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Abstract: The hit compound 1,2,4-triazolo[4’,3’:2,3]pyridazino[4,5-b]indole 3 was synthesized from
the reflux of 4-amino-5-indolyl-1,2,4-triazole-3-thione 1 with 4′-bromoacetophenone 2 in methanol
catalyzed by concentrated HCl and the desired final molecule was obtained by recrystallization
from methanol. The suggested structures of compounds 1 and 3 based on the spectral characteriza-
tions were confirmed by X-ray single crystal diffraction analysis. Compound 3 crystallized in the
triclinic crystal system and P-1 space group with a = 5.9308(2) Å, b = 10.9695(3) Å, c = 14.7966(4) Å,
α = 100.5010(10)◦, β = 98.6180(10)◦, and γ = 103.8180(10)◦. On the other hand, the crystal system
of 1 is monoclinic, where a = 6.23510(10) Å, b = 26.0156(4) Å, c = 12.4864(2) Å, β = 93.243(2)◦ and
the space group is P21. The triazole and indole rings are found twisted from each other in both
compounds. The twist angle is higher in 3 (12.65◦) than 1 (4.94–7.22◦). In the case of the former, the H
. . . H (39.6%), H . . . C (22.0%), N . . . H (12.8%) and Br . . . H (13.2%) contacts are the most dominant
while the C . . . C, C . . . H, Br . . . H, N . . . H and S . . . S contacts have the characteristics of strong
interactions. In the latter, the C . . . H, N . . . H, S . . . H, S . . . S, and C . . . C contacts are the most
important. In this case, the percentages of the H . . . H, C . . . H, N . . . H and S . . . H contacts are in
the range of 34.9–37.4, 20.5–24.0, 12.2–13.6, 14.0–15.8, respectively. In both systems, the shape index
and curvedness of surfaces confirmed the presence of π–π stacking interactions.

Keywords: pyridazino[4,5-b]indol-4-one; indoles; pyridazines; X-ray single crystal; Hirshfeld
surface analysis

1. Introduction

Among the poly nitrogen containing compounds, whose importance in the field of
biology and smart materials is well known [1,2], it is worth mentioning the pyridazino[4,5-
b]indol-4-ones, which are a class of heterocycles consisting of fused tricyclic rings having
pyridazine and indolyl scaffolds. This conjugate has been determined to be an interest-
ing pharmacophore in drug discovery research. In cancer treatment, in particular the
pyridazino[4,5-b]indol-4-one as an aza-heterocycle class compound exhibited high effi-
cacy against many human cancer cells and targeted PI3Kα and DYRK1A5 inhibitory
activity [3,4]. Many other biological features have been reported for the pyridazino[4,5-
b]indol-4-ones as anti-microbial agents [5,6], anti-hypertensive [7,8], anti-viral (HIV-1) [9]
and blood platelet aggregation inhibitors [10]. Additionally, pyridazino[4,5-b]indol-4-one
which can be classified as β-carboline or γ-carboline core structures, showed interesting
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pharmacological potencies [11] such as binding with DNA, genotoxic, mutagenic and
cytotoxicity activities [12]. To design new molecules based on pyridazino[4,5-b]indol-4-one
as a pharmacological feature is an attractive challenge.

Many representative examples reported so far derive from the pyridazino[4,5-b]indol-4-
one carboline framework structure, such as SSR180575 (Figure 1) which is a neuroprotective
agent targeted to TSPO or PBR receptors with high nanomolar binding affinity [13,14].
ZFD-10 is another representative example which was reported recently to be an anti-viral
agent against ZIKV [15]. The authors claimed that this compound was able to inhibit
the ZIKV NS5 RdRp receptor and confirmed this using an RNA polymerase assay [15].
Sarhan, et al., designed and evaluated a novel pyridazino[4,5-b]indol-4-one derivative
against the human breast cancer cell (MCF-7), and was identified as a phosphoinositide
3-kinase (PI3K) inhibitor [16]. Besirli and co-workers developed a small molecule as a next
generation PKM2 activator, signaling photoreceptor apoptosis [17]. Salama and co-workers
have identified new molecules based on pyridazino[4,5-b]indol-4-one as multitargeting
inhibitors binding targets including EGFR, PI3K, and AKT [18].
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Figure 1. Some pyridazino[4,5-b]indol-4-one derivatives and selected thioether drugs of biological
importance.

