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Abstract: Prior to 2021, 4-bromo-1H-pyrazole (published in 1999) was the only structurally character-
ized 4-halogenated-1H-pyrazole in the Cambridge Crystallographic Data Center (CCDC). The struc-
tures of 4-chloro-1H-pyrazole and 4-fluoro-1H-pyrazole were published in 2021 and 2023, respectively.
Herein, we report the crystal structure for 4-iodo-1H-pyrazole, completing the crystallographic data
for the series of 4-halogenated-1H-pyrazoles. The bromo and chloro analogs are isostructural, forming
trimeric H-bonding motifs, whereas the fluoro and iodo analogs form non-isostructural catemers. We
also compare the experimental and theoretical (by DFT calculations) IR and 1H NMR spectroscopic
data of the four halogenated 4-X-pzH compounds and unsubstituted pyrazole (pzH). An explanation
is offered for some counterintuitive structural, infrared, and 1H-NMR spectroscopic data.

Keywords: pyrazoles; DFT calculations; low temperature

1. Introduction

Pyrazoles are five-membered, π-excess heterocycles consisting of three carbon atoms
and two adjacent nitrogen atoms (Figure 1). One nitrogen atom (N1) is pyrrole-like while the
other (N2) is pyridine-like, allowing for both proton donor and acceptor properties. When
N1 is protonated, pyrazole coordinates to metals through N2 as a monodentate ligand;
however, N1 is readily deprotonated to form the pyrazolide ion, which can coordinate to
metals in an exo- or endo-bidentate fashion in addition to monodentate coordination. The
Lewis base tunability (via peripheral substitution) and structural rigidity of the pyrazole
ligand led to its extensive applications in coordination chemistry [1–3], while the existence
of both donor and acceptor sites in the same molecule enabled its role in supramolecular
chemistry [4–8].
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the other (N2) is pyridine-like, allowing for both proton donor and acceptor properties. 
When N1 is protonated, pyrazole coordinates to metals through N2 as a monodentate 
ligand; however, N1 is readily deprotonated to form the pyrazolide ion, which can coor-
dinate to metals in an exo- or endo-bidentate fashion in addition to monodentate coordi-
nation. The Lewis base tunability (via peripheral substitution) and structural rigidity of 
the pyrazole ligand led to its extensive applications in coordination chemistry [1–3], while 
the existence of both donor and acceptor sites in the same molecule enabled its role in 
supramolecular chemistry [4–8]. 

Figure 1. Line drawing and numbering scheme of pyrazole backbone. 
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Pyrazoles can be substituted in the 3-, 4-, and 5-positions while maintaining the ability
to form an N(H) . . . N hydrogen bonding network involving two or more molecules. The
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nature (e.g., electronic and steric properties) and position of the substituents leads to the
formation of various H-bonding motifs, such as dimers, trimers, tetramers, and catemers
(Figure 2). Attempts were made to derive an empirical rule to predict H-bonding motifs
of substituted pyrazoles [9–11], as understanding H-bonding is pertinent for drug design
and pyrazoles serve as scaffolds for many biologically active compounds [12–15]. Thus
far, it is agreed upon that the four common H-bonding motifs can be classified into two
groups—dimers/tetramers and trimers/catemers. Infantes and Motherwell successfully
predicted the H-bonding motif of substituted pyrazoles into one of the groups based on the
accessible surface of the nitrogen atoms [9]; however, further prediction within each group
is still not possible, largely due to limited crystallographic data.
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The crystal structure of 4-bromo-1H-pyrazole (4-Br-pzH) was published in 1999 [16],
4-chloro-1H-pyrazole (4-Cl-pzH) in 2021 [17], and, most recently, 4-fluoro-1H-pyrazole
(4-F-pzH) in 2023 [18]. The bromo and chloro analogs are isostructural and form trimeric
H-bonding motifs; however, the fluoro analog forms catemeric chains. Herein, we report
the crystal structure for 4-iodo-1H-pyrazole (4-I-pzH), completing the crystallographic
data for the series of 4-X-1H-pyrazoles (4-X-pzH, where X = F, Cl, Br, I). Like 4-F-pzH, the
iodo analog forms a catemeric H-bonded motif but, unlike the chloro and bromo analogs,
4-F-pzH and 4-I-pzH are not isostructural. We also compare experimental and compu-
tational spectroscopic data of the halogenated 4-X-pzH analogs and the unsubstituted
pyrazole (pzH).

