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Abstract: In this paper, we numerically and experimentally show that the director field orientation
degeneracy within the Translationally Invariant Configuration (TIC) of a cholesteric liquid crystal
under an electric field can be lifted by imposing a magnetic field ~B parallel to the electrodes. The
configuration can be either parallel or perpendicular to the magnetic field depending on the values of
the sample thickness, pitch, and applied voltage, with two equiprobable orientations in each case.
The transition between the parallel and perpendicular orientations has hysteresis, suggesting that it
is first order. When ~B is slightly tilted with respect to the electrode plane, the indeterminacy on the
TIC orientation is removed when the TIC is directed along ~B.

Keywords: liquid crystal; cholesteric; texture; translationally invariant configuration

1. Introduction

Chiral nematic, or cholesteric, liquid crystals (LCs), can be obtained upon mixing a
small amount of a chiral dopant into a nematic mesogen. As a result, molecules have a
tendency to align at a small, but finite, angle with their neighbors, leading to spontaneous
twist distortions of the director field. This tendency is frustrated under confinement, for
instance, when a thin cholesteric layer is placed between parallel plates treated to impose
perpendicular, or homeotropic, anchoring. Such configurations result in the formation of
complex structures, for example finger-like distortions [1–5] and topological solitons called
spherulites (or cholesteric bubbles) [6]. Recently, it has been shown that spatial confinement
combined with electric fields leads to the emergence of an even richer variety of complex
solitonic-like topological structures, which can be dynamically self-assembled into ordered
reconfigurable lattices or driven as active colloidal quasi-particles [7,8]. This has unveiled
new opportunities within the context of active colloids in complex fluids [9] and in the
development of LC-based metamaterials [10].

When a homeotropic sample of cholesteric LC of negative dielectric anisotropy is
placed under a strong enough electric field perpendicular to the confining electrodes, a
Translationally Invariant Configuration (TIC) spontaneously forms [4,5,11,12]. In this con-
figuration, the director rotates on a cone whose axis is tilted with respect to the normal
to the two electrodes limiting the sample. In usual conditions, the projection of the cone
orientation in the plane of the sample, defined by a polar~c-director, is random (Figure 1).
Controlling the TIC orientation is important, for instance, to determine the direction of
motion of propelled topological solitons, and this has been addressed either using a photo-
sensitive dopant, which photoaligns the material using excitation with polarized light [13],
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or through unidirectional mechanical buffing of the polymeric anchoring layer [14]. While
these two methods offer some degree of directional control, the former alters the physical
properties of the mesogen, and the latter does not allow us to reconfigure the TIC direction.
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Figure 1. (a) Cross section in a plane containing the~c-director of the cholesteric director field in the
TIC configuration, as described in the text. In the nail diagram, the head of the nails illustrate the
out-of-plane component of the director. (b) S2 sphere trajectory of the director field along the straight
path indicated by the arrow in (a), which results in a closed path that begins and ends in the North
pole. The different geometrical parameters defined in the text are depicted in the sketch.

In this work, we show that an in-plane magnetic field is able to break the degeneracy of
the TIC that develops in a cholesteric liquid crystal with negative dielectric anisotropy and
positive magnetic anisotropy. We further show that, depending on the interplay between
the material properties, the thickness of the cell gap, the cholesteric pitch, the strength
and orientation of the magnetic field, and the amplitude of an applied electric field, the
~c-director can orient either parallel or perpendicular to the magnetic field, with a first order
phase transition observed between the two configurations.

The manuscript is structured as follows. In Section 2, we perform a theoretical (both an-
alytical and numerical) study of the TIC orientation in the presence of an in-plane magnetic
field, and discuss the observation of a transition between two stable configurations. The
effect of a small out-of-plane component of the magnetic field will be discussed at the end
of the session, and a detailed analysis of the transition between the two TIC configurations
is included as an appendix. In Section 3, we present our experimental setup and results,
which feature an excellent agreement with the theoretical predictions. We finish the paper
with some concluding remarks.

2. Theoretical Study of the TIC Orientation
2.1. Basic Equations and Numerical Method

Let us consider a layer of a cholesteric liquid crystal (LC) of negative dielectric
anisotropy sandwiched between two parallel flat electrodes treated for strong homeotropic
anchoring. The bottom electrode is at z = 0 and the top one at z = d. In the frame (x, y, z),
the director~n has as components: 

nx = cos β sin α,

ny = sin β sin α,

nz = cos α.

(1)
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In this work, we will consider that the TIC is only twisted along the z direction (perpendic-
ular to the sample plane). As a result, angles α and β are only a function of z (also of time t,
in the non-stationary regime). The~c-director of the TIC has for components (Figure 1)

cx = cos[βm(t)],

cy = sin[βm(t)],

cz = 0,

(2)

where βm(t) = β(d/2, t).
If only an electric field perpendicular to the electrodes is applied,~c could assume any

orientation in the (x, y) plane, since all orientations of the TIC are energetically equivalent
(β is then defined up to an additive constant).

In the following, we will set αm(t) = α(d/2, t) and will simply designate by βm and
αm the values of βm(t) and αm(t) in the stationary regime.

In this paper, we will show that the indeterminacy in the orientation of the~c-director
can be lifted by imposing a magnetic field, of components

Bx = B cos θ,

By = 0,

Bz = B sin θ,

(3)

where θ denotes the tilt angle of the magnetic field with respect to the horizontal
(sample) plane.

Note that the~c-director degeneracy can also be lifted trough unidirectional buffing of
the anchoring surfaces, although, in this case, its orientation cannot be reconfigured [14].
For this reason, we will not study this method in the following.

Because the magnetic field does not break the translational invariance of the TIC in the
horizontal plane, the director field inside the sample will remain a function of z and t only.

In continuum theory, the Euler–Lagrange motion equations for α and β read, when
backflow effects are neglected:

δRa

δα̇
= − δF

δα
, (4)

δRa

δβ̇
= − δF

δβ
, (5)

where F is the total free energy per area in the (x, y) plane,

F =
∫ d

0

1
2

[
K1(~∇ ·~n)2 +K2(~n · ~∇×~n+ q)2 +K3(~n× ~∇×~n)2− ~D · ~E− χa

µ0
(~B ·~n)2

]
dz, (6)

and Ra is the Rayleigh dissipation function,

Ra =
∫ d

0

1
2

γ1~̇n2dz. (7)

In these equations, K1, K2 and K3 are the splay, twist and bend elastic constants, respectively,
γ1 is the rotational viscosity, χa is the magnetic anisotropy (positive), q = 2π/P is the
equilibrium twist of the cholesteric phase, P is the equilibrium cholesteric pitch, ~E is the
electric field, and ~D is the electric displacement.
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Using Equations (6) and (7), Equations (4) and (5) become, by assuming that α and β
are functions of z and t only,

γ1α̇ = KSB(α)α
′′ +

sin 2α

2

[
(K1 − K3)α

′2 + (K3 − 2KTB(α))β′2 + 2K2qβ′−ε0εaE2
]

+
χaB2

2µ0

[
sin 2α

(
cos2 β cos2 θ − sin2 θ

)
+ cos 2α cos β sin 2θ

]
, (8)

and

γ1 sin2(α) β̇ = ∂z

[
sin2 α

(
KTB(α)β′ − K2q

)]
− χaB2

µ0
sin α sin β cos θ(sin α cos β cos θ + cos α sin θ), (9)

where KSB(α) ≡ K1 sin2 α + K3 cos2 α, KTB(α) ≡ K2 sin2 α + K3 cos2 α, u̇ ≡ ∂u/∂t and
u′ ≡ ∂u/∂z for any function u. Note that the z-derivatives terms in Equation (5) were
reorganized in Equation (9) to explicitly show the existence of a first integral when B and β̇
are zero.