Many other biological activities have been reported to be targeted by pyridazino[4,5-
b]indol-4-one [19–27], such as neoplastic progression, neuroinflammation, acute and chronic
inflammation, congestive heart failure (CHF), antiarrhythmic, serotonin antagonists [28–30],
among others. Thioether drugs represents one of the most important constituents of sulfur
containing drugs. The demonstrative pharmaceutical drugs include cimetidine (mainly
used for treatment of heartburn and peptic ulcers), thiethylperazine (important antagonist
of dopamine receptors), and pergolide (ergoline-based dopamine receptor agonist used in
some countries for the treatment of Parkinson’s disease) [31,32].

Based on these findings mentioned above and in continuation of our research program
for the synthesis of novel heterocycles, we report here new pyridazino[4,5-b]indol-4-one
derivatives. The chemical architectures were assigned based on a single crystal X-ray
diffraction analysis and other spectrophotometric tools. Additionally, supramolecular
insights have been explored using Hirshfeld surface analysis.

2. Materials and Methods

Melting points were determined using melting-point apparatus (SMP10) in open
capillaries and are uncorrected. Chemicals, solvents and reagents were purchased from
Sigma-Merck (Burlington, MA, USA) and Alfa Aesar (Stoughton, MA, USA). The reaction
progress and product purity was observed by thin layer chromatography (TLC) pre-coated
plates with silica gel 60 F254 with a thickness of 0.25 mm (Merck). Nuclear magnetic reso-
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nance (1H NMR and 13C NMR) spectra were determined in DMSO-d6 and were recorded on
Bruker AC 400 MHz spectrometers (Billerica, MA, USA) using TMS as an internal reference
standard. δ (ppm) was used for chemical shift description and values of coupling constants
were given in Hz. CHNS-microanalysis was performed on a Flash EA-1112 instrument
(Thermo Fisher Scientific, San Diego, CA, USA).

4-Amino-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 1
Synthetic procedures followed [33].

Yield: 78%, m.p. 288–289 ◦C [Lit. [31] 293–294 ◦C]. 1H NMR (400 MHz, DMSO-d6) δ
14.01 (s, 1H), 11.77 (s, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.55–7.47 (m, 2H), 7.22 (t, J = 7.4 Hz,
1H), 7.07 (t, J = 7.4 Hz, 1H), 5.97 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 167.08, 144.93,
137.22, 127.74, 123.99, 123.28, 121.65, 120.37, 112.47, 105.25; Elemental Analysis Calc. for
[C10H9N5S]: C, 51.93; H, 3.92; N, 30.28; S, 13.86 found C, 51.99; H, 3.82; N, 30.21; S, 14.01.

6-(4-Bromophenyl)-6-methyl-3-(methylthio)-6,11-dihydro-5H-[1,2,4]triazolo [4’,3’:2,3]p-
yridazino[4,5-b]indole 3

To a mixture of 1 (2.0 mmol) and 4′-Bromoacetophenone 2 (2.1 mmol) in 10 mL MeOH,
conc. HCl (0.3 mL) was added, and the mixture was refluxed for 6 h, then cooled. The ppt
was collected by filtration, dried and recrystallized from MeOH.

Yield: 65%, m.p. 305–306 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 12.43 (s, 1H), 7.82
(d, J = 7.7 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 7.7 Hz, 2H), 7.28 (d, J = 7.5 Hz, 3H), 7.19
(d, J = 10.9 Hz, 2H), 2.66 (s, 3H), 2.01 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 150.20,
146.44, 144.95, 137.89, 131.57, 128.46, 125.23, 123.80, 121.41, 121.19, 120.97, 120.50, 117.58,
113.11, 61.88, 27.27, 13.76; Elemental Analysis Calc. for [C19H16BrN5S]: C, 53.53; H, 3.78; Br,
18.74; N, 16.43; S, 7.52 found C, 53.73; H, 3.95; Br, 18.89; N, 16.39; S, 7.63.

