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Abstract: Cu-to-Cu thermal compression bonding (TCB) has emerged as a promising solution for
ultrafine pitch packaging in 3D integrated circuit technologies. Despite the progress made by
conventional Cu-to-Cu TCB methods in achieving good mechanical strength of the Cu bonds, the
bonding processes generally require high temperature and high pressure, which may degrade the
performance and reliability of the device. Therefore, it is imperative to investigate the processing
parameters to understand the bonding mechanism and achieve effective TCB at a low temperature
and low pressure. Here, we developed an in situ TCB technique inside a scanning electron microscope.
The in situ TCB method enables a real-time observation of bonding development, which provides
critical insights into how the texture and microstructure of Cu bumps may influence the creep
and surface diffusion during the bonding process. This work features a strategy to advance our
understanding of the bonding mechanisms and provides insight into tailoring the microstructure of
Cu for bonding at a low temperature and low pressure.

Keywords: thermal compression bonding; Cu-to-Cu diffusion bonding; in situ compression;
nanotwinned metals; advanced packing

1. Introduction

Compared to the conventional 2D design, the 3D integrated circuits are recognized
for providing increased functionalities in a more compact footprint with lower power
dissipation [1–4]. However, one issue to be addressed for the mass production and applica-
tion of 3D integrated circuits is to achieve a strong and reliable adhesion between multiple
layers of the electronic components [5–7]. Cu-to-Cu thermal compression bonding (TCB)
has emerged as a promising solution for ultrafine pitch packaging in 3D integrated circuit
technologies [8–13]. Conventional Cu-to-Cu bonding strategies are capable of achieving
Cu bonds with good mechanical strength and electrical properties; the bonding processes
generally require high temperature and high pressure that may degrade the performance
and reliability of the device [5,7]. Therefore, there is an important need to develop tech-
niques to achieve high-quality Cu bonding with good electrical and mechanical properties
at a low temperature and low pressure.

Different strategies have been adopted to accomplish strong and reliable bonding at a
low temperature and low pressure. The quality of Cu surfaces is essential in determining the
quality of the bonding [10,14–16]. Cu can easily oxidize when exposed to ambient oxygen.
The formation of native oxide prevents the interdiffusion across the interface, makes it
difficult for bonding formation at a low temperature and undermines the quality of the Cu
bonds. To remove the oxide layer, Argon ion bombardment treatment has been used to
clean and activate the Cu surface [17,18]. This process, known as surface-activated bonding
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(SAB), can be performed at room temperature and low-stress level but requires an ultrahigh
vacuum. The process complexity and potential damage of the underlying active devices
due to the high-energy ion bombardment limits the application of the SAB technique [11].
An alternative surface modification method is to introduce a thin layer of passivation
agents on top of the Cu surface. Self-assembled monolayer (SAM) formed with linear
alkane-thiol atoms is one type of commonly used passivation layer [19–21]. SAM is capable
of reducing the oxidation layer to pure Cu and preventing future oxidation. Nevertheless,
the desorption of SAM requires high-temperature annealing or energetic ion bombardment,
which is a major concern for the application of SAM [20]. Metal passivation layers such
as Ti, Au and Ni layers have also been widely adopted to prevent oxidation [22–27]. The
thickness of metal passivation influences the interdiffusion across the layers and needs
to be optimized to achieve reliable bonding. Recently, Farisi et al. have demonstrated
a novel low-temperature hermetic TCB technique using electroplated Cu sealing frames
planarized with fly-cutting [28]. The technique required less surface treatment and achieved
a good surface finish, enabling low-temperature bonding development with decent bond
strength. A viable alternative to lower bonding temperature and pressure is to utilize (111)
textured nanotwinned (NT) Cu. The (111) surfaces are shown to exhibit the highest surface
diffusivity among the major crystallographic surfaces [29,30]. Previously, studies have
demonstrated promising progress in bonding Cu at a low temperature (<200 ◦C) and low
stress (<5 MPa), with good mechanical strength [10,31].

Several bonding models have been proposed to understand the influence of the
diffusion mechanism, the morphology and the microstructure of bonding surfaces on the
bonding formation [12,29,32–35]. These models, though they provided crucial guidelines
for choosing appropriate bonding parameters, have not gained sufficient experimental
support yet. The in situ micropillar compression test is a technique extensively used to
investigate the deformation mechanism of materials at small scales [36–40]. In this paper,
we demonstrate a novel in situ TCB method using the micropillar compression technique.
The in situ TCB enabled a real-time observation of how the bonding interface evolves under
constant stress and pinpointed the onset of several critical stages during bonding formation.
The insights from in situ TCB were then combined with the proposed bonding models to
discuss the influence of diffusion on bonding development.