In these equations, the local electric field along z is E = ∂U
∂z = U′, with U the electric

potential. Because the TIC is translationally invariant in the horizontal plane, the only
nonzero component of the displacement field ~D is Dz = ε0(ε⊥ + εa cos2 α)U′ where ε⊥ (ε‖)
is the relative dielectric permittivity perpendicular (parallel) to~n and εa = ε‖ − ε⊥ < 0 is
the dielectric anisotropy. In the dielectric regime, the potential U must satisfy the Maxwell
equation ~∇ · ~D = 0, which imposes that Dz is a constant:

∂z

[
(ε⊥ + εa cos2 α)U′

]
= 0. (10)

Using this conservation law and defining the rms applied voltage V =
∫ d

0 U′dz, we remark
that the field E can be expressed in the following integral form:

E =
V

(ε⊥ + εa cos2 α)
∫ d

0
dz

ε⊥+εa cos2 α

. (11)

Equations (8)–(10) must be solved with the following boundary conditions (BC) on the
two electrodes:

α(0, t) = αi ; α(d, t) = αi (12)

β′(0, t) =
K2q

KTB[α(0, t)]
; β′(d, t) =

K2q
KTB[α(d, t)]

(13)

U(0, t) = 0 ; U(d, t) = V (14)

Equation (12) corresponds to Dirichlet boundary conditions for the polar angle α, set
to a small value αi < 10−3 rad to avoid a numerical singularity (division by 0) on the
electrodes and still satisfy, to a very good approximation, homeotropic anchoring conditions.
Equation (13) corresponds to the surface torque equation for the azimuthal angle β. Finally,
Equation (14) corresponds to Dirichlet boundary conditions for the electric potential.

We numerically solved these equations with Mathematica 12 using the method of lines
which is a general procedure for finding the solution of time dependent partial differential
Equations [15]. To regularize the problem, we added to the r.h.s. of Equation (10) an
arbitrary relaxation term of the form γu

∂U
∂t and we chose the nonphysical friction coefficient

γu small enough for the electric potential to relax much faster than the director field (in
practice, we took γu ≤ 0.01 sµm−2).
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To explore the possibility of having multiple solutions at the same voltage V in the
steady state, we also assumed that the voltage was of the form

V(t) = V + (Vi −V)e−t/τi (15)

where Vi is an initial voltage that was taken either smaller that Vth (0 in general) or larger.
The transient time τi was chosen much smaller than the final time t f at which the steady
state is reached. Generally, we took τi = 10 s and t f = 1000 s. We obviously checked that
the final solution did not depend on the choice of τi, Vi and γu once the stationary state
was reached.

Finally, it was necessary to specify, in the numerical code, how angles α and β and
voltage U vary as a function of z at t = 0. In our case we simply took α(z, 0) = αi,
β(z, 0) = βi + [K2q/KTB(αi)](z− d/2) with βi an arbitrary constant (we have chosen very
often βi = 0.1 or βi = π/2− 0.1), and U(z, 0) = Viz/d, to satisfy the BCs above.

Before detailing the results of these simulations, we first examine under what condi-
tions the TIC develops in the samples when the magnetic field is horizontal (θ = 0). The case
of a magnetic field slightly inclined with respect to the horizontal will be discussed later.

2.2. Spinodal Limit (θ = 0)

We begin by analyzing the onset of the transition to the TIC when an in-plane magnetic
field is applied (θ = 0). We know from previous studies that the cholesteric phase com-
pletely unwinds in homeotropic samples and gives a homeotropic nematic (HN) texture
when the thickness d is smaller than PK32/2 [4,5], with K32 ≡ K3/K2, or equivalently when
the confinement ratio C = d/P is smaller than the critical value C? ≡ K32/2. In these
conditions, it is necessary to impose a destabilizing field so that the TIC develops. In
the plane of the control parameters (V, d), there is therefore a particular line, called the
spinodal line of the HN, above which the HN spontaneously destabilizes to form a TIC. The
calculation of this spinodal limit is straightforward when B = 0. In this case, Equation (9)
has a first integral, in steady state, of the form

β′ =
q

K32
, (16)

where we assumed α� 1 (weak director deformation near the destabilization threshold).
This gives, after integration,

β = βm +
πC
K32

[
2z
d
− 1
]

, (17)

where the integration constant βm gives the orientation of the ~c-director according to
Equation (2). For B = 0, this constant is arbitrary, which means that the TIC can take any
direction in the plane (x, y). The spinodal limit is then obtained by setting α = αm sin(πz/d)
and by expanding the energy F to second order in αm: F = F0 + F2α2

m +O(α4
m). The spinodal

limit Vth of the HN is reached when F2 changes sign. This calculation gives the well-known
result [4,5,11,12,16] (see Figure 2)

Vth =

√√√√ π2K3

−εaε0

[
1−

(
C
C?

)2
]

. (18)

It should be noted that, in this case, Vth only depends on the confinement ratio C.
The analysis is more complex when B 6= 0. Doing the same expansion of the free

energy as above, we find a F2 term of the form given in Appendix A, which is a functional
of the β-profile. By imposing that F2 = 0 at the spinodal limit, one can therefore find
an analytical expression for Vth depending on integrals of the β-profile. An easy way of
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estimating these integrals is expanding the solution for β as a Taylor series of the magnetic
field, using at order 0 the simple form given in Equation (17):

β = βm +
πC
K32

[
2z
d
− 1
]
+ B2δβ. (19)

Using this general solution in the integral expression of F2 in the appendix, one finds
that the correction δβ disappears from terms of order 2 in the magnetic field and only
intervenes at order 4. Furthermore, we also find that βm = 0 minimizes the F2 term of
the free energy. This means that, at the spinodal limit, the~c-director of the TIC—or more
simply the TIC—orients parallel to the magnetic field. All this leads to the following simple
analytical form for the spinodal threshold Vth, valid at order 2 in B without having to
explicitly know δβ:

Vth(B) = Vth(0)

√√√√1−
[

1 +
sinc(πC/C?)