2. Materials and Methods
2.1. Materials

All pyrazoles, except for 4-F-pzH, were obtained commercially; 4-F-pzH was received
as a gift from Prof. Gellert Mezei, University of Western Michigan. Crystals of 4-I-pzH
were present in the commercial bottle via sublimation. 1H NMR and solid state infrared
spectra were recorded on a 400 MHz Bruker Avance NMR spectrometer and an Agilent
Advanced Cary-660 FT-IR spectrometer, respectively.

2.2. DFT Calculations

Geometry optimization of the structures of pyrazole and its halogen-substituted
analogues in the gas phase was carried out within density functional theory (DFT) using
theωB97XD [19] hybrid density functional with Dunning’s correlation-consistent cc-pVTZ
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basis set for H, C, N, F, Cl, and Br [20] employing the Gaussian 16 [21] software package.
For I, the dhf-ECP small core effective core potential was employed in conjunction with
the cc-pVTZ-PP basis set [22]. Calculations of vibrational frequencies were performed at
the same level of theory. To ensure a more appropriate comparison with N-H stretching
frequencies measured in solids, geometries of H-bonded dimers, as shown in Figure 2,
were optimized and their vibrational frequencies were also computed. 1H NMR chemical
shifts for the monomers in solution were carried out using the GIAO approach [23] within
the second order Møller–Plessett perturbation theory MP2 [24] with the cc-pVTZ basis set.
The dielectric continuum SCRF/PCM approach [25] was used to take solvent effect into
account using parameters of dichloromethane as the solvent.

2.3. X-ray Crystallography and Data Collection

A suitable crystal of 4-I-pzH, obtained through sublimation, was selected and mounted
on a Bruker D8 Quest diffractometer equipped with a PHOTON II detector operating
at T = 172 K. Data were collected with the shutterless ω-scan technique using graphite
monochromated Mo-Kα radiation (λ = 0.71073 Å). Structure solution was obtained via
intrinsic phasing with SHELXT [26] using the APEX 3 suite [27]. Data were then refined,
using the Olex2 [28] interface, by least-squares method in SHELXL [29]. Multiscan absorp-
tion corrections were applied and hydrogen atoms were added using the AFIX command.
Crystal data and structure refinement parameters are listed in Table 1. Geometric param-
eters were calculated using Mercury [30] software and the Olex2 suite. CCDC 2271964
contains the supplementary crystallographic data and can be obtained free of charge from
the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Crystal data and structure refinement parameters for 4-I-pzH.

4-I-pzH

Formula C3H3IN2
Dcalc./g cm−3 2.571
µ/mm−1 6.23
Formula Weight 193.97
T/K 172
Crystal System Orthorhombic
Space group Cmme (No. 67)
a/Å 6.9383 (6)
b/Å 5.5231 (5)
c/Å 13.077 (2)
α, β, γ/◦ 90, 90, 90
V/Å3 501.13 (8)
Z 4
Wavelength/Å 0.71073
Radiation Type Mo Kα
θmin, θmax/◦ 3.1, 31.1
Measured Refl. 5294
Independent Refl. 483
Rint 0.039
Parameters 55
a GooF, b wR2, c R1 1.20, 0.068, 0.030

a GooF =
[
∑
[
w
(

F2
o − F2

c
)2
]
/(No − Nv)

]1/2
(No = number o f observations, Nv = number o f variables). b wR2 =

∑||Fo | − |Fc||/∑|Fo | . c R1 =
[(

∑ w
(

F2
o − F2

c
)2/∑|Fo |2

)]1/2
.

3. Results and Discussion
3.1. Crystal Structure Description

Crystals of 4-I-pzH were obtained through sublimation and found to belong in the
orthorhombic Cmme space group with one-fourth of the molecule in the asymmetric unit
(Figure 3a) disordered equally over four positions (Figure 3b) related by a two-fold rotation