2. Materials and Methods

The NT Cu film with a thickness of 10 µm was provided by Lam Research Corporation
and was fabricated via electropolishing. A cross-sectional transmission electron microscopy
(XTEM) sample of NT Cu was mechanically polished, followed by dimpling and low-energy
Ar ion milling with a Gatan PIPS II system. TEM experiments were performed on a FEI Talos
200X microscope operated at 200 kV (Thermo Fisher Scientific, Waltham, MA, USA) The
grain size and twin spacing statistics were obtained based on the measurement of 85 grains
and 66 twins from the TEM micrograph. The surface roughness was measured using
the scanning probe microscopy (SPM) technique by Hysitron TI Premiere Nanoindenter
(Bruker, Billerica, MA, USA), equipped with a Berkovich diamond tip.

Micropillars with a double-layer structure for in situ TCB experiments were fabricated
using the focused ion beam (FIB) technique using an FEI Quanta 3D FEG dual-beam
scanning electron microscope. The bottom pillars with a diameter of ~18 µm and a height of
~5 µm were fabricated with a series of concentric annular trench milling with progressively
decreasing ion beam currents on NT Cu film attached to the substrate. The top pillars with
a diameter of ~10 µm and a height of ~10 µm were milled out from a free-standing NT
Cu film detached from the substrate, as demonstrated in Figure 1b1–b3. The top pillars
were then transferred and placed on top of the bottom pillar to assemble the double-layer
structure using an Omniprobe manipulator, as shown in Figure 1c1–c3.
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(detached from substrate) and top pillar lift-out using omniprobe. (b3) Corresponding SEM micro-
graph showing the process of lifting out top pillar using omniprobe. (c1,c2) Step 3: transferring top 
pillar using omniprobe and aligning and assembling the top and bottom pillars to form the double-
layer structure. (c3,c4) Top-down and side views of assembled double-layer pillars. 
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Figure 2a was taken from [011] zone axis, revealing a high density of growth twins. The 
twin planes were oriented orthogonally to the film growth direction. The inserted SAD 
pattern reveals clear evidence of (111) twins as well as a single-crystal-like pattern with 
distinguished diffraction spots. The high-resolution TEM (HRTEM) micrograph in Figure 
2b shows the atomic arrangement of the twin and parent lattice. The statistical distribution 
in Figure 2c–d reveals an average grain size (D) of 404 nm and an average twin spacing (t) 

Figure 1. Demonstration of double-layered Cu pillar fabrication. (a1,a2) Step 1: fabrication of bottom
pillar (diameter ~18 µm, height ~5 µm) on the NT Cu film attached to the substrate using focused
ion beam (FIB). (a3) Corresponding SEM image showing the fabricated bottom pillar. (b1,b2) Step
2: Preparation of top pillar (diameter ~10 µm, height ~10 µm) using FIB on a free-standing NT Cu
film (detached from substrate) and top pillar lift-out using omniprobe. (b3) Corresponding SEM
micrograph showing the process of lifting out top pillar using omniprobe. (c1,c2) Step 3: transferring
top pillar using omniprobe and aligning and assembling the top and bottom pillars to form the
double-layer structure. (c3,c4) Top-down and side views of assembled double-layer pillars.

In situ compression tests were carried out inside the FEI Quanta 3D FEG (Thermo
Fisher Scientific, Waltham, MA, USA) dual-beam SEM chamber using a Hysitron PI 88 ×R
PicoIndenter (Bruker, Billerica, MA, USA). A 30 µm diameter tungsten carbide (WC) flat
punch indenter was installed onto a load cell containing a capacitive transducer and a
piezoelectric actuator for the uniaxial compression tests at 250 ◦C. The temperature control
was achieved using a probe heater and a stage heater, which heated up simultaneously at a
heating rate of 20 ◦C/min. The details of the in situ high-temperature compression setup
can be found in Figure S1 (see in Supplementary Material). The designated temperature was
held for 30 min to remove thermal drift. The TCB tests were conducted under load-control
mode, and a 100 MPa (~7.85 mN) bonding stress was applied and held for 30 min. Post-
bonding analyses on compressed pillars were performed with FIB and scanning electron
microscopy (SEM).