1− (C/C?)2

]
B2

2B?2 . (20)

Here, sinc(x) ≡ sin x/x, Vth(0) is given in Equation (18) and B? is the magnetic Freedericksz
threshold:

B? ≡ π

d

√√√√µ0K3

χa

[
1−

(
C
C?

)2
]

. (21)

To evaluate the validity of these formulae, we shall take in the following the values of
the material constants and experimental conditions given in Table 1.

Table 1. Material constants and experimental conditions used in the numerical analysis. The elastic
constants are in pN, the rotational viscosity γ1 is in Pa.s, the cholesteric pitch P is in µm, and the
magnetic field B is in T. Dielectric susceptibilities, magnetic anisotropy, and elastic constants have
been measured in this work. γ1 and the refraction indices are given by the LC manufacturer.

ε⊥ εa K1 K2 K3 γ1 χa no ne P B

9.727 −5.639 14.77 6.96 16.19 0.163 1.03 × 10−6 1.490 1.635 10 0.56

The spinodal limit calculated with Equation (20) is shown in Figure 2, which also
includes the spinodal curve obtained with a rigorous numerical calculation of β (see
Appendix A for details). As observed, the approximate formula is almost identical to the
numerical one, confirming that an expansion at order 2 in B is enough for the typical
magnetic fields used here. Note also that the spinodal curve calculated with B 6= 0 vanishes
at a thickness d? = 10.73µm and is always below the one calculated with B = 0 [green line
in Figure 2], which vanishes at d?(B = 0) = PK3

2K2
= 11.63µm. This is expected since the

magnetic field tends to destabilize the homeotropic nematic. Finally, it should be noted
that the spinodal threshold Vth is no longer a universal function of the confinement ratio C
when a magnetic field is applied, since the critical magnetic field Bc explicitly depends on
the sample thickness d.
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Figure 2. Spinodal limit calculated with Equation (18) when B = 0 (green line), and spinodal limit
calculated numerically (dashed red line) and with the approximate Formula (20) (solid blue line)
when B = 0.56 .

2.3. Orientation Transitions of the TIC (θ = 0)

A detailed analysis of the transition between the TIC and HN structures (see Appendix B)
suggests the existence of a first order transition between two TIC states, TIC1, oriented
parallel to B and TIC2, oriented perpendicular to B. In this section, we will find the line of co-
existence between these two TIC states, V1(d), and the associated spinodal lines V−1 (d) and
V+

1 (d). The coexistence line intersects the spinodal curve of the HN at [d = d1, V = Vth(d1)],
and the spinodal curves intersect the spinodal curve of the HN at [d = d−1 , V = Vth(d−1 )]
and [d = d+1 , V = Vth(d+1 )], respectively. To this purpose, we solved for each thickness
d the motion Equations (8)–(10) as a function of V by taking Vi = V and βi = 0.1 or
βi = π/2− 0.1 and we plotted βm(t) to find the orientation of the TIC in the stationary
regime. A few curves calculated at d = 7.5µm are shown in Figure 3a. First, we observed
that in all cases, βm(t) tends either to βm = 0 (or π) or to βm = ±π/2, meaning that only
solutions of type TIC1 or TIC2 are stable [Figure 3b]. Second, we observed that below the
voltage V−1 ≈ 2.82 Vrms, only a TIC1 develops, while above V+

1 ≈ 3.15 Vrms, only a TIC2
is present. On the other hand, the two TIC may be observed between these two limits,
meaning that they are either stable or metastable in this interval. To find at which voltage
V1 the two solutions coexist, we calculated their energy F1 and F2 and solved the equation
F1(V1) = F2(V1). At d = 7.5µm, we found V1 = 2.974 Vrms [Figure 3c]. Reproducing
the same calculation at different thicknesses allowed us to plot in the phase diagram the
coexistence curve V1(d) (solid red line in Figure 4) and the two spinodal curves V−1 (d) and
V+

1 (d) (dashed and dotted red lines in Figure 4, respectively).
We also found that there exists a second transition of the same type in the phase

diagram, but this time between a TIC2 and a TIC1 solution when the voltage—or the
thickness—is increased. The coexistence curve V2(d) and the two associated spinodal
curves V−2 (d) and V+

2 (d) are also shown in Figure 4 (solid blue curve and dashed and
dotted blue curves, respectively).

2.4. Role of a Tilted Magnetic Field (θ 6= 0)

It is easy to verify that if the magnetic field is in-plane (θ = 0) and if β is a solution of
the equations of motion (8) and (9), then β± π is also a solution of these equations. This
means that there are two possible opposite directions for the~c-director of TIC1 or TIC2.

This degeneracy is lifted, at least in the case of TIC1, when the field B is tilted with
respect to the horizontal (θ 6= 0). To verify this point, we solved the equations of motion by
placing ourselves in a region of the phase diagram where TIC1 develops and by assuming
that the field is slightly tilted. The curves (a–d) in Figure 5, calculated by taking d = 7.5µm,
αi = 10−3, t f = 5 s, Vi = V = 2 Vrms, B = 0.56 T and βi = π/2 show that the angle βm(t)
tends to 0 when θ > 0 (here, θ = 0.1) and to π when θ < 0 (here, θ = −0.1). This means
that the~c-director of TIC1 orients in the direction of increasing x when θ > 0 and in the
direction of decreasing x when θ < 0.
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Figure 3. (a) Angle βm giving the orientation of the TIC as a function of time when d = 7.5µm and
βi = 0.1 (left column) or βi = π/2− 0.1 (right column). In each case, a voltage below and above the
spinodal limit is shown. The voltage (in Vrms) is indicated on each graph. (b) Angle βm as a function
of the applied voltage V; (c) Energy difference between the TIC1 and the TIC2 as a function of the
applied voltage V calculated in the voltage interval where the two TIC are observed.
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Figure 4. Phase diagram showing the two transition lines between the TIC1 and TIC2 solutions.
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calculated at points A (d = 7µm, V = 2.5 Vrms), B (d = 10µm, V = 5 Vrms) and C (d = 14µm,
V = 8 Vrms) of the phase diagram. The North pole N corresponds to the homeotropic nematic.

By contrast, the orientation degeneracy is not lifted in the case of TIC2 as shown
in the curves (e–h) in Figure 5 calculated by taking d = 7.5µm, αi = 10−3, t f = 100 s,
Vi = V = 4 Vrms, B = 0.56 T and θ = 0.1. At this voltage, a TIC2 develops when the
magnetic field is horizontal. In this example, we see that βm(t) tends to β+

m = 1.526 when
we choose βi = 0.1 and to −β+

m = −1.526 when we take βi = −0.1. These two solutions
have the same energy and are therefore equiprobable, but we note that their~c-director is no
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longer strictly perpendicular to B. In the same way, we verified that when θ = −0.1, two
solutions with the same energy as the previous ones are possible. For these two solutions
βm(t) tends either to β−m = 1.615 or to −β−m = −1.615 depending on the value of βi chosen.
By symmetry, we have β+

m + β−m = π. This discussion on the possible orientations of TIC1
and TIC2 when the magnetic field is tilted from the horizontal is summarized in Figure 6.