www.ccdc.cam.ac.uk/data_request/cif
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parallel to the c-axis and a mirror plane perpendicular to the b-axis. Whereas PLATON
did not suggest a different unit cell, solutions with unit cells with double the a- and b-axes,
which would eliminate the disorder, were nevertheless attempted unsuccessfully. The use
of different crystallization methods and solvents did not afford a crystal structure free of
crystallographic disorder. Additionally, the N-H proton is tautomerically disordered over
two positions. Of the 4-X-pzH series, the crystal structure of 4-I-pzH is the only one with
disorder (aside from N-H tautomerization) and, hence, Z’ = 0.25 (Z’ = 2 and 1.5 for X = F
and Cl/Br, respectively). In the Cmme space group, the symmetry and proton disorder
make determining the H-bonding network crystallographically impossible; therefore, the
structure was solved again in lower symmetry space groups. The P21ab space group yielded
the best refinement that eliminates disorder and allows for discussion of the supramolecular
structure; thus, the following structural description of 4-I-pzH refers to the P21ab space
group solution. Figure 3c shows the thermal ellipsoid plot and numbering scheme of
the P21ab structure and refinement details can be found in the Supplemental information
(Table S1).

Crystals 2023, 13, x FOR PEER REVIEW 4 of 12 
 

 

a GooF = ∑ 𝑤 𝐹 − 𝐹 / 𝑁 − 𝑁 /  𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠, 𝑁 =𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 . b wR2 = ∑ |𝐹 | − |𝐹 | / ∑|𝐹 |. c R1 = ∑ 𝑤 𝐹 − 𝐹 / ∑|𝐹 | / . 

3. Results and Discussion 
3.1. Crystal Structure Description 

Crystals of 4-I-pzH were obtained through sublimation and found to belong in the 
orthorhombic Cmme space group with one-fourth of the molecule in the asymmetric unit 
(Figure 3a) disordered equally over four positions (Figure 3b) related by a two-fold rota-
tion parallel to the c-axis and a mirror plane perpendicular to the b-axis. Whereas PLA-
TON did not suggest a different unit cell, solutions with unit cells with double the a- and 
b-axes, which would eliminate the disorder, were nevertheless attempted unsuccessfully. 
The use of different crystallization methods and solvents did not afford a crystal structure 
free of crystallographic disorder. Additionally, the N-H proton is tautomerically disor-
dered over two positions. Of the 4-X-pzH series, the crystal structure of 4-I-pzH is the only 
one with disorder (aside from N-H tautomerization) and, hence, Z’ = 0.25 (Z’ = 2 and 1.5 
for X = F and Cl/Br, respectively). In the Cmme space group, the symmetry and proton 
disorder make determining the H-bonding network crystallographically impossible; 
therefore, the structure was solved again in lower symmetry space groups. The P21ab 
space group yielded the best refinement that eliminates disorder and allows for discussion 
of the supramolecular structure; thus, the following structural description of 4-I-pzH re-
fers to the P21ab space group solution. Figure 3c shows the thermal ellipsoid plot and 
numbering scheme of the P21ab structure and refinement details can be found in the sup-
plemental information (Table S1). 

 
Figure 3. (a) Perspective view and numbering scheme of the asymmetric unit of 4-I-pzH in the Cmme 
space group. Thermal ellipsoids are shown at 50% probability. The N-H proton is disordered over 
two positions and the entire molecule is additionally disordered over four positions. (b) Positional 
disorder of 4-I-pzH; the entire molecule of each position is shown in a different color for clarity. (c) 
Perspective view and numbering scheme of the asymmetric unit of 4-I-pzH in the P21ab space group 
with thermal ellipsoids are shown at 50% probability. There is no positional disorder of the N-H 
proton or the molecule in this space group. 

Like 4-F-pzH [18], 4-I-pzH forms a catemeric H-bonded network that extends along 
the a-axis (Figure 4). However, the fluoro and iodo analogs are not isostructural as the 
trimeric motifs of 4-Br-pzH [16] and 4-Cl-pzH [17] are. Whereas the 4-I-pzH contains one 
quarter molecule in the asymmetric unit, 4-F-pzH contains two crystallographically inde-
pendent molecules free of disorder in the asymmetric unit; yet, both lead to similar supra-
molecular catemeric motif structures. It should be noted that the parent pyrazole (1H-
pyrazole, pzH) also forms a catemeric motif; however, it is vastly dissimilar to the fluoro 
and iodo analogs and was described in the literature as a helical arrangement [31,32]. The 
N(H)…N distance of 2.87 (3) in 4-I-pzH (N1A(H)…N2A) is comparable to the average 
corresponding distance of 2.889 (1) Å in 4-F-pzH (N1_1(H)…N2_2 = 2.876 (1) Å and 
N1_2(H)…N2_1 = 2.902 (1) Å). Counter to chemical intuition, the electronegativity differ-
ences among the halogen substituents are not reflected in the H-bonded N(H)…N dis-
tances in the solid state structures of pyrazole and the set of its 4-halogenated derivatives 

