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Abstract: Significant interest in the stoichiometric and off-stoichiometric Fe2MnGa alloys is based
on their complex phase transition behavior and potential application. In this study, temperature-
and magnetic-field-induced phase transformations in the Fe41.5Mn28Ga30.5 magnetic shape memory
alloy were investigated by in situ synchrotron high-energy X-ray diffraction and in situ neutron
diffraction techniques. It was found that incomplete phase transformation and phase coexistence
behavior are always observed while applying and removing fields in Fe41.5Mn28Ga30.5. Typically,
even at 4 K and under 0 T, or increasing the magnetic field to 11 T at 250 K, it can be directly detected
that the martensite and austenite are in competition, making the phase transition incomplete. TEM
observations at 300 K and 150 K indicate that the anti-phase boundaries and B2 precipitates may
lead to field-induced incomplete phase transformation behavior collectively. The present study may
enrich the understanding of field-induced martensitic transformation in the Fe-Mn-Ga magnetic
shape memory alloys.

Keywords: magnetic shape memory alloy; martensitic transformation; Fe-Mn-Ga; incomplete
phase transformation

1. Introduction

Ferromagnetic shape memory alloys (FSMAs) have attracted considerable attention
due to their multifunctional properties, such as magnetic-field-induced strain [1–4], mag-
netoresistance [5–7], magnetocaloric effect [8–10], magnetothermal conductivity [11], and
exchange bias behavior [12,13]. These properties make them promising materials for ap-
plications such as rapid actuators [1], efficient magnetic refrigerators [14], and recording
materials [15]. In general, most FSMAs have interesting structural and magnetic properties
resulting from their first-order phase transformation induced by external fields [1–13]. Typ-
ically, for the Ni-(Co)-Mn-X (X = In, Sn, Sb) alloys, magnetic fields may induce a structural
transformation from weak magnetic martensite to ferromagnetic austenite at tempera-
tures close to the austenitic transformation start temperature, leading to some pronounced
magnetic-field-induced effects [2–7,16]. Another representative FSMA, i.e., Fe-Mn-Ga al-
loys displaying distinct and complex magnetic-field-induced martensitic transformation
behavior in some out-stoichiometric compositions, are not yet completely understood.

Crystals 2023, 13, 1242. https://doi.org/10.3390/cryst13081242 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13081242
https://doi.org/10.3390/cryst13081242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-5395-0470
https://orcid.org/0000-0002-0395-2555
https://doi.org/10.3390/cryst13081242
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13081242?type=check_update&version=1


Crystals 2023, 13, 1242 2 of 13

Since Omori et al. reported that the Fe43Mn28Ga29 alloy can go through marten-
sitic transition from the paramagnetic (PM) cubic austenite phase to the ferromagnetic
(FM) tetragonal martensite phase [17], the search for Fe-Mn-Ga alloys undergoing phase
transformations and possessing related multifunctional properties has never stopped.
Zhu et al. observed that a magnetic-field-induced transformation from the PM parent
phase to the FM martensite phase takes place at 163 K for the slightly off-stoichiometric
Fe50Mn22.5Ga27.5 alloy, leading to large differences in magnetization between both phases
and a huge shape memory strain of up to 3.6% [18]. Researchers found that the martensitic
transition in Fe-Mn-Ga alloys can lead to significant changes in their magnetic and opti-
cal properties [19–21]. Recently, local symmetry-breaking behavior has been observed in
Fe50Mn23Ga27, which suppresses the martensitic transition while retaining the magnetic
transition in the alloy [22]. In addition, giant exchange bias behavior resulting from the
exchange coupling between the coexisting antiferromagnetic (AFM) and FM phase in
the Fe-Mn-Ga alloys was achieved, resulting in an enhanced coercivity [23–25]. In the
above works, martensitic transformation in Fe-Mn-Ga alloys always displayed significant
transformation hysteresis across an incomplete process, which is considered as an obstacle
to realize a recoverable and complete field-induced martensitic transformation [26,27].
To some extent, this could limit their applications as, for example, magnetocaloric and
magnetostrain materials, and clarifying the mechanism of incomplete phase transformation
is essential.