2.1. X-ray Structure Determinations

The crystals of 1 and 3 were immersed in cryo-oil, mounted on a loop, and measured
at a temperature of 120 K and 170 K, respectively. The X-ray diffraction data were collected
on a Bruker Kappa Apex II (3) or a Rigaku Oxford Diffraction Supernova (1) diffractometer
using Mo Kα radiation. The Denzo-Scalepack [34] (3) or CrysAlisPro [35] (1) software
packages were used for cell refinements and data reductions. The structures were solved by
the intrinsic phasing method using the SHELXT [36] software. A numerical (3) absorption
correction (SADABS [37]) or Gaussian (1) absorption correction (CrysAlisPro [33]) was
applied to the intensities before the structure solution. Structural refinements were carried
out using SHELXL [38] software with the SHELXLE [39] graphical user interface. The
crystal of 1 was solved in the chiral space group P21 and the asymmetric unit contained
four crystallographically independent molecules. The NH and NH2 hydrogen atoms were
located from the difference Fourier map and refined isotopically. All other hydrogen
atoms were positioned geometrically and constrained to ride on their parent atoms, with
C-H = 0.95 − 0.98 Å and Uiso = 1.2 − 1.5·Ueq(parent atom). The crystallographic details are
summarized in Table 1.

Table 1. Crystal Data.

3 1

CCDC no. 2266558 2266559
empirical formula C19H16BrN5S C10H9N5S

fw 426.34 231.28
temp (K) 170(2) K 120(2)

λ (Å) 0.71073 Å 0.71073
crystal system Triclinic Monoclinic
space group P 1 P21
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Table 1. Cont.

3 1

a (Å) 5.9308(2) 6.23510(10)
b (Å) 10.9695(3) 26.0156(4)
c (Å) 14.7966(4) 12.4864(2)

α (deg) 100.5010(10) 90
β (deg) 98.6180(10) 93.243(2)
γ (deg) 103.8180(10) 90
V (Å3) 900.07(5) 2022.17(6)

Z 2 8
ρcalc (Mg/m3) 1.573 1.519

µ (Mo Kα) (mm−1) 2.413 0.297
No. reflections. 19858 13486

Completeness to theta = 25.242◦ 99.1% 99.9%
Unique reflns. 5240 13486

GOOF (F2) 1.043 1.028
Rint 0.0278 0.0376

R1
a (I ≥ 2σ) 0.0433 0.0425

wR2
b (I ≥ 2σ) 0.0913 0.0995

a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = [Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]]1/2.

2.2. Hirshfeld Surface Analysis

The topology analyses were performed using the Crystal Explorer 17.5 program [40].

3. Results and Discussion

The starting precursor 4-amino-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione
1 was synthesized following the procedures outlined previously [33]. Reaction of 1 with
4′-bromoacetophenone 2 in methanol and the presence of concentrated HCl as an acid
catalyst afforded 1,2,4-triazolo [4’,3’:2,3]pyridazino[4,5-b]indole 3 in good yield (Scheme 1).
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Scheme 1. Synthesis of 1,2,4-Triazolo [4’,3’:2,3]pyridazino[4,5-b]indole 3.

The NMR supported the structure (see Figures S1–S4; Supplementary Materials) via
the following signals: 1H NMR displayed the triazole NH at 14.01 ppm, the indole NH at
11.77 ppm and the amino group protons at 5.97 ppm. In addition, 13C NMR detected the
thiocarbonyl carbon at 167.08 ppm and the remaining triazole carbon at 144.93 ppm. The
1H NMR of 3 displayed a signal at 12.43 ppm for indole NH, and two signals at 2.66 and
2.01 ppm for two methyl groups. Moreover, 13C NMR displayed the two triazole carbons
at 150.20 and 146.44 ppm. The quaternary carbon was detected at 61.88 ppm. While the
two methyl carbons were found at 27.27 and 13.76 ppm.

The reaction product 3 is suggested to form through the mechanism described in
Scheme 2. The mechanism illustrates the role of the acid catalyst in the condensation
reaction and removal of a water molecule. Secondly the mechanism also explains the
role of the acid in the formation of an electrophile (the expected methyl carbocation) from
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methanol as a methylating agent which then attacked from the nucleophilic sulfur atom
(Scheme 2).
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Scheme 2. Plausible mechanism for the synthesis of compound 3.