To complete this study, we investigated how the V1 transition line and its spinodal
limits V+

1 and V−1 were modified when the magnetic field B is tilted from the horizontal.
The result is shown in Figure 7a where we have plotted how V1, V+

1 and V−1 change as
a function of θ in a sample of thickness d = 7.5µm. These curves show that, at constant
B (here B = 0.56 T), V1, V+

1 and V−1 increase when θ increases. On the other hand, the
hysteresis characterized by the difference V+

1 − V−1 decreases when θ increases. Finally,
we show in Figure 7b how angle β+

m —which gives the orientation of the ~c-director of
TIC2—changes as a function of the applied voltage and tilt angle θ in a sample of thickness
d = 7.5µm. This figure shows that the larger the tilt angle θ, the further TIC2 is from
being perpendicular to B, especially when the voltage is close to V1. A remarkable feature
in this figure is that all the curves intersect at the same point. At this particular point
corresponding to a voltage V ≈ 5 Vrms, TIC2 is perpendicular to B whatever the value of θ.
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Figure 5. Angles α and β of a TIC1 (a–d) and a TIC2 (e–h) configuration in the middle of the sample
(z = d/2) as a function of time when the magnetic field is slightly tilted. (a,b,e,f) correspond to
θ = 0.1; (c,d,g,h) correspond to θ = −0.1.
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Figure 7. (a) Voltages V1, V+
1 and V−1 as a function of the inclination angle θ of the magnetic field.

d = 7.5µm and B = 0.56 T. (b) Angle β+m (in degree) as a function of the applied voltage for different
inclinations of the magnetic field. From bottom to top, θ = 0, 0.1, 0.2 and 0.3 rad. d = 7.5µm and
B = 0.56 T.

3. Comparison with the Experiment
3.1. Cholesteric Mixture and Experimental Setup

The LC used is the mixture MLC2079. It was purchased from Merck (Darmstadt,
Germany) and used as received. This mixture is nematic at room temperature and melts
around 102 ◦C. This mixture was doped with 0.813% by weight of the chiral molecule R811
(from Merck, Germany). For this concentration, the cholesteric pitch is 10± 0.25 µm at
room temperature (21 ◦C) at which all the experiments were carried out. This point was
checked by using a Cano wedge. The samples were all prepared between two glass slides
covered with ITO (Indium Tin Oxide) to impose the electric field. Nickel wires of calibrated
diameters were used as a spacer to fix the thickness of the samples. Particular care was
taken with the parallelism between the electrodes, the angle of which was always less than
2 × 10−5 rad. Thickness was measured using a USB2000 Ocean Optic Spectrometer. Both
electrodes were treated with the Nissan Polyimide SE-4811 to ensure strong homeotropic
anchoring of the LC molecules. For increased precision, we remeasured most of the material
constants, as given in Table 1. More precisely, we determined the elastic constants K1 and
K3 and the two dielectric constants ε‖ and ε⊥ by measuring with a capacitance method the
Fredericksz transition in a 50 µm-thick homeotropic sample. The magnetic anisotropy was
then found by looking at how much the Fredericksz voltage drops when the homeotropic
sample is subjected to a horizontal magnetic field of 1 T. For this measurement, a Halbach
ring (from Magnetic Solutions Ltd., Sheffield, UK) of height 50 mm with a 26 mm bore was
used. All these experiments were performed in the nematic phase using the pure MLC2079
mixture. We assumed that these constants were not modified in the dilute cholesteric
phase. The constant K2 was determined in the cholesteric phase by measuring the threshold
voltage Vth for the appearance of the TIC [given by Formula (18)] in three homeotropic
samples with a thickness less than PK32/2 (to ensure unwound homeotropic texture, see
above). Our values of the elastic and dielectric constants are in reasonable agreement with
those given in the literature. For instance, the manufacturer gives, at 20 ◦C, ε⊥ = 10.2,
εa = −6.1, K1 = 15.9 pN and K3 = 18.3 pN, while V. Joshi gives in their thesis [17]
K1 = 18 pN, K2 = 7.5 pN and K3 = 20 pN. For the rotational viscosity and the optical
indices, we used the values given by the manufacturer (see Table 1).

To test our theoretical predictions on the orientation transition of the TIC, we used
four homeotropic samples with thicknesses d = 6.05, 7.51, 10.3, 12.65 µm. To facilitate the
observations, we simply placed each sample on the upper face of the Halbach ring. At
this place, the magnetic field is horizontal (in-plane) only in the center of the ring and is
B = 0.56 T (for a calibration of the Halbach ring along its axis of revolution, see Ref. [18]).
This ring is fixed on an optical bench equipped with a halogen lamp housing, an interference
filter at 546 nm, a polarizer oriented along the x-axis parallel to B, a quarter-wave plate
(rigorously quarter-wave at 578 nm) whose slow axis is at an angle of 45◦ with the x-axis, a
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macrozoom lens, a rotating analyzer driven by a stepping motor, and a Guppy Pro F-125B
camera (Allied Vision) interfaced with a LabView program (Figure 8).

A

M

O

S

S

x

ϕ

P

C

F

QW
π/4

Figure 8. Schematic representation of the experimental setup. S: Halogen lamp; F: green filter
(λ = 546 nm); P: polarizer parallel to x ; QW: quarter-wave plate with its slow axis oriented at 45◦

with respect to the x-axis; M: permanent magnet (Halbach ring). The dotted line gives the orientation
of the magnetic field; S: homeotropic sample; O: objective (macrozoom lens); A: rotating analyzer
motorized with a stepping motor. C: video camera.

We now detail the results obtained for each of the samples. All the measurements
were performed under AC electric field in the LC dielectric regime, at a frequency of 1 kHz.