As a result, based on the previous studies, it is essential to carry out an in situ study
on the structure and magnetic phase evolution of the Fe-Mn-Ga alloy across martensitic
transformation under external fields, such as temperature and magnetic fields. In the
present study, we prepared a Fe41.5Mn28Ga30.5 alloy presenting martensitic transforma-
tion, and the temperature- and magnetic-field-induced phase transformation behaviors
of this alloy were systematically studied. The potential reasons for this incomplete phase
transformation behavior were discussed, which may be instructive for understanding the
underlying mechanisms responsible for the multifunctional properties of Fe-Mn-Ga alloys.

2. Experimental Section

A Fe41.5Mn28Ga30.5 magnetic shape memory alloy was prepared by repeated melting
in an arc furnace under an argon atmosphere. The rod ingots were sealed in a quartz tube
filled with high-purity argon gas, homogenized at 1273 K for 24 h, and finally quenched
in cold water. The composition of Fe41.5Mn28Ga28.5 was measured using an electron
probe microanalyzer (EPMA-1720H, SHIMADZU, Tokyo, Japan). The composition was
determined by averaging the compositions of five randomly measured points, and the
result was Fe41.5±0.1Mn28±0.6Ga28.5±0.3. Due to the fact that Fe-Mn-Ga polycrystalline
samples are very brittle, a single crystal with a roughly ellipsoid shape was obtained using
the grain growth method [17] by annealing at 1273 K for 168 h, followed by quenching in
ice water.

The microstructure was characterized by scanning electron microscopy (SEM, Zeiss
Supra 55, Oberkochen, Germany) and transmission electron microscopy (TEM, JEM-2100 F,
JEOL, Tokyo, Japan). The phase transition temperatures of the polycrystalline sample and
the single crystal sample were analyzed by differential scanning calorimetry (DSC, Netzsch
DSC 214 Polyma, Selb, Germany) experiments performed with heating and cooling rates of
10 K·min−1. The magnetic measurements and electrical resistivity measurements of the
polycrystalline samples with sizes of Φ 3 × 1 mm3 and 10 × 2 × 1 mm3, respectively, were
conducted using a physical property measurement system (PPMS, Quantum Design) with
a cooling and heating rate of 5 K·min−1. The external magnetic field is perpendicular to
the plane of the polycrystalline sample. The resistivity test was based on a 4-point probe
method. The strain, during martensitic transformation for the polycrystalline sample, was
performed using a strain gauge glued to the sample and a data logger (TDS102, Tokyo
Sokki Kenkyujo Co., Ltd, Tokyo, Japan) under zero field with a cooling and heating rate
of 5 K·min−1. Temperature-dependent in-situ synchrotron high-energy X-ray diffraction
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(HEXRD) experiments were carried out at the 11-ID-C beamline at the Advanced Photon
Source of Argonne National Laboratory (ANL). A monochromatic X-ray beam with a
wavelength of 0.1173 Å was used. The diffraction Debye rings were collected using a
two-dimensional (2D) large area detector. The polycrystalline samples were rotated at high
speed to obtain full rings and eliminate the effects of preferred orientation during heating
and cooling with a rough rate of 3 K·min−1. The samples were cooled and heated in a step-
wise manner between 380 K and 119 K, with an average temperature interval of 3 K. At each
temperature step, the sample was soaked for five minutes to reach a thermally stabilized
state. A small cryogenic detector and an infrared detector were applied during cooling and
heating, respectively. Based on the X-ray diffraction intensity theory, the integral intensities
of diffraction peaks are proportional to the volume fractions of the corresponding phases.
As a result, the volume fractions of the martensite phase (VM) and austenite phase (VA)
were obtained according to the following expression [28]:

VA = (1 +
IM
hkl R

A
hkl

IA
hkl R

M
hkl

)−1 (1)