3. Results

Figure 2 shows the microstructure of as-deposited NT Cu. The TEM micrograph
in Figure 2a was taken from [011] zone axis, revealing a high density of growth twins.
The twin planes were oriented orthogonally to the film growth direction. The inserted
SAD pattern reveals clear evidence of (111) twins as well as a single-crystal-like pattern
with distinguished diffraction spots. The high-resolution TEM (HRTEM) micrograph in
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Figure 2b shows the atomic arrangement of the twin and parent lattice. The statistical
distribution in Figure 2c–d reveals an average grain size (D) of 404 nm and an average
twin spacing (t) of 69 nm in as-deposited NT Cu film. A 3D topography image is shown in
Figure 2e, and the root mean square (RMS) surface roughness was measured to be 5 nm.
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ment recorded with a piezoelectric actuator and the applied stress as a function of time. 
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Figure 2. Microstructure of as-deposited nanotwinned (NT) Cu. (a) Bright-field (BF) TEM micro-
graph showing a high density of growth twins with inserted selected area diffraction (SAD) pat-
tern. (b) High-resolution TEM (HRTEM) from [011] zone axis showing the coherent twin boundary.
(c,d) Statistical distribution of grain size and twin spacing of as-deposited NT Cu. The average grain
size is 404 nm, and the average twin spacing is 69 nm. (e) 3D topography analysis revealing an RMS
surface roughness of approximately 5 nm after chemical mechanical planarization (CMP).

In situ TCB test snapshots were shown in Figure 3a–b to compare the geometric
evolution of the double-layer pillar before and after TCB under a pressure of 100 MPa at
250 ◦C for 30 min. Before the TCB test, a small gap existed between the top and bottom
pillars, and the gap was eliminated after the TCB test. Figure 3c reveals the evolution of
displacement recorded with a piezoelectric actuator and the applied stress as a function of
time. The applied stress was held constantly at 100 MPa. The time-dependent displacement
gradually increased to ~15 nm following a nearly linear increment rate, indicating the
bonding formation across the information. Afterward, the slope became smaller, and the
displacement finally reached a plateau at ~20 nm.
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Figure 3. In situ TCB snapshots showing the double-layer pillar (a) before and (b) after applying a
pressure of 100 MPa at 250 ◦C for 30 min. (c) The evolution of displacement and applied stress as a
function of time during in situ TCB.

To further characterize the bonding interface, a FIB analysis was performed on the
compressed pillar. Figure 4a displays the overview of the cross-sectional SEM image of
the double-layer pillar after in situ TCB under a pressure of 100 MPa at 250 ◦C for 30 min.
The micrograph clearly reveals the success of bonding development across the interface
between the top and bottom pillars. The magnified view in Figure 4b is taken from the
orange-dash box in Figure 4a. No obvious in-plane grain growth was observed in both
the top and bottom pillars. While the original bonding interface can still be identified, as
shown in Figure 4b, no obvious residual voids were detected along the interface.
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Figure 4. Post-bonding analyses of NT Cu double-layer pillars after TCB. (a) Cross-sectional SEM
micrograph showing the overview of bonded double-layer pillar. (b) Magnified SEM image showing
the well-bonded interface between top and bottom NT Cu pillars. No residual void was observed
along the interface (shown by yellow dash lines), indicating a complete bonding process.

4. Discussion

The interpretation of the time-dependent displacement evolution from the in situ
measurement requires an understanding of the physical mechanism of bonding formation.
During the development of Cu diffusion bonding, the evolution of the surface void and
bonding interface can be defined by several stages [29,41]. The 1st stage is characterized
as the contact of the two surfaces. In general, the surface morphology can be described
as sinusoidal curves with periodically spaced hills and valleys. During this stage, the
contact preferentially happens at the locations where the peaks of the two wavy surfaces
are aligned [7]. Due to the high-stress concentration at these contacted hills, local plastic
yielding occurs. It should be noted that no massive atomic diffusion yet occurs during this
stage. The displacement evolution shown in Figure 3c indicates the change in the relative
spacing between the top and bottom pillars, or more specifically, the distance between
the curvature centers of the surface hills of the top pillar and bottom pillar. Therefore, an
increment in displacement implies a reduction in the spacing between the two pillars. The
initial contact between the two surfaces happened right after ramping up the applied stress
to 100 MPa. While the applied stress was held at 100 MPa, a decrease in displacement was
observed. Such change is likely to arise from the relaxation of the curved surface of the
top pillar. Since the top pillar was fabricated from a free-standing film, the detachment
of the free-standing film from the substrate, as well as the ion bombardment during the
FIB process, can result in the change in residual stress in the top pillar, leading to a curved
surface. According to the plot in Figure 3c, the relaxation and flattening of the curved
surface took ~220 s. Afterward, the surface contact became stabilized, which defined the
end of the first stage.

