dual enclathration of BA molecules within the supramolecular hosts formed by
O‑H···O and C‑H···H‑C interactions stabilizes the crystal structure of compound 2. The
structure‑directing H‑bonded noncovalent interactions in the crystal structures were fur‑
ther studied theoretically using the combined QTAIM/NCI plot method, and the energies
were estimated using the Vr energy predictor. It is demonstrated that the formation of a
strong structure directing H‑bonded R2

2(8) synthons in the compounds is relevant for the
layered assemblies of the compounds.
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angles (◦) of Na(I) centers in compound 1; Tables S3 and S4: Selected bond lengths (Å) and bond an‑
gles (◦), respectively, of Na(I) centers in compound 2 and the previously reported compound (CCDC
1455138); Figure S1: The 1D polymeric chain of compound 1 stabilized by intramolecular O‑H···O
hydrogen bonding interactions; Figure S2: Layered assembly of compound 1 involving polymeric
chain of adp moieties assisted by unusual CH···HC and parallel CO···CO interactions along the crys‑
tallographic ab plane.
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