Figure 3. (a) Perspective view and numbering scheme of the asymmetric unit of 4-I-pzH in the Cmme
space group. Thermal ellipsoids are shown at 50% probability. The N-H proton is disordered over
two positions and the entire molecule is additionally disordered over four positions. (b) Positional
disorder of 4-I-pzH; the entire molecule of each position is shown in a different color for clarity.
(c) Perspective view and numbering scheme of the asymmetric unit of 4-I-pzH in the P21ab space
group with thermal ellipsoids are shown at 50% probability. There is no positional disorder of the
N-H proton or the molecule in this space group.

Like 4-F-pzH [18], 4-I-pzH forms a catemeric H-bonded network that extends along
the a-axis (Figure 4). However, the fluoro and iodo analogs are not isostructural as the
trimeric motifs of 4-Br-pzH [16] and 4-Cl-pzH [17] are. Whereas the 4-I-pzH contains
one quarter molecule in the asymmetric unit, 4-F-pzH contains two crystallographically
independent molecules free of disorder in the asymmetric unit; yet, both lead to similar
supramolecular catemeric motif structures. It should be noted that the parent pyrazole
(1H-pyrazole, pzH) also forms a catemeric motif; however, it is vastly dissimilar to the
fluoro and iodo analogs and was described in the literature as a helical arrangement [31,32].
The N(H) . . . N distance of 2.87 (3) in 4-I-pzH (N1A(H) . . . N2A) is comparable to the
average corresponding distance of 2.889 (1) Å in 4-F-pzH (N1_1(H) . . . N2_2 = 2.876 (1) Å
and N1_2(H) . . . N2_1 = 2.902 (1) Å). Counter to chemical intuition, the electronegativity
differences among the halogen substituents are not reflected in the H-bonded N(H) . . . N
distances in the solid state structures of pyrazole and the set of its 4-halogenated derivatives
(Table 2). However, the calculated dipole moments of each pyrazole show a correlation to
catemer or trimer formation with the former having a dipole moment greater than 2.5 and
the latter less than 2.5.



Crystals 2023, 13, 1101 5 of 12

Crystals 2023, 13, x FOR PEER REVIEW 5 of 12 
 

 

(Table 2). However, the calculated dipole moments of each pyrazole show a correlation to 
catemer or trimer formation with the former having a dipole moment greater than 2.5 and 
the latter less than 2.5. 

 
Figure 4. H-bonding catemeric motif for 4-I-pzH viewed along the b-axis. 

Table 2. N(H)…N distances (Å) and calculated dipole moments (D) for pzH and 4-X-pzH (X = F, Cl, 
Br, I) in relation to crystallographic H-bonding motifs. The average values are given when more 
than one crystallographically independent N(H)…N bond exists. 

 N(H)…N Dipole Moment Motif Reference 
pzH 2.908 (2) 2.2923 Catemer [33] 

4-F-pzH 2.889 (1) 2.3995 Catemer [18] 
4-Cl-pzH 2.867 (3) 2.5421 Trimer [17] 
4-Br-pzH 2.89 (2) 2.5158 Trimer [16] 
4-I-pzH 2.87 (3) 2.4155 Catemer This work 

The dihedral angle between H-bonded 4-I-pzH planes of 41.85 (7)° is smaller than the 
dihedral angle of 59.74 (3)° reported for 4-F-pzH; the herringbone motifs of 4-F-pzH and 
4-I-pzH, viewed along the c-axis, show that the kinks of the former are sharper (Figure 5). 
While there are C-H–π interactions with H…centroid distances of 2.72 (1) Å and 3.29 (1) 
Å, the structure of 4-I-pzH has no significant π–π interactions (Figure 6). 

 

Figure 4. H-bonding catemeric motif for 4-I-pzH viewed along the b-axis.

Table 2. N(H) . . . N distances (Å) and calculated dipole moments (D) for pzH and 4-X-pzH (X = F, Cl,
Br, I) in relation to crystallographic H-bonding motifs. The average values are given when more than
one crystallographically independent N(H) . . . N bond exists.