3.2. Orientation Transitions and Hysteresis

We first examine the behavior of the thinnest sample, of thickness d = 6.05 µm.
A direct observation in the vicinity of the axis of the Halbach ring revealed that a wall
systematically forms along the y-axis perpendicular to B when a large enough voltage is
applied (see Figure 9a–e). This wall develops above the onset of instability of the TIC and
separates two regions where the ~c-director of the TIC is oriented in opposite directions.
The formation of this wall was expected since the magnetic field lines are curved outside
the magnet and are therefore slightly tilted with respect to the horizontal plane on either
side of the wall in the sample. The formation of this wall thus confirms our theoretical
prediction on the orientation of the TIC by a tilted magnetic field (see Section 2.4). We also
noted that no other wall formed parallel to B, which clearly indicates that only one solution
exists on either side of the wall. We are therefore dealing with a TIC1, in accordance with
the phase diagram shown in Figure 4. Figure 9a–e shows images of this wall at different
voltages when it is observed between polarizer and analyzer parallel to the x-axis (without
the λ/4-wave plate). Under these optical conditions, we numerically checked using Jones
calculus that between 2 and 7 Vrms the intensity transmitted through the TIC is minimal
when its~c-director is close to 45◦ or 135◦ (mod. 180◦) from the x-axis. Consequently, the
~c-director rotates by 90◦ between the two minima of the intensity profile, the distance of
which defines the width W of the wall. Figure 9f shows how W varies as a function of V. It
clearly appears that W diverges when the voltage reaches a value close to 6.4 Vrms. Above
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this value, the wall disappears, meaning that the TIC1 is transformed into a TIC2. Note
that the~c-director of the TIC2 is strictly perpendicular to B only in the center of the sample
where B is horizontal and turns to the right or to the left on either side of the center as
predicted by our calculation because of the inclination of the magnetic field with respect
to the horizontal (see Section 2.4). The approximate orientation of the~c-director deduced
from the measurement of the local intensity between parallel polarizer and analyzer is
indicated on each panel of Figure 9a–f. By decreasing the voltage, we observed that the wall
reappears, but at a lower voltage, of the order of 5.6 Vrms, as shown in Figure 9g, where
we also plotted W as a function of V at decreasing voltage. This behavior confirms the
numerical observation that the TIC1->TIC2 transition has hysteresis. Note that these values
are in rather good agreement with the values calculated above, which are V−1 = 5.21 Vrms
(downwards ramp) and V+

1 = 6.39 Vrms (upwards ramp).
To confirm the existence of this orientation transition, we also measured the curve

of transmitted intensity I(ϕ) through the sample when the polarizer is parallel to the
x-axis and the analyzer rotates by 360◦ starting from ϕ = 0. Here, ϕ denotes the angle
of the analyzer with the x-axis. For this measurement, performed with a 6.05 µm-thick
sample, it was essential to add the quarter-wave plate to differentiate the two types of TIC.
However, this optical measurement does not allow to determine in which direction each
TIC is oriented, the intensity curves being invariant by the transformation β→ β + π. All
measurements were performed inside a 50 × 50 µm2 square whose center was slightly
offset from the center of the wall to have a homogeneous intensity. A few curves are shown
in Figure 10 and are compared to the theoretical curves calculated using Jones calculus and
the numerical director field found by taking θ = 0. In this figure, we note that, at 6 Vrms,
the curve of TIC1 is observed during an upward voltage ramp while the curve of the TIC2
is observed when decreasing the voltage, again revealing that the transition does indeed
have hysteresis. This figure shows that there is very good agreement between theory and
experiment in this sample.

We performed similar measurements in a 7.51 µm-thick sample, where we found
experimentally a threshold voltage for the TIC formation Vth ≈ 1.3 Vrms and we observed
that the two TIC coexist between V−1 ≈ 2.8 Vrms and V+

1 ≈ 3.2 Vrms, while the numerics
give Vth = 1.32 Vrms, V−1 = 2.82 Vrms, and V+

1 = 3.15 Vrms. The main difference with
the 6.05 µm-thick sample is that the TIC1 is now unstable with respect to the formation of
cholesteric fingers of the first type (CF1) between 1.6 and 2.4 Vrms (Figure 11). These fingers
are perpendicular to B, which is compatible with a periodic modulation perpendicular
to the ~c-director of the TIC1, as expected for a CF1 [4,5,11]. This result contrasts with a
previous study, which suggested that fingers always align parallel to the magnetic field [19].

The next measurements were performed in a 10.3 µm-thick sample. As expected, we
did only observe the TIC2 solution above 3 Vrms. Below this voltage, TIC2 destabilizes to
form CF1, this time parallel to B. A few experimental and theoretical curves I(ϕ) are shown
in Figure 12. Again we note a very good agreement between experiments and theory.

Finally, we performed measurements in a 12.65 µm-thick sample at voltages larger
than 2.3 Vrms. As expected, we observed a TIC2→TIC1 transition at increasing voltage
and the coexistence between the two TIC between 3.5 and 4.5 Vrms. This is compatible
with our numerics which give, in excellent agreement, V−2 = 3.4 Vrms and V+

2 = 4.5 Vrms.
The optical curves I(ϕ) experimentally measured are also in good agreement with the
theoretical curves as can be seen in Figure 13. Below 2.3 Vrms, cholesteric fingers develop.
Surprisingly, these fingers are perpendicular to the magnetic field, whereas we would rather
expect them to be parallel to B as in the 10.3 µm-thick sample, since they also form from a
TIC2. This observation indicates that we are no longer dealing with CF1, but with a new
type of fingers with a different topology. This issue will be discussed in a future publication.
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Figure 9. (a–e) Pi-wall between two TIC1 oriented in opposite directions which forms spontaneously
in the middle of the 6.05 µm-thick sample when a voltage larger than Vth is applied. From (a–e)
V = 3.5, 4, 5, 6, 6.3 Vrms. The wall is perpendicular to the magnetic field B. (f) TIC2 observed at
V = 6.8 Vrms. The arrows indicate how the~c-director rotates in the sample. Observation without the
quarter-wave plate between crossed polarizers (analyzer parallel to B). The white bar is 50 µm long.
(g) Width W of the pi-wall as a function of the voltage measured at increasing and decreasing voltage.
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Figure 10. Transmitted intensity as a function of angle ϕ between the analyzer and the x-axis. The
polarizer is along the x-axis and a quarter-wave plate has been inserted between the polarizer and
the sample, with its slow axis at 45◦ from the x-axis. Sample of thickness d = 6.05 µm. The curves on
the top row are experimental and those in the bottom row are theoretical. From (a–c) V = 5, 6, and
6.3 Vrms. The solid line curves correspond to a TIC1 and the dashed lines to a TIC2. In (b) the curves
in full line have been obtained by increasing the voltage and those in dashed line by decreasing
the voltage.
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Figure 11. Cholesteric fingers of the first type (CF1) observed between crossed polarizer and analyzer
in the 7.51 µm-thick sample by focusing on a dust particle inside the sample. From (a–i) V increases
from 1.6 to 2.4 Vrms by increments of 0.1. The white bar is 50 µm long.
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Figure 12. Transmitted intensity as a function of angle ϕ. Same optical conditions as in Figure 10.
Sample of thickness d = 10.3 µm. From (a–c), V = 3, 8, and 20 Vrms. The curves on the top row are
experimental and those in the bottom row are theoretical. At this thickness, only the TIC2 is observed.
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Figure 13. Transmitted intensity as a function of angle ϕ. Same conditions as in Figure 10. Sample of
thickness d = 12.65 µm. From (a–c), V = 3, 4, and 5 Vrms. The curves on the top row are experimental
and those in the bottom row are theoretical. The solid line curves correspond to a TIC1 and the
dashed lines to a TIC2. In (b), the curves in dashed line (TIC2) have been obtained by increasing the
voltage and those in solid line (TIC1) by decreasing the voltage.

4. Conclusions

In this work, we have shown that the in-plane magnetic field generated with a ring
of permanent magnets can determine the orientation of the~c-director of a confined layer
of cholesteric liquid crystal with negative dielectric anisotropy. The mesogen is confined
between two parallel electrodes that impose homeotropic anchoring conditions, and the
cell gap is close to the cholesteric pitch of the chiral mesogen.