During the second stage of bonding formation, the stress gradient along the contacted
surface hills drove the mass transport via surface diffusion and grain boundary (GB)
diffusion, leading to the expansion of the contact area and the simultaneous reduction in
the heights of the surface hills [29,42]. Consequently, the spacing between the top and
bottom pillars was reduced, and the displacement was raised further, as shown in Figure 3c.
Shie et al. proposed a kinetic theory to estimate the theoretical bonding time (tbonding)
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required for completing bonding formation in Cu since the stabilized surface contact is
made [29]:

tbonding ≈ 7.3 × 1030φmax
R6

q

6δD
kT
pΩ

(1)

where φmax is the maximum angle between the contact surface normal and the line con-
necting the point where contact ends to the curvature center of the contact hill and can
be assumed to be 1 rad, Rq is the surface roughness, δ is the effective atomic diffusion
distance, D is the effective diffusivity, k is the Boltzmann constant, T is the temperature,
p is the pressure and Ω is the Cu atomic volume. Equation (1) implies that a higher ef-
fective diffusivity, higher bonding pressure and low surface roughness are preferred to
promote bonding and shorten the required bonding time. Furthermore, increasing the
bonding temperature also accelerates bonding development since diffusivity increases
exponentially with increasing temperature. However, to integrate Cu-to-Cu bonding in
the 3D IC packaging, a low-temperature and low-pressure bonding process is desired to
prevent performance degradation of the device [11]. Strategies to boost effective diffusivity
become crucial in achieving well-developed diffusion bonding within a short duration for
3D integration.

One effective method to enhance diffusion and hence promote bonding formation is
to tailor the surface orientation of the films [10,43,44]. Previous studies showed that the
diffusion coefficient of (111) surfaces of Cu is at least three orders of magnitude higher than
that of (100) and (110)-oriented surfaces at the same temperature [10]. For instance, the
(111) surface diffusivity of Cu at 250 ◦C was estimated to be 1.51 × 10−5 cm2/s, compared
to the 1.48 × 10−8 cm2/s of the (100) surface and 1.55 × 10−9 cm2/s of the (110) surface [30].
However, it is interesting to note that the (111) textured films tend to form twist-type GBs
at the contact points. The GB diffusivity at these twisted GBs could be much lower than
that of high-angle-tilt-type GBs, which could limit the bonding development rate [29]. In
addition, it is difficult to quantify the combined effect of GB diffusion and surface diffusion.
There has been a long debate about whether surface diffusion or GB diffusion governs this
stage of bonding development. Previous studies proposed and summarized the bonding
mechanism maps as a function of surface roughness and the percentage of bonded area
at given temperatures and pressures [41,42]. According to the bonding mechanism maps,
when bonding surfaces have a roughness of less than 10 nm, surface diffusion dominates
where the fraction of bonded area is relatively low. During this period, the atoms at the
contact points are squeezed out to expand the contact area driven by the pressure gradient
via surface diffusion. Then, GBs start to form along the contact area, and GB diffusion
takes over and governs the bonding formation. As a consequence, the diffusivity in
Equation (1) should consider the contribution of both surface diffusion and GB diffusion. A
recent study estimated the theoretical bonding time of Cu, assuming only surface diffusion
or GB diffusion happened during the second stage, and compared the results with the
experimental data under different bonding conditions. It was shown that the estimated
bonding time based on surface diffusion was five orders smaller than that based on GB
diffusion [29]. Meanwhile, the experimental results of (111) textured NT Cu were close
to the surface-diffusion scenario, while the estimated value of randomly oriented Cu was
close to the GB diffusion scenario, indicating that the high surface diffusivity of (111) NT
Cu can substantially reduce the bonding time.

The third stage of bonding development is categorized as void ripening along the
bonding interface. During this stage, the bonding pressure at the contact surface can no
longer provide the sufficient driving force for atomic diffusion to fill in the residual voids
formed. Instead, the Gibbs–Thompson capillary effect will result in the gradual sealing
up of the residual voids dominated by GB diffusion [42,45]. Rebhan et al. proposed a
thermodynamic model to estimate the time needed to eliminate the interface voids during
TCB of Cu and showed that temperature played a more significant role in determining the
void-ripening rate than the applied pressure [35]. Meanwhile, the relative distance between
the curvature centers of the surface hills of the top pillar and bottom pillar remains almost
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unchanged during this stage, and hence the displacement recorded with the piezoelectric
actuator stayed constant, as shown in Figure 3c.

5. Conclusions

A novel in situ TCB technique has been developed to examine the bonding formation
mechanism in real time. A double-layer pillar architecture was fabricated using NT Cu, and
detailed analyses were performed on the time-dependent displacement evolution from the
in situ TCB tests. Three distinct bonding stages have been defined based on the dominant
driving force and diffusion mechanism for bonding development. The first stage was
characterized by the contact of the two surfaces and surface relaxation. During the second
stage of bonding formation, the stress gradient along the contacted surface drove the mass
transport via surface diffusion and GB diffusion, leading to the expansion of the contact
area and GB formation. The displacement curve showed a steady increment during this
stage. The third stage of bonding development was categorized as void ripening along the
bonding interface, and the displacement reached a plateau with small perturbations. This
work offers a new perspective on how the in situ technique can be implemented to advance
our understanding of the bonding mechanisms during the Cu TCB process.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cryst13070989/s1, Figure S1: In situ high temperature compression set up
using the Hysitron PI88 ×R PicoIndenter.
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