3.1. Crystal Structure Description

The structure of 3 is further confirmed using X-ray diffraction of a single crystal. The
structure of the asymmetric unit is shown in Figure 2. As seen in this figure, there is one
molecule of 3 as an asymmetric formula while four molecules are present in the unit cell.
Compound 3 crystallized in the triclinic crystal system and P-1 space group. The unit
cell parameters are a = 5.9308(2) Å, b = 10.9695(3) Å, c = 14.7966(4) Å, α = 100.5010(10)◦,
β = 98.6180(10)◦, and γ = 103.8180(10)◦, while V = 900.07(5) Å3 and density is calculated
to be 1.573 mg/m3 (Table 1). The experimental geometric parameters are depicted in
Table 2. The triazole and indole rings are perfectly planar but both rings are twisted from
each other by 12.65◦. In addition, the phenyl ring is nearly perpendicular to the mean
plane of the triazole and indole moieties. The corresponding twist angles are 83.71 and
86.57◦, respectively.
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Table 2. Bond lengths (Å) and angles (◦) of 3.

Bond Length/Å Bond Length/Å

Br(1)-C(17) 1.901(2) N(3)-C(4) 1.364(2)
S(1)-C(2) 1.729(2) N(3)-C(5) 1.370(3)
S(1)-C(1) 1.800(3) N(4)-N(5) 1.415(2)
N(1)-C(2) 1.319(2) N(4)-C(12) 1.496(3)
N(1)-N(2) 1.405(2) N(5)-C(2) 1.360(3)
N(2)-C(3) 1.314(2) N(5)-C(3) 1.376(2)

Bond Angle/◦ Bond Angle/◦

C(2)-S(1)-C(1) 98.05(11) N(2)-C(3)-N(5) 109.78(17)
C(2)-N(1)-N(2) 107.17(16) N(2)-C(3)-C(4) 134.78(17)
C(3)-N(2)-N(1) 107.18(15) N(5)-C(3)-C(4) 115.34(16)
C(4)-N(3)-C(5) 107.76(17) N(3)-C(4)-C(11) 111.56(17)

N(5)-N(4)-C(12) 109.85(14) N(3)-C(4)-C(3) 127.89(17)
C(2)-N(5)-C(3) 105.82(15) C(11)-C(4)-C(3) 120.50(17)
C(2)-N(5)-N(4) 127.79(16) N(3)-C(5)-C(6) 129.00(19)
C(3)-N(5)-N(4) 126.36(16) N(3)-C(5)-C(10) 108.68(17)

The molecular units of 3 are connected to each other by C13-H13C . . . N2, N4-H4
. . . N1 and N3-H3 . . . N2 non-covalent interactions shown in Figure 3A. Details of these
intermolecular interactions are depicted in Table 3. The H13C . . . N2, H4 . . . N1 and H3
. . . N2 have the shortest interaction distances of 2.54, 2.46(3) and 2.07(3) Å, respectively,
while the C13 . . . N2, N4 . . . N1 and N3 . . . N2 distances are 3.458(3), 3.270(2) and 2.854(2)
Å, respectively. The corresponding C13-H13C . . . N2, N4-H4 . . . N1 and N3-H3 . . . N2
angles are 155.7, 160(2) and 172(3)◦, respectively. The packing scheme of the molecular
units is shown in Figure 3B.
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Table 3. Hydrogen bonds for 3 [Å and ◦].

D-H . . . A d(D-H) d(H . . . A) d(D . . . A) <(DHA) Symm. Code

N(3)-H(3) . . . N(2)#1 0.79(3) 2.07(3) 2.854(2) 174(3) #1 −x + 1, −y +
2, −z + 1

C(13)-H(13C) . . . N(2)#2 0.98 2.54 3.458(3) 155.7 #2 x + 1, y, z
N(4)-H(4) . . . N(1)#2 0.85(3) 2.46(3) 3.270(2) 160(2) #2 x + 1, y, z