Interestingly, we have put into evidence analytically, numerically, and experimentally
the existence of two stable configurations where the~c-director is either perpendicular or
parallel to the applied magnetic field. The transition between the two configurations, which
can be controlled by tuning the amplitude of the applied electric field, is shown to be first
order as evidenced by the hysteresis observed between upward and downward electric
field ramps. At constant voltage, the stable TIC orientation depends on the confinement
ratio, that is, the ratio between the cell gap, d, and the cholesteric pitch, P. A detailed
analysis of the phase diagram reveals that there are in fact two transitions between the two
TIC configurations. For d < P, the TIC is parallel to B at low voltages and perpendicular to
B at high voltages, while the order is reversed when d > P.

It will be interesting to extend this study to the regime where cholesteric fingers are
stable under the external magnetic field, exploring the relationship between finger and TIC
orientation. In the known fingers of type 1, the latter are perpendicular to the TIC, but
different possibilities may arise in the presence of the magnetic field at large confinement
ratio (d/P > 1.1). Similarly, the control over the TIC orientation endowed by the magnetic
field will be exploited to steer the driving of stable spherulites. Preliminary experiments
have shown that this does not work with the mesogen used in this work, as the range of
stable spherulites and stable fingers overlap in the regions of interest where the transition
between the two types of TIC is observed. Other mesogens with significanly different
material properties will have to be considered.
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Appendix A. Numerical Calculation of the Spinodal Limit

When B 6= 0, Equation (9) for β no longer has a steady-state first integral. That
means that β deviates from the simple form given in Equation (17) and must be calculated
numerically. The procedure is as follows: first, we set α = αm sin(πz/d) and we then
expand F to second order in αm. We note that the electric potential also must be expanded
up to order 2 in αm for this expansion to be correct, especially when calculating the tricritical
point as in the next appendix. This can be done using Equation (11), which gives (This
expansion was not performed in an earlier work by Ribière et al. [11] whose calculations,
therefore, are not entirely correct, even in the simple case where B = 0.):

E =
V
d

[
1− εa

2ε‖
cos
(

2πz
d

)
α2

m

]
. (A1)

After a straightforward calculation, we find that the total free energy can be written as
F0 + α2

mF2, where each term has the following form:

F0 =
K2(qd)2 − ε‖V2

2d
, (A2)

F2 =
K3π2 − εaV2

4d
+
∫ d

0
sin2

(πz
d

)[
fk(β′) + B2 fb(β)

]
dz (A3)

fk(β′) =
1
2
(K3β′ − 2K2q)β′ (A4)

fb(β) = −1
2

χa cos2 β (A5)

Minimizing the F2 term with respect to β leads in steady state to the following Euler–
Lagrange equation for β(z):

β′′ + K3 cot
(πz

d

)(
β′ − q

K32

)(
2π

d

)
− χaB2

µ0K3
sin β cos β = 0. (A6)

This equation must be solved with the two BCs β′(0) = β′(d) = q/K32.
We solved this equation with Mathematica 12 by using a shooting method with starting

initial conditions: β(d/2) = βi and β′(d/2) = K2q/K3, where βm is an arbitrary constant.
Depending on the value of βi, we found two solutions corresponding to βm = 0 (sol 1) and
βm = π/2 (sol 2) in the final (steady) state. For each of these solutions, we then calculated
F2 and noted that, whatever the thickness, the value of F2 found for sol 2 was always greater
than that found for sol 1. This means that, at the spinodal limit, the~c-director of the TIC -or
more simply the TIC– orients parallel to the magnetic field.

On Figure A1, we compare the numerically calculated sol 1 with the approximate
profile using Equation (17) with βm = 0. As visible, these profiles are extremely close,
which further validate the theoretical approach in the main text. Finally, the critical voltage
Vth was determined numerically by finding for what value of V the coefficient F2 calculated
with sol 1 vanishes, leading to the following integral formula:(

Vth
V0

)2
=

2
π

∫ π

0

[
1− 2C

C?

(
∂β

∂Z

)
+

(
∂β

∂Z

)2
−
(

B
B0

)2
cos2 β

]
sin2 ZdZ, (A7)

with V0 = π
√

K3/(−ε0εa), B0 = (π/d)
√

µ0K3/χa, and Z = πz/d. Evaluating this
formula with the numerically calculated sol 1 gave the dashed red line of Figure 2, which is
also very close to the approximate formula given in the main text.
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Figure A1. Comparison between the exact profile β(z) (solid line) obtained by solving Equation (A6)
with B = 0.56 T and the analytical profile (dashed line) found at B = 0 when βm = 0 [Equation (17)].
The sample thickness is d = 9µm and the cholesteric pitch is P = 10µm.

Appendix B. Order of the Transition between TIC and Homeotropic Structures (θ = 0)

Previous studies in the absence of magnetic field indicate the presence of a tricritical
point on the spinodal line of coordinates (dtc, Vtc) with Vtc = Vth(dtc). At this point, the
transition changes order, being second order when d < dtc and first order when d > dtc.

To find the position of the tricritical point in the presence of a magnetic field, a
calculation to order 4 in a disturbance is necessary. This calculation is complicated because
it is necessary to take into account not only the disturbance of the type αm sin(πz/d) for
angle α but also a disturbance of the type δβ = βc cos(πz/d) for the angle β, as the previous
appendix suggests when B 6= 0 (see Equation (A6) and Figure A1). Moreover, at order 4
in the disturbance, the electric field must be expanded at order 2 in αm similar to the
previous appendix.

As an approximation, we can neglect the disturbance in βc, which leads to the follow-
ing equation in Q = qd/(πK32) = C/C? that must be solved to find the cell thickness at
the tricritical point, dtc:

Q2 =
κ1

κ2 − B2

2B2
0

g(Q)
, (A8)

with κ1 ≡ K13− εa/ε‖, κ2 ≡ 3(1− K23)− εa/ε‖, B0 = (q/K32)
√

µ0K3/χa, Kij = Ki/Kj and:

g(Q) ≡ εa

ε‖
+

(ε⊥Q2 + 4εa) sinc(πQ)

ε‖(Q2 − 4)(Q2 − 1)
. (A9)

Solving Equation (A8) with the values of the material constants given in Table 1 gives
dtc = 9.66µm.

To test the accuracy of this prediction, we calculated the position of the tricritical
point by solving numerically for each thickness Equations (8)–(10) in a small interval of
voltages around Vth. In the following, we will set ∆V = V −Vth and ∆Vi = Vi −Vth, with
V (resp., Vi) the final (resp., initial) voltage in our simulations as described above. In our
calculations, we took γu = 0.01 s µm−2, τi = 10 s, αi = 10−6, βi = 1 and t f large enough
for the stationary regime to be reached. For the initial voltage, we took either Vi = 0 or
Vi = Vth + 0.5 Vrms (∆Vi = 0.5 Vrms). In the first case, the initial state is the HN, while in
the second, the system transits through a high amplitude TIC before relaxing towards the
steady state. In the following, all the curves calculated by taking Vi = 0 will be drawn in
blue, while those obtained by using ∆Vi = 0.5 V will be drawn in red.