N(H) . . . N Dipole Moment Motif Reference

pzH 2.908 (2) 2.2923 Catemer [33]
4-F-pzH 2.889 (1) 2.3995 Catemer [18]
4-Cl-pzH 2.867 (3) 2.5421 Trimer [17]
4-Br-pzH 2.89 (2) 2.5158 Trimer [16]
4-I-pzH 2.87 (3) 2.4155 Catemer This work

The dihedral angle between H-bonded 4-I-pzH planes of 41.85 (7)◦ is smaller than the
dihedral angle of 59.74 (3)◦ reported for 4-F-pzH; the herringbone motifs of 4-F-pzH and
4-I-pzH, viewed along the c-axis, show that the kinks of the former are sharper (Figure 5).
While there are C-H–π interactions with H . . . centroid distances of 2.72 (1) Å and 3.29 (1) Å,
the structure of 4-I-pzH has no significant π–π interactions (Figure 6).
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Figure 5. Perspective view of the dihedral angle between H-bonded molecules for (a) 4-I-pzH and
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Halogen bonding interactions exert weak intermolecular forces that often determine
supramolecular structure with implications manifested in medicinal chemistry, lumines-
cence, gas sorption, crystal engineering, and organic synthesis. Research into the nature of
these interactions has been of recent interest [34]. It has been shown that the importance of
halogen bonding increases with increasing polarizability of the halogen (i.e., F < Cl < Br
< I) [35]. This is illustrated by the shortest X . . . X distances of the 4-F-pzH and 4-I-pzH
crystal structures: while the I . . . I closest distance (3.9671 (15) Å) is roughly twice the van
der Waals radius (1.98 Å [36]), the closest F . . . F interaction (3.0270 (9) Å) is significantly
longer than twice the van der Waals radius (1.47 Å [36]). X . . . X interactions are also
present in the 4-Cl-pzH and 4-Br-pzH structures with the shortest Cl . . . Cl distance of
3.7937 (4) Å and Br . . . Br distance of 3.9103 (9) Å, each of which is slightly larger than
twice the van der Waals radius reported by Bondi [36].

The F . . . F distances between neighboring molecules of the 4-F-pzH range from
3.0270 (9) Å to 5.6045 (2) Å (Figure S1a), while the corresponding I . . . I distances of 4-I-
pzH range from 3.9671 (15) Å to 5.5309 (6) Å (Figure S1b). Figure 7 shows differences in
I . . . I and F . . . F interactions viewed perpendicularly to the c-axis. In 4-I-pzH, the I atom
of one molecule is exactly centered among the four I atoms of four adjacent molecules
with I-to-plane distance of 2.844 (2) Å. Similarly, each F atom of one 4-F-pzH molecule is
approximately centered among the F atoms of three neighboring molecules. The distance
between F1_1 and plane [F1_1 F1_2 F1_2] is 1.0881 (8) Å, while the distance between F1_1
and the centroid of the same plane is 1.394 (1) Å, giving an off-center distance of 0.871 (1) Å.
The distance between F1_2 and plane [F1_1 F1_1 F1_2] is 0.362 (1) Å, while the distance
between F1_2 and the centroid of the same plane is 0.468 (1) Å, giving an off-center distance
of 0.296 (1) Å.

C–X bond lengths were analyzed for the series of 4-halogenated pyrazoles and com-
pared with the sum of covalent radii [37] for the respective C-X bonds (Table 3). The C–F
bond is statistically longer than the sum of covalent radii, while the C-Cl, C-Br, and C-I
bond lengths are increasingly shorter, suggesting a partial C–X double bond for X = Cl, Br,
and I, resulting from the overlap of filled halogen p-orbitals with vacant π*-pzH.
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Table 3. Sum of covalent radii and average C–X bond lengths taken from crystal data.

C-X Bond Length (Å)
Sum of C-X Covalent

Radii (Å) [37]
Difference (Experimental—cov.