In addition, the supramolecular structure of 3 is controlled by C-H . . . π interactions
between the C13-H13C of the methyl group and the π-system of the triazole system. The
distance between the H13C atom and the ring centroid is 2.432(3) Å. Presentation of the
C-H . . . π interactions is shown in Figure 4.
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On the other hand, the X-ray structure of 1 is shown in Figure 5 while the detailed
crystal data are given in Table 1. The crystal system of compound 1 is the more symmetric
monoclinic and P21 space group. Crystal data are a = 6.23510(10) Å, b = 26.0156(4) Å,
c = 12.4864(2) Å, and β = 93.243(2)◦, while V = 2022.17(6) Å3 and z = 8. The crystal density
is calculated to be 1.519 mg/m3. In this crystal structure, there are four molecules of this
compound that differ very little in their geometric parameters (Table 4). In this case, the
twist angles between the indole and triazole rings are found to be less compared to 3, where
the twist angles are 7.22, 4.94, 6.74, and 6.21◦, for molecules A to D, respectively.
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Table 4. Bond lengths (Å) and angles (◦) for 1.

Bond Length/Å Bond Length/Å

S(1)-C(10) 1.675(3) S(1C)-C(10C) 1.680(3)
N(1)-C(1) 1.378(4) N(1C)-C(1C) 1.374(4)
N(1)-C(8) 1.382(4) N(1C)-C(8C) 1.383(3)
N(2)-C(10) 1.370(3) N(2C)-C(9C) 1.366(3)
N(2)-C(9) 1.371(3) N(2C)-C(10C) 1.373(3)
N(2)-N(3) 1.407(3) N(2C)-N(3C) 1.405(3)
N(4)-C(10) 1.343(4) N(4C)-C(10C) 1.337(3)
N(4)-N(5) 1.373(3) N(4C)-N(5C) 1.377(3)
N(5)-C(9) 1.316(3) N(5C)-C(9C) 1.315(3)

S(1B)-C(10B) 1.677(3) S(1D)-C(10D) 1.685(3)
N(1B)-C(1B) 1.376(4) N(1D)-C(1D) 1.375(4)
N(1B)-C(8B) 1.383(4) N(1D)-C(8D) 1.380(4)

N(2B)-C(10B) 1.378(3) N(2D)-C(10D) 1.362(4)
N(2B)-C(9B) 1.379(3) N(2D)-C(9D) 1.368(3)
N(2B)-N(3B) 1.400(3) N(2D)-N(3D) 1.407(3)
N(4B)-C(10B) 1.336(4) N(4D)-C(10D) 1.335(4)
N(4B)-N(5B) 1.379(3) N(4D)-N(5D) 1.378(3)
N(5B)-C(9B) 1.311(4) N(5D)-C(9D) 1.317(4)

Bond Angle/◦ Bond Angle/◦

C(1)-N(1)-C(8) 108.4(2) C(1C)-N(1C)-C(8C) 108.8(2)
C(10)-N(2)-C(9) 109.0(2) C(9C)-N(2C)-C(10C) 108.6(2)
C(10)-N(2)-N(3) 124.8(2) C(9C)-N(2C)-N(3C) 126.4(2)
C(9)-N(2)-N(3) 126.2(2) C(10C)-N(2C)-N(3C) 124.9(2)
C(10)-N(4)-N(5) 113.2(2) C(10C)-N(4C)-N(5C) 113.1(2)
C(9)-N(5)-N(4) 104.5(2) C(9C)-N(5C)-N(4C) 104.1(2)
N(1)-C(1)-C(2) 129.4(3) N(1C)-C(1C)-C(2C) 129.8(3)
N(1)-C(1)-C(6) 107.9(2) N(1C)-C(1C)-C(6C) 107.7(2)

C(1B)-N(1B)-C(8B) 108.4(2) C(1D)-N(1D)-C(8D) 108.7(2)
C(10B)-N(2B)-C(9B) 108.2(2) C(10D)-N(2D)-C(9D) 109.1(2)
C(10B)-N(2B)-N(3B) 125.5(2) C(10D)-N(2D)-N(3D) 125.4(2)
C(9B)-N(2B)-N(3B) 126.3(2) C(9D)-N(2D)-N(3D) 125.4(2)