A first set of curves calculated this way is shown in Figure A2 when d = 9µm and
∆V = 0.1 Vrms. In this example, βm = 0 and αm = 0.749 for all cases. This shows that there
is only one steady state here, corresponding to a TIC of finite amplitude oriented parallel
to B.

The situation is different at larger thickness as shown in Figure A3 calculated by taking
d = 9.5µm and ∆V = 0.01 Vrms. In this particular example, two distinct stationary states
are reached depending on the value of Vi: a TIC of small amplitude when Vi is small
(here equal to 0) and a TIC with a larger amplitude when ∆Vi is large enough (here equal
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to 0.5 Vrms). Note that these two TIC orient parallel to B since βm = 0 in the two cases
(whatever the chosen value of βi). The calculation of F gives F = 11.714 for the TIC of small
amplitude (blue curve) and F = 11.711 for the TIC of large amplitude. Here the energy is
given in pN/µm. As a consequence, the TIC of small amplitude is metastable while the one
of larger amplitude is stable. This calculation shows the existence of a first order transition
line between two TIC parallel to B with different amplitudes, in the vicinity of the spinodal
line of the HN.
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Figure A2. Numerical solutions of Equations (8)–(10) at d = 9µm and ∆V = 0.1 Vrms calculated by
taking Vi = 0 (blue curves) and ∆Vi = 0.5 Vrms (red curves). (a–c) Time evolution of the angles α and
β and of the electric field E in the middle of the sample; (d–f) z-profiles of angles α and β and of the
electric field E in steady state. In graphs (d–f), the red curves have been shifted slightly upwards to
become visible. In (f) the green line shows the average electric field V/d.
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Figure A3. Numerical solutions at d = 9.5µm and ∆V = 0.01 Vrms calculated by taking Vi = 0 (blue
curves) and ∆Vi = 0.5 (red curves). (a–c) Time evolution of the angles α and β and of the electric
field E in the middle of the sample; (d–f) z-profiles of angles α and β and of the electric field E in
steady state. In (f) the green line shows the average electric field V/d. In this example, two different
stationary solution are found. The blue one is stable, and the red one metastable.

To confirm this point and determine the order of the HN→ TIC transition, we sys-
tematically calculated αm as a function of V at different thicknesses (Figure A4). As before
the blue curves were calculated by taking Vi = 0 Vrms and the red curves by taking
∆Vi = 0.5 Vrms. With these values, we found that, in all cases, the TIC orients parallel
to B in the stationary regime (βm = 0). However, important changes appear depending
on the thickness. At small thicknesses, the red and blue curves αm(V) are identical. They
vary continuously at the transition, with a concave shape at all voltages ∆V > 0. This
is characteristic of a second-order phase transition. An example calculated at d = 9µm
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is shown in Figure A4a. At larger thicknesses, the situation becomes more complex. At
d = 9.3µm, the red and blue curves are still identical and the HN→ TIC transition is still
second order, but we can note now that the curves deform above Vth and become convex at
some intermediate voltages as can be seen in Figure A4b.
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Figure A4. Amplitude αm of the TIC as a function of the voltage difference ∆V = V −Vth calculated
at different thicknesses: d = 9µm (a); d = 9.3µm (b); d = 9.39µm (c); d = 9.5µm (d); d = 9.7µm
(e) and d = 10µm (f). In (d–f), the dotted-dashed line indicates the value of ∆V at which the two
solutions have the same energy. On the left (resp., right) of this line, the most stable solution is that of
low (resp., large) amplitude.

The situation drastically changes at d = 9.39µm. At this thickness, the red and blue
curves are different. The HN→TIC transition is still second order but there appears a
discontinuity on each curve, at voltage ∆V ≈ 0.027 Vrms for the red curve and voltage
∆V ≈ 0.026 Vrms for the blue curve. The appearance of this hysteresis cycle reveals the pres-
ence of a first order transition between two TIC oriented parallel to B, but of different am-
plitudes. This change in behavior is shown in Figure A4c. In the phase diagram, this results
in the appearance of a critical point (CP) in (dc ≈ 9.38µm, ∆Vc = Vc −Vth ≈ 0.028 Vrms).
The situation remains unchanged as long as the thickness is less than 9.9 µm as shown in
Figure A4d calculated at d = 9.5µm, where we clearly see the two transitions of second
and first order. On the other hand, the second order NH→TIC transition tends to disappear
when the thickness increases as shown in Figure A4e calculated at d = 9.7µm, where it has
almost disappeared. Above the thickness d = 9.9µm, only a first order HN→TIC transition
is observed as shown in Figure A4f calculated at d = 10µm. In Figure A4d–f, the vertical
dash-dotted lines indicate at which voltages the two TIC or the TIC and the HN coexist.

This study is summarized in Figure A5, which shows a zoom of the phase diagram
around the tricritical point in the parameter plane (d, ∆V). In this figure, the base line
∆V = 0 corresponds to the spinodal line of the HN. The two blue dashed lines and the
red solid line are, respectively, the spinodal lines and the coexistence line of the transition
between the two TICs on the left of the tricritical point TCP and between the TIC and
the NH on the right of this point. Note that the point TCP is at the intersection of this
coexistence line and the spinodal line of the HN and has for coordinates (dtc = 9.55µm,
∆Vtc = 0). We add that the existence of the critical point is not linked to the presence of the
magnetic field since it also exists at field B = 0. On this subject, we refer to the theoretical
article by Gartland et al. [20] where this result is rigorously demonstrated in the case B = 0.

To conclude this study, we calculated the amplitude of the TIC on the spinodal curve
Vth of the HN at large thicknesses when d approaches dc, the thickness at which Vth
vanishes. By choosing Vi = 0 or ∆V = 0.5 Vrms as before, we found systematically a TIC
oriented parallel to B between dtc and a thickness d+1 ≈ 10.8µm. By contrast, by taking
∆Vi = 2 Vrms, we observed for thicknesses larger than a thickness d−1 ≈ 9.8µm, a second
branch of solution, corresponding to a TIC oriented perpendicular to B (βm = π/2). This
TIC (TIC2) has a larger amplitude than the TIC parallel to B (TIC1) as shown in Figure A6a.
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By calculating the energy of these two TIC [see Figure A6b], we found that TIC1 has less
energy than TIC2 when d < d1 ≈ 10.04µm and, conversely, that TIC2 has less energy than
TIC1 when d > d1.