VA + VB = 1 (2)

where IM
hkl and IA

hkl represent the integrated intensities of the considered {hkl} lattice plane,
and RM

hkl and RA
hkl are the corresponding theoretical calculated intensities [28]. The crystal

structural evolution during the increasing and decreasing of the magnetic fields was
studied by in situ neutron diffraction experiments on the high intensity diffractometer
WOMBAT [29] at the Australian Nuclear Science and Technology Organisation (ANSTO).
The WOMBAT instrument was equipped with a 2D position-sensitive area detector that
covered 120◦ in 2θ on the sample in the diffraction plane and about 15◦ in the vertical,
out-of-plane direction. For the in situ measurements, WOMBAT was equipped with a
vertical field magnet (field range of 0 T–11 T with 200 Oe·s−1) with a temperature range
of 1.5–300 K (2 K·min−1 during cooling and heating). A polycrystalline sample and a
single crystal sample were glued to pure aluminum bolts (where the bolts were used as is)
separately for the test under the temperature field and that under the magnetic field. A
wavelength of 2.41 Å was used for the measurements.

3. Results and Discussion

The phase transformation temperatures of the Fe41.5Mn28Ga30.5 alloy are revealed
by the DSC curves in Figure 1a,b. For the polycrystalline sample (Figure 1a), the marten-
sitic transformation and its reverse transformation were revealed by multiple exother-
mal/endothermic peaks, which are considered to be jerky characteristics of martensitic
transformations that have been reported in many alloy systems [30,31]. In contrast, the
single-crystal sample showed exothermal/endothermic peaks which are easier to dis-
tinguish in in Figure 1b, indicating that grain boundaries may play important roles in
presenting this “avalanche” behavior during phase transition [30]. Ms, Mf, As and Af in
Figure 1b are the martensitic and reverse transformation start and finish temperatures,
and they were determined to be about 229 K, 201 K, 298 K, and 329 K, respectively. The
temperature dependence of the resistivity ρ(T) for the polycrystalline Fe41.5Mn28Ga30.5
is shown in Figure 1c. Fe41.5Mn28Ga30.5 showed a significant temperature hysteresis of
resistivity on heating and cooling, which indicates a first-order phase transformation in
the alloy. One can notice that the transformation temperature interval here was wider than
that shown in the DSC results, which may result from the gradual phase transition beyond
the peak temperature regions only releasing or absorbing a small fraction of heat that is
insufficient to form visible DSC peaks. A significant decrease with a magnetoresistance
∆ρ/ρ224K (∆ρ = |ρ10K − ρ224K|) of 8% during cooling can be seen in Fe41.5Mn28Ga30.5,
which is ascribed to the forward martensitic transformation. Actually, this is quite different
from the temperature dependence of resistivity behavior across martensitic transformation
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in most Ni-Mn-based FSMAs, where the resistivity usually increases during cooling and
decreases during heating [32–35]. Specifically, the electrical resistivity of the austenite phase
decreases with the increase in temperature, which is opposite to the austenite phase with
metallic behavior in most FSMAs, where the electrical resistivity increases with increasing
temperatures [36–38]. Figure 1d shows that a remarkable s strain up to 0.47% during
cooling and heating can be achieved in the polycrystal sample.
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Figure 1. DSC curves for (a) the Fe41.5Mn28Ga30.5 polycrystalline sample and (b) the Fe41.5Mn28Ga30.5

single-crystal sample. (c) Temperature dependence of electrical resistivity during cooling and heating
for polycrystalline Fe41.5Mn28Ga30.5. (d) Shape memory effect of polycrystalline Fe41.5Mn28Ga30.5,
measured without preloading. Ms, Mf, As, and Af in Figure 1b denote the martensitic and reverse
transformation starting and finishing temperatures, respectively.