C(10B)-N(4B)-N(5B) 113.2(2) C(10D)-N(4D)-N(5D) 113.1(2)
C(9B)-N(5B)-N(4B) 104.5(2) C(9D)-N(5D)-N(4D) 104.2(2)
N(1B)-C(1B)-C(2B) 129.5(3) N(1D)-C(1D)-C(2D) 129.9(3)
N(1B)-C(1B)-C(6B) 108.2(2) N(1D)-C(1D)-C(6D) 107.8(2)

The molecular packing of 1 is presented in Figure 6 while the hydrogen bond param-
eters are depicted in Table 5. There are a large number of polar N-H . . . N and N-H . . .
S hydrogen bonds which connect the molecules of compound 1 via complicated sets of
hydrogen bonding interactions. The donor–acceptor distances for the N-H . . . N hydrogen
bonds are in the range of 3.010(4) Å (N3-H3B . . . N5) to 3.157(4) Å (N1C-H1C . . . N3C). On
the other hand, the respective values for the N-H . . . S hydrogen bonds range from 3.306(3)
Å (N4B-H4B . . . S1D) to 3.576(3) Å (N1B-H1B . . . S1C).
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Table 5. Hydrogen bonds for 1 [Å and ◦].

D-H . . . A d(D-H) d(H . . . A) d(D . . . A) <(DHA) Symm. Code

N1-H1 . . . N3 0.88(4) 2.30(4) 3.122(4) 154(3) −1 + x, y, z
N1B-H1B . . . S1C 0.83(4) 2.82(4) 3.577(3) 154(3) 1 + x, y, z

N1C-H1C . . . N3C 0.85(4) 2.43(4) 3.157(3) 144(3) 1 + x, y, z
N3-H3A . . . S1D 0.93(4) 2.58(4) 3.455(3) 157(3) x, y, −1 + z
N3-H3B . . . N5 0.93(4) 2.28(4) 3.011(3) 136(3) 1 + x, y, z
N4-H4 . . . S1C 0.93(4) 2.42(4) 3.342(2) 171(3) x, y, −1 + z

N4B-H4B . . . S1D 0.88(4) 2.43(4) 3.306(3) 171(3) x, y, −1 + z
N4C-H4C . . . S1 0.78(4) 2.54(4) 3.322(3) 178(4) x, y, 1 + z

N4D-H4D . . . S1B 0.82(4) 2.54(4) 3.352(3) 170(3) x, y, 1 + z
N3C-H3CA . . . S1B 0.97(4) 2.53(4) 3.440(3) 157(3)
N3C-H3CB . . . N5C 0.80(4) 2.42(4) 3.076(3) 140(3) −1 + x, y, z
N3B-H3BA . . . N5B 0.89(4) 2.37(4) 3.113(4) 141(4) −1 + x, y, z
N3D-H3DB . . . N5D 0.88(4) 2.30(4) 3.044(3) 143(3)

3.2. Hirshfeld Surface (HS) Analysis

Analysis of the possible non-covalent interactions using Hirshfeld calculations in
crystalline materials gave a complete picture of the different forces which stabilize the
crystal structure. All possible non-covalent interactions present in the crystal structure of 3
along with their net percentages are presented graphically in Figure 7 (blue bars). In the
same figure, the percentage contributions of the interaction of all the atoms present inside
the HS with an atom outside the HS (brown bars) as well as the percentage contributions
of the interaction of an atom present inside the HS with all the atoms present in the
surrounding area of the HS (green bars) are presented. The H . . . H (39.6%), H . . . C
(22.0%), N . . . H (12.8%) and Br . . . H (13.2%) contacts are the most dominant in the crystal
structure of this compound. Other minor contacts such as the S . . . H (3.3%), C . . . N (3.0%),
Br . . . S (2.8%) and Br . . . C (0.3%) are detected in the crystal structure of 3.
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The different mapped surfaces resulting from the Hirshfeld calculations are presented
in Figure 8. In the dnorm map, the red regions are related to the C . . . C, C . . . H, Br . . . H,
N . . . H, S . . . S and Br . . . C contacts. The short intermolecular interactions are listed in
Table 6. The C3 . . . C6 (2.367 Å), C3 . . . H13C (2.548 Å), Br1 . . . H1A (3.196 Å), N2 . . . H3
(1.849 Å), and Br1 . . . C1 (3.470 Å) are the shortest distance non-covalent interactions.
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Table 6. Short contacts in 3.