Δ
V 

(m
V)

d (μm)

CP

TCP

dc dtc

Figure A5. Phase diagram in the vicinity of the tricritical point (TCP). On the left of TCP, two
transitions are observed as a function of the voltage: a second order transition between the HN and a
TIC of small amplitude and a first order transition between two TIC of non-zero amplitudes. This
transition ends at the critical point CP (cusp point). On the right of the tricritical point, a first order
transition between the HN and a TIC of large amplitude is observed.
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Figure A6. Maximal tilt angle (a) and energy (b) of TIC1 and TIC2 solutions as a function of the
thickness calculated on the spinodal line of the HN when V = Vth. The two solutions coexist between
d−1 and d+1 and have the same energy at d = d1. When d < d1, TIC1 forms (TIC parallel to B), while
TIC2 is preferred when d > d1 (TIC perpendicular to B).

References
1. Cladis, P.E.; Kleman, M. The cholesteric domain texture. Mol. Cryst. Liq. Cryst. 1972, 16, 1–20. [CrossRef]
2. Press, M.J.; Arrott, A.S. Static strain waves in cholesteric liquid crystals.-I. homeotropic boundary conditions. J. Phys. Paris 1976,

37, 387–395. [CrossRef]
3. Gil, L.; Gilli, J.M. Surprising dynamics of some cholesteric liquid crystal patterns. Phys. Rev. Lett. 1998, 80, 5742. [CrossRef]
4. Oswald, P.; Baudry, J.; Pirkl, S. Static and dynamic properties of cholesteric fingers in electric field. Phys. Rep. 2000, 337, 67–96.

[CrossRef]
5. Oswald, P.; Pieranski, P. Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments; The

liquid crystals book series; Taylor & Francis: Boca Raton, FL, USA, 2005; 618p.
6. Nawa, N.; Nakamura, K. Observation of Forming Process of Bubble Domain Texture in Liquid Crystals. Jpn. J. Appl. Phys. 1978,

17, 219–225. [CrossRef]

http://doi.org/10.1080/15421407208083575
http://dx.doi.org/10.1051/jphys:01976003704038700
http://dx.doi.org/10.1103/PhysRevLett.80.5742
http://dx.doi.org/10.1016/S0370-1573(00)00056-9
http://dx.doi.org/10.1143/JJAP.17.219


Crystals 2023, 13, 957 21 of 21

7. Smalyukh, I.I. Review: Knots and other new topological effects in liquid crystals and colloids. Rep. Prog. Phys. 2020, 83, 106601.
[CrossRef] [PubMed]

8. Wu, J.; Smalyukh, I.I. Hopfions, heliknotons, skyrmions, torons and both abelian and nonabelian vortices in chiral liquid crystals.
Liq. Cryst. Rev. 2022, 1–35. [CrossRef]

9. Ignés-Mullol, J.; Sagués, F. Experiments with active and driven synthetic colloids in complex fluids. Curr. Opin. Colloid Interface
Sci. 2022, 62, 101636. [CrossRef]

10. Hess, A.J.; Poy, G.; Tai, J.S.B.; Žumer, S.; Smalyukh, I.I. Control of Light by Topological Solitons in Soft Chiral Birefringent Media.
Phys. Rev. X 2020, 10, 031042. [CrossRef]

11. Ribière, P.; Pirkl, S.; Oswald, P. Electric-field-induced phase transitions in frustrated cholesteric liquid crystals of negative
dielectric anisotropy. Phys. Rev. A 1991, 44, 8198–8209. [CrossRef] [PubMed]

12. Smalyukh, I.I.; Senyuk, B.I.; Palffy-Muhoray, P.; Lavrentovich, O.D.; Huang, H.; Gartland, E.C.; Bodnar, V.H.; Kosa, T.; Taheri, B.
Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells. Phys. Rev. E
2005, 72, 061707. [CrossRef] [PubMed]

13. Sohn, H.R.O.; Liu, C.D.; Voinescu, R.; Chen, Z.; Smalyukh, I. Optically enriched and guided dynamics of active skyrmions. Opt.
Express 2020, 28, 6306–6319. [CrossRef] [PubMed]

14. Ackerman, P.J.; Boyle, T.; Smalyukh, I.I. Squirming motion of baby skyrmions in nematic fluids. Nat. Commun. 2017, 8, 673.
[CrossRef] [PubMed]

15. Hamdi, S.; Schiesser, W.E.; Griffiths, G.W. Method of lines. Scholarpedia 2007, 2, 2859. [CrossRef]
16. Ribière, P. Déroulage d’un Cholestérique Frustré en Champ électrique. Ph.D. Thesis, Université Claude Beranrd Lyon I, Lyon,

France, 1992.
17. Yoshi, V. Electro-Optical and Flexoelectro-Optical Properties Enhanced by Bimesogen-Doped Chiral Nematic Liquid Crystals.

Ph.D. Thesis, Kent State University, Kent, OH, USA, 2010.
18. Oswald, P. Measurement with a rotating magnetic field of the surface viscosity of a nematic liquid crystal. EPL (Europhys. Lett.)

2012, 100, 26001. [CrossRef]
19. Nagaya, T.; Hikita, Y.; Orihara, H.; Ishibashi, Y. Growth of Cholesteric Finger under the Magnetic Field. J. Phys. Soc. Japan 1998,

67, 2546–2550. [CrossRef]
20. Gartland, E.C.; Huang, H.; Lavrentovich, O.D.; Palffy-Muhoray, P.; Smalyukh, I.I.; Kosa, T.; Taheri, B. Electric-Field Induced

Transitions in a Cholesteric Liquid-Crystal Film with Negative Dielectric Anisotropy. J. Comp. Theor. Nanosci. 2010, 7, 709–725.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1361-6633/abaa39
http://www.ncbi.nlm.nih.gov/pubmed/32721944
http://dx.doi.org/10.1080/21680396.2022.2040058
http://dx.doi.org/10.1016/j.cocis.2022.101636
http://dx.doi.org/10.1103/PhysRevX.10.031042
http://dx.doi.org/10.1103/PhysRevA.44.8198
http://www.ncbi.nlm.nih.gov/pubmed/9905972
http://dx.doi.org/10.1103/PhysRevE.72.061707
http://www.ncbi.nlm.nih.gov/pubmed/16485964
http://dx.doi.org/10.1364/OE.382845
http://www.ncbi.nlm.nih.gov/pubmed/32225882
http://dx.doi.org/10.1038/s41467-017-00659-5
http://www.ncbi.nlm.nih.gov/pubmed/28939901
http://dx.doi.org/10.4249/scholarpedia.2859
http://dx.doi.org/10.1209/0295-5075/100/26001
http://dx.doi.org/10.1143/JPSJ.67.2546
http://dx.doi.org/10.1166/jctn.2010.1415

	Introduction
	Theoretical Study of the TIC Orientation
	Basic Equations and Numerical Method 
	Spinodal Limit (=0)
	Orientation Transitions of the TIC (=0)
	Role of a Tilted Magnetic Field (=0)

	Comparison with the Experiment
	Cholesteric Mixture and Experimental Setup
	Orientation Transitions and Hysteresis

	Conclusions
	Appendix A
	Appendix B
	References