Radii, Å)

4-F-pzH 1.341(2) 1.30(4) 0.04
4-Cl-pzH 1.717(3) 1.75(4) −0.02
4-Br-pzH 1.874(11) 1.93(4) −0.06
4-I-pzH 2.039(9) 2.12(4) −0.08

3.2. Spectroscopy and DFT Calculations

Substituents on the pyrazole ring can be used to modulate the acidity of the pyrrole-
like NH group [38]. Counterintuitively, it has been shown that electron-donating peripheral
substituents increase the N-H acidity of pyrazoles [39,40] corresponding to a decrease
in infrared N-H stretching frequency and a downfield shift in 1H-NMR. The series of
4-halogenated pyrazoles follow this trend with the most electronegative substituent, F,
exhibiting the highest N-H stretching frequency in IR and the most upfield chemical shift
in NMR; the least electronegative substituent, I, exhibited the opposite effect. While the
substituent effect of aromatics have been studied (with benzene having been studied most
extensively), the focus of papers has been on how halogens (usually represented by only
Cl or Br) relate to other electron donating substituents, or how changing the position of
a halide in relation to another substituent on the ring affects aromaticity [41–46]. To the
best of our knowledge, the spectroscopy for a full series of halogenated pyrazoles has not
been studied.

The infrared spectra of pzH and the series of 4-X-pzH (Figure 8 and Table 3) feature a
complex region between 2600 and 3200 cm−1 (Figure S2 shows the spectra with all peaks
labeled). While calculations of pyrazole monomers show the NH stretching frequency to
be ca. 3400–3500 cm−1, the presence of H-bonding decreases the frequency of this vibration
and gives rise to Fermi resonance interactions and overlap with C–H stretching frequen-
cies [47–49]. The N–H vibrations for H-bonded pyrazole trimers appear at lower energies
than those of dimers, which in turn appear at lower energies than those of monomers. IR
spectra were recorded in the 4000–600 cm−1 range and the highest stretching frequency
seen was a small, barely perceptible, shoulder at 3293, 3288, 3284, 3255, and 3235 cm−1 for
the H, F, Cl, Br, and I substituents, respectively. There is a three-component band between
3100 and 3180 cm−1 associated with N-H stretching for each pyrazole (except 4-I-pzH,
where the spectrum is not as resolved) as presented in Table 4. Interestingly, the band shape
in this region is distinct between trimeric and catemeric motifs. A sharp feature is observed
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for the pyrazoles that form catemers at 3126, 3133, and 3110 cm−1 for pzH, 4-F-pzH, and
4-I-pzH, respectively.
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4-I-pzH (black) from 4000–600 cm−1.

Table 4. Experimental and calculated values for pure N-H solid state stretching modes for pzH
and 4-X-pzH. Calculations were carried out using dimeric models; therefore, two distinct stretching
frequencies are present.

Experimental N-H Stretching Modes (cm−1) Calculated N-H Stretching
Modes (cm−1)

pzH 3153.04 3126.05 3104.83 3286.3 3265.4
4-F-pzH 3187.76 3154.97 3133.76 3291.2 3270.3
4-Cl-pzH 3156.90 3143.40 3127.97 3286.7 3266.9
4-Br-pzH 3153.04 3137.62 3122.19 3284.9 3265.4
4-I-pzH - - 3110.62 3283.2 3264.2

DFT calculations for 1H NMR show that the resonances of the N-H proton shift
downfield with decreasing electronegativity of the halogen substituent (i.e., fluoro is the
further upfield) with values of 9.47 (F), 9.78 (Cl), 9.88 (Br), and 10.00 ppm (I). This trend is
observed also in the experimental data (with the exception of a small inversion between
4-Br-pzH and 4-Cl-pzH) with resonances corresponding to the N-H proton at 11.1370 (F),
11.5699 (Cl), 11.5303 (Br), and 11.7549 ppm (I). However, the experimental and theoretical
shifts differed by 1.20–1.75 ppm, with the difference attributed to tautomerization, which
cannot be modeled by computational methods and imperfect modeling of solvent effects.
Tautomerization in solution involving the N-H protons, along with unresolved coupling
to quadrupolar N-atom, is responsible also for the broadening of these resonances. DFT
calculations predict that the 3,5-protons for 4-F-pzH should be the most upfield, matching
the experimental results. Calculations also predict that the Cl, Br, and I analogs should
exhibit approximately the same chemical shift (7.63, 7.64, and 7.64 ppm, respectively).
However, a small downfield shift was experimentally determined from 4-Cl-pzH to 4-I-
pzH. Lastly, DFT predicts that the 3,5-protons of simple pyrazole will be the most downfield;
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however, it is observed to be ca. 0.03 ppm upfield of 4-I-pzH. The 1H NMR spectra of five
compounds are compiled in Figure 9, while experimental and calculated 1H NMR data
are listed in Table 5. The NMR data are in agreement with those previously published
for 4-halopyrazoles [50–52]. Full NMR spectra for each pyrazole can be viewed in the
Supplementary information (Figures S3–S7).
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Figure 9. Stacked 400 MHz 1H NMR spectra in CD2Cl2 of pzH (blue), 4-F-pzH (red), 4-Cl-pzH
(green), 4-Br-pzH (purple), and 4-I-pzH (black). (Left): resonances from the N-H proton shown from
~13–8 ppm, scaled by a factor of 100 in relation to the H3,5 proton resonances. The pzH spectrum is
additionally scaled by a factor of 16 to show the N-H resonance. (Right): resonances from the H3,5