Contact Distance Contact Distance

C3 . . . C6 2.367 Br1 . . . H1B 3.215
C16 . . . H13B 2.764 N2 . . . H3 1.849
C3 . . . H13C 2.548 N1 . . . H4 2.311
C2 . . . H13C 2.725 N1 . . . H3 2.585

Br1 . . . C1 3.47 N2 . . . H13C 2.448
Br1 . . . H1A 3.196 N1 . . . H13C 2.577

S1 . . . S1 3.286

The shape index and curvedness of surfaces are essential to confirm the presence of
π–π stacking interactions. It is clear that the red/blue triangles in the shape index and flat
green area in curvedness indicated the presence of π–π stacking interactions (Figure 8). In
accord with this observation, the percentage of C . . . C contacts is 2.1%. In addition, the
decomposed fingerprint (FP) plots of all short contacts are shown in Figure 9. Without
doubt, the sharp spikes in the FP plots of the majority of these contacts confirmed their
importance where all have shorter distances than the vdWs radii sum of the interacting
atoms (Table 6).

For 1, there are four molecules of this compound in the asymmetric formula. In
this case, the dnorm map of each molecule was calculated separately and the possible
intermolecular interactions are analyzed and presented in Figures 10 and 11, respectively.
The four molecules in the asymmetric unit have common types of non-covalent interactions
but their percentages are slightly different in the four units.
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For 1, there are four molecules of this compound in the asymmetric formula. In
this case, the dnorm map of each molecule was calculated separately and the possible
intermolecular interactions are analyzed and presented in Figures 10 and 11, respectively.
The four molecules in the asymmetric unit have common types of non-covalent interactions
but their percentages are slightly different in the four units.

Careful inspection of the dnorm maps of the four units indicated the presence of a
number of short non-covalent interactions which are generally shorter than the vdWs
radii sum of the two atoms sharing these contacts (Table 7). These interactions which
are considered important in the molecular packing of 1 are seen in the dnorm map as red
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spots. In this structure, the C . . . H, N . . . H, S . . . H, S . . . S, and C . . . C contacts are the
most important.Crystals 2023, 13, x FOR PEER REVIEW 14 of 18 

 

 

 
Figure 10. Hirshfeld dnorm surfaces for the four molecules in the asymmetric formula of 1 showing 
the most important interactions (A) C…H, (B) N…H, (C) S…H, (D) C…C and (E) S…S. 

 
Figure 11. Distribution of all intermolecular contacts in the four molecules of 1 in the asymmetric 
formula. 

Figure 10. Hirshfeld dnorm surfaces for the four molecules in the asymmetric formula of 1 showing
the most important interactions (A) C . . . H, (B) N . . . H, (C) S . . . H, (D) C . . . C and (E) S . . . S.

Crystals 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 10. Hirshfeld dnorm surfaces for the four molecules in the asymmetric formula of 1 showing 
the most important interactions (A) C…H, (B) N…H, (C) S…H, (D) C…C and (E) S…S. 

 
Figure 11. Distribution of all intermolecular contacts in the four molecules of 1 in the asymmetric 
formula. Figure 11. Distribution of all intermolecular contacts in the four molecules of 1 in the
asymmetric formula.

Table 7. All possible non-covalent interactions and their percentages in 1.

Contact Distance Contact Distance

C1 . . . H3C 2.619 N5 . . . H3B 2.214
C2 . . . H3C 2.743 N3 . . . H1 2.193
C6D . . . H3 2.754 N5B . . . H3BA 2.275
C2 . . . H3BB 2.67 N3B . . . H1B 2.554
C3 . . . H3BB 2.614 N3C . . . H1C 2.301
C4 . . . H3BB 2.754 N5C . . . H3CB 2.263

C3B . . . H4DA 2.671 N5D . . . H3DB 2.197
C5C . . . H4BA 2.787 N3D . . . H1D 2.51
C4C . . . H4BA 2.661 S1 . . . H4C 2.314
C3C . . . H4BA 2.692 S1C . . . H4 2.341
C4C . . . H3DA 2.759 S1D . . . H3A 2.505
C3C . . . H3DA 2.526 S1B . . . H4D 2.354