To trace how the structure evolves when temperature changes, the variable-temperature
HEXRD patterns for Fe41.5Mn28Ga30.5 during the cooling and heating processes are dis-
played in Figure 2a,b. The results clearly indicate that the samples underwent a structural
transformation from the L21 cubic structure (space group No. 225, Fm3m) to the tetragonal
structure (space group No. 139, I4/mmm) during the cooling process. It can be noticed
that the competition and coexistence of the two phases are always presented in the whole
temperature range during cooling and heating, as indicated by the gradual changes in peak
intensities for the two phases. In Figure 2a, at 380 K, the cubic austenite is dominant in
the sample, and only a tiny amount of martensite can be observed; a sudden increase in
the intensities of tetragonal martensite phase peaks appears when cooling to 238 K. One
should notice that there is a discrepancy in the martensitic transformation temperature
obtained by DSC (Figure 1a) and HEXRD (here, we all used polycrystalline alloys for
comparison), which may result from the different parts of the ingot being used for DSC
and HEXRD tests. Different cooling rates may also affect the phase transformation temper-
atures as determined by two methods. When decreasing the temperature, the intensities
of martensite peak continued to increase at the cost of austenite until the sample reached
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equilibrium, where both phases were found to be continuously co-existent down to 119 K.
The variable-temperature HEXRD patterns for Fe41.5Mn28Ga30.5 during heating, shown
in Figure 2b, presented a trend nearly opposite to that in Figure 2a, where the intensities
of austenite suddenly increased at 271 K. Generally, the lattice volumes of austenite and
martensite decrease upon cooling. However, when the martensitic transformation occurs,
the phase fraction of martensite increases at the cost of austenite. This can lead to a negative
thermal expansion effect in the present alloy [27]. Figure 2c shows that the phase fractions
of both phases almost remained unchanged until the temperature decreased to 235 K,
where the martensitic transformation started. The austenite phase fraction then decreased
from 95% to 25%, while the martensite phase fraction increased from 5% to 75%. Further
cooling failed to bring additional obvious changes in phase fractions at temperatures below
140 K, indicating completion of the martensitic transformation. Typically, a large lattice
distortion of (c − a)/a = 32.3% was obtained during the martensitic transformation, where
a =
√

2aM = 5.208 Å and c = cM = 6.891 Å were calculated at 238 K from Figure 2a. Such a
significant lattice distortion leads to a considerable shape memory effect, as displayed in
Figure 1d. To detect the phase compositions at cryogenic temperatures, an in situ neutron
diffraction experiment was performed at 4 K, and the results are shown in Figure 2d. One
can see that, even at such a low temperature, the two phases still coexisted stably. At 4 K, the
transformation was essentially stopped, and the crystal consisted of two phases. Overall,
the picture of the martensitic transformation of the average structure in Fe41.5Mn28Ga30.5 in
this work is nucleation-driven [21], continuous, and incomplete.
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Figure 2. HEXRD patterns measured for the Fe41.5Mn28Ga30.5 polycrystalline sample during (a) cool-
ing and (b) heating. (c) Temperature dependence of the phase fractions, as obtained using Equations
(1) and (2) during cooling for Fe41.5Mn28Ga30.5. (d) One-dimensional (1D) diffraction patterns at
4 K without applying magnetic field for Fe41.5Mn28Ga30.5. The letters “A” and “M” in the indices in
(a) and (d) denote austenite and martensite, respectively.

The temperature dependence of the phase fraction growth rate data for Fe41.5Mn28Ga30.5
(Figure 3) illustrates the hysteresis effect and the broad temperature range of transformation
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on both the heating and cooling processes. As shown in Figure 3, at 150 K and 330 K, the
martensite and austenite growth rates were essentially below 0.5%, and the martensite and
austenite phases accounted for about 75% and 25% of the structure at 150 K, as discussed
in Figure 2c; the martensitic transformation was incomplete. The phase fraction growth
rates showed two peaks at 213 ± 2 K during cooling and 278 ± 2 K during heating, re-
spectively, further indicating a significant phase transformation hysteresis of 65 K in the
Fe41.5Mn28Ga30.5 alloy. This phase transformation hysteresis was larger than that shown in
Figure 2, which was calculated to be about 33 K. This is because the phase fraction growth
rate may be more sensitive in detecting the phase transformation start and stop timestamps.
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Fe41.5Mn28Ga30.5.

The thermomagnetization curves (M(T) curves) of Fe41.5Mn28Ga30.5 during cooling
and heating under magnetic fields of 0.03 T, 0.5 T, and 2 T are shown in Figure 4a. The
magnetization increased significantly in certain temperature windows during the first
cooling under 0.03 T, corresponding to the martensitic transformation, and significantly
decreased in the magnetization during heating, with a result of under 0.03 T due to the
reverse martensitic transformation. One can notice from the M(T) curves that the martensite
and austenite are considered to be ferromagnetic and paramagnetic, respectively [17]. When
applying a magnetic field of 0.5 T, a large ∆M increased across martensitic transformation.
Such a relatively large ∆M raised the transformation temperatures as compared to the phase
transformation temperatures under 0.03 T. When it came to 2 T, ∆M became larger, and the
phase transformation temperatures shifted towards higher temperatures. Usually, in the Ni-
Mn-based FSMAs, the shift of the transformation temperatures under high magnetic fields
is towards lower temperature areas compared with that under low magnetic fields [39–43].
However, the direction of the shift of phase transformation temperature under magnetic
fields in Fe-Mn-Ga alloys was reversed. The difference in the magnetism of austenite
and martensite could account for the abnormal shifting direction in Fe-Mn-Ga. Figure 4b
shows the magnetization curves at different temperatures during cooling (M(H) curves)
for Fe41.5Mn28Ga30.5. The austenite remained in the paramagnetism at 380 K, but still
showed apparent magnetization behavior, which is caused by the residual martensite.
The M(H) curve showed quite significant hysteresis between the field-up and field-down
at 250 K, 210 K, 130 K, and 60 K (taken one after the other), indicating a magnetic field-
induced transformation within a wide temperature range in this alloy system. When the
temperature was decreased to 4 K, the curve exhibited typical ferromagnetic properties [17].
The saturate magnetization of the martensite was estimated to be 72 emu·g−1 at 4 K.
Notably, the magnetic-field-induced transformation in the present alloy occurred from
the paramagnetic austenite phase to the ferromagnetic martensitic phase, which is also
the opposite of that of most other FSMAs [44–47]. This is caused when the martensitic
transformation scuffles with the spontaneous magnetization transition in this sample [18].
Figure 4c shows the saturation magnetization as a function of the various temperatures at
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which the M(H) loops were taken. One can see that the saturation magnetization values
presented a sharp increase from 250 K and 130 K, and then remained unchanged during
further cooling.
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To trace how the structure develops under magnetic fields, in situ neutron diffraction
experiments were further used to monitor the structural evolution along with increasing
and decreasing magnetic fields in a Fe41.5Mn28Ga30.5 single-crystal alloy. For the in situ
neutron diffraction experiments, the sample was first cooled from 400 K (furnace) to 250 K,
and then at 250 K, reciprocal space mapping was presented along with increasing and
decreasing magnetic fields in the sequence of 0 T–2 T–6 T–11 T–0 T (field ramped from 0 to
2 T, then measurement was performed, then it was ramped to 6 T and the 2nd measurement
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was performed, etc.). The reciprocal space maps measured at different magnetic fields are
shown in Figure 5a–d. The coordinates of these figures are expressed with respect to the
scattering vector Q with the length Q = 2π/d = 4π sin θ/λ, with d being the interplanar
spacing and 2θ the diffraction angle. One-dimensional (1D) diffraction patterns from
azimuthal integration of the reciprocal space maps in the Q range from 2.0 Å−1 to 4.0 Å−1

with the increasing and decreasing magnetic fields are shown in Figure 5e. The reciprocal
space map shown in Figure 5a indicates that, at 250 K, the sample was in the austenite
state, and all the diffraction spots were well indexed according to the L21 cubic structure
with lattice parameter a = 5.675 Å. The two continuous diffraction rings in Figure 5a stem
from the reflections of the polycrystalline aluminum bolt to which the sample was glued.
One can see from Figure 5b that for Fe41.5Mn28Ga30.5 under the magnetic field of 2 T, no
obvious change in the diffraction patterns could be observed, and only the diffraction spot
of (220)A (A denotes austenite) could be detected. In contrast, when the field was increased
to 11 T (Figure 5c), diffraction patterns of martensite appeared [(112)M and (200)M], while
the intensity of the diffraction pattern for austenite significantly decreased. This process
corresponds well to the M(H) curve at 250 K in Figure 4b. It should be noted that under 11 T,
and even decreasing the field to 0 T (Figure 5d), both the transformation from austenite to
martensite and its recovery transition were still incomplete. This could be attributed to the
significant hysteresis in the Fe-Mn-Ga alloy system, and this will be discussed later.
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Figure 5. Reciprocal space maps measured at 250 K for the polycrystalline Fe41.5Mn28Ga30.5 alloy
with a magnetic field increasing from (a) 0 T to (b) 2 T and (c) 11 T, and then with a magnetic field
decreasing to (d) 0 T; (e) 1D diffraction patterns, obtained by azimuthal integration of the reciprocal
space maps (in the Q range from 2.0 Å−1 to 4.0 Å−1), for different magnetic field values at 250 K.

Figure 6a shows the evolution of the intensity ratios of the specific diffraction spots of
martensite and austenite, namely, I(112)M/I(220)A and I(200)M/I(220)A, with increasing
and decreasing magnetic fields in the Fe41.5Mn28Ga30.5 alloy at 250 K. One can see that
there was no obvious change in the intensity ratios I(112)M/I(220)A and I(200)M/I(220)A
when the magnetic field changed from 0 T to 2 T and 6 T. Strikingly, there was a sharp
increase in the intensity ratios I(112)M/I(220)A and I(200)M/I(220)A when the magnetic
field increased to 11 T, as seen from Figure 6a. These results indicate that the volume
fraction of martensite became higher, as is consistent with the increase in magnetization
from 0 T to 11 T on the M(H) curve at 250 K. When the magnetic field was removed,
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the intensity ratios I(112)M/I(220)A and I(200)M/I(220)A almost remained unchanged,
indicating the incomplete recovery transition. Figure 6b shows the evolution of lattice
parameters for martensite and austenite with the increasing and decreasing magnetic field.
With the increasing and decreasing magnetic field, the lattice parameters for martensite and
austenite only presented slight changes when martensitic transformation and its reverse
transformation occurred, indicating that at 250 K, the magnetic field was unable to provide
sufficient energy to easily overcome atomic connection energies to vary both phases’ lattice
parameters, although partial austenite still continued transforming into martensite. An
abrupt unit cell volume increase, i.e., ∆V/V = +1.29%, could be achieved when increasing
the magnetic field to 2 T, which is very close to that reported previously [17,18].
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Figure 6. (a) Evolution of the intensity ratios, I(112)M/I(220)A and I(200)M/I(220)A, as a function
of magnetic field at 250 K. (b) Evolution of lattice parameters for Fe41.5Mn28Ga30.5 as a function of
magnetic field at 250 K.

Since the temperature- and magnetic-field-induced incomplete phase transformation
behaviors in the Fe41.5Mn28Ga30.5 alloy were systematically studied by means of in situ
experiments, a further microstructural analysis by TEM is shown in Figure 7. Figure 7a
presents a TEM image for Fe41.5Mn28Ga30.5, taken at 300 K (cooling from 400 K), and
Figure 7b shows an enlarged view of a local area in Figure 7a. No obvious characteristic
morphology of martensite-like minor long strip-type grain can be seen in Figure 7a. Instead,
some anti-phase boundaries [48] (APBs, marked by red arrows in Figure 7a) can be detected.
The APBs’ thickness was around 20–40 nm, and it was reported that in the Fe-Mn-Ga
alloys, the APBs’ crystal structure may appear while changing from L21 to lower-ordered
B2 phases by quenching (B2 shares the same fundamental spots with L21) [28]. The
corresponding selected area diffraction patterns of Figure 7a are shown in Figure 7a’,
confirming the present area to be the L21 austenite phase state. In addition, some weak
reflections, which may come from a lower-ordered B2 phase, appear at the positions
between the austenite spots, as indicated with the red arrow in Figure 7a’, which represents
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the precipitates. Similar precipitates were found previously by Omori et al. [49] in Fe-Mn-Al
alloys. It is reported that in the classical Fe-Ga alloy systems, the cubic-to-tetragonal phase
transformation can develop within the B2 precipitates, leading to the multidomain structure