proton shown from ~7.8 to 7.5 ppm. All spectra are scaled equally.

Table 5. 1H NMR experimental data for pzH and 4-X-pzH. Calculated chemical shifts for solutions
using the mp2/cc-pVTZ basis set are shown in parentheses.

N-H H3,5 a H4

pz
H

Chemical Shift (ppm) 11.087 (9.89) 7.631 (7.74) 6.358 (6.56)
Multiplicity s d t

J (Hz) - 2.1 2.1
Integration - b 2H 1H

4-
F-

pz
H Chemical Shift (ppm) 11.137 (9.47) 7.469 (7.52) -

Multiplicity s d -
J (Hz) - 4.5 -

Integration 1H 2H -

4-
C

l-
pz

H Chemical Shift (ppm) 11.570 (9.78) 7.581 (7.63) -
Multiplicity s s -

J (Hz) - - -
Integration 1H 2H -

4-
B

r-
pz

H Chemical Shift (ppm) 11.530 (9.88) 7.615 (7.64) -
Multiplicity s s -

J (Hz) - - -
Integration 1H 2H -
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Table 5. Cont.

N-H H3,5 a H4

4-
I-

pz
H

Chemical Shift (ppm) 11.755 (10.00) 7.658 (7.64) -
Multiplicity s s -

J (Hz) - - -
Integration 1H 2H -

a Calculated chemical shift is an average of values for protons in the 3 and 5 positions; at room temperature, these
protons are equivalent due to tautomerization. b Integration for the N-H proton in pzH is not accurate as this
proton undergoes fast exchange and is broadened more than the halogenated pyrazoles.

4. Conclusions

With the crystal structure determination of 4-I-pzH, the crystallographic data of the
series of 4-halo-1H-pyrazoles is now complete. The packing motifs of 4-Cl-pzH and 4-Br-
pzH are isostructural and form trimeric units; however, 4-F-pzH and 4-I-pzH both form
catemeric structures, but are not isostructural. In spite of the electronegativity difference
between 4-F and 4-I substituents, the intermolecular H-bonded N . . . N distances are
indistinguishable within experimental error. The acidity increased from 4-F-pzH to 4-I-pzH,
observed in both the trend of infrared N-H stretching modes and 1H-NMR shifts, are also
counterintuitive, but nevertheless modeled by DFT calculations. We propose that these
trends are attributed to a partial C–X double bond formation of increasing importance for
the heavier halogens, which increases the sp2 rather than sp3 hybridization of the N-atom,
thus increasing its acidity.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cryst13071101/s1, Table S1: Crystal data refinement parameters for 4-I-
pzH in the P21ab space group; Figure S1: Perspective view showing nearest neighbors of the central
molecule (black) for (a) 4-F-pzH and (b) 4-I-pzH. Individual molecules and their corresponding
distance from the central molecule are color coded to match; Figure S2: Annotated IR spectra of
simple pyrazole and 4-X-pyrazole (where X = F, Cl, Br, I); Figure S3: Full 400 MHz 1H NMR spectrum
of 4-F-pyrazole in CD2Cl2; Figure S4: Full 400 MHz 1H NMR spectrum of 4-F-pyrazole in CD2Cl2;
Figure S5: Full 400 MHz 1H NMR spectrum of 4-Cl-pyrazole in CD2Cl2; Figure S6: Full 400 MHz
1H NMR spectrum of 4-Br-pyrazole in CD2Cl2; Figure S7; Full 400 MHz 1H NMR spectrum of
4-I-pyrazole in CD2Cl2. The cif and checkcif were provided in the supplementary material.
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