C1 . . . H3C 2.619 S1D . . . H4B 2.309
H3C . . . C2 2.743 S1C . . . H1B 2.656
S1 . . . S1C 3.167 C7 . . . C10B 3.354

S1B . . . S1D 3.137 C5 . . . C9B 3.39
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Decomposition of the fingerprint plots gave accurate percentages of all possible con-
tacts in the crystal structure. It was found that, the H . . . H, C . . . H, N . . . H and S . . . H
contacts are the most dominant in all units. Their percentages range from 34.9 to 37.4, 20.5
to 24.0, 12.2 to 13.6 and 14.0 to 15.8%, respectively (Table 8). In addition, the sharp spikes in
the decomposed fingerprint plots of these contacts indicate short distance interactions and
are considered strong (Figure 12).

Table 8. Percentages of all contacts in 1 a.

Contact A B C D

S . . . S 1.1 0.8 1.1 0.8
S . . . N 1.8 (1.3,0.5) 1.3 (0.5,0.8) 1.1 (0.6,0.5) 1.4 (0.6,0.8)
S . . . C 1.4 (0.7,0.7) 1.4 (0.7,0.7) 1.3 (0.3,0.9) 1.3 (1.0,0.3)
S . . . H 14.6 (9.0,5.7) 14.5 (9.6,4.9) 15.8 (10.0,5.8) 14.0 (9.4,4.7)
N . . . N 1.1 1.2 1.2 1.1
C . . . N 3.4 (1.4,2.0) 4.6 (2.7,1.9) 5.8 (2.7,3.1) 5.0 (2.8,2.2)
N . . . H 13.6 (7.8,5.7) 13.3 (7.8,5.5) 12.2 (6.9,5.3) 12.6 (6.9,5.7)
C . . . C 4.1 4.0 4.5 4.6
C . . . H 22.4 (14.0,8.3) 24.0 (12.8,11.3) 20.5 (12.2,8.3) 21.8 (12.5,9.3)
H . . . H 36.5 34.9 36.5 37.4

a Values inside parentheses are the percentage contributions of the interaction of all the atoms present inside the
HS with an atom outside the HS, and the percentage contributions of the interaction of an atom present inside the
HS with all the atoms present in the surrounding area of the HS, respectively.
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4. Conclusions

Compound 1, 4-Amino-5-indolyl-1,2,4-triazole-3-thione, reacted with 4′-bromoacetop-
henone 2 in methanol and concentrated HCl to give the target compound 1,2,4-triazolo
pyridazino[4,5-b]indole 3 in good yield. Crystals suitable for X-ray single crystal analysis
were obtained by recrystallization from methanol. The structure of both compounds
was analyzed using Hirshfeld calculations based on their accurately determined X-ray
structures. While 3 crystallized in the triclinic crystal system and P-1 space, compound
1 crystallized in the less symmetric monoclinic crystal system and P21 space group. In
the former, the triazole and indole rings are twisted from each other by 12.64◦, while the
corresponding values in 1 are in the range 4.94–7.22◦. Hirshfeld analysis indicated the
significance of the C . . . C, C . . . H, N . . . H and S . . . S contacts in both compounds.
Additionally, some short Br . . . H interactions were detected in 3. In both systems, the
shape index and curvedness maps confirmed the presence of π–π stacking interactions.
Quantitative determinations of the non-covalent interactions that occurred in both crystals
indicated that the H . . . H (35.3%), H . . . C (22.5%), N . . . H (15.4%) and Br . . . H (13.2%)
contacts are the most dominant in 3 while the H . . . H (34.9 to 37.4%), C . . . H (20.5 to 24.0%),
N . . . H (12.2 to 13.6%) and S . . . H (14.0 to 15.8%) contacts are the most abundant in 1.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13071036/s1, the CIF data of compounds 3 and 1. were
provided as CCDC_2266558.cif and CCDC_2266559.cif. Figure S1: 1HNMR of compound 1; Figure S2:
13CNMR of compound 1; Figure S3: 1HNMR of compound 3; Figure S4: 13CNMR of compound 3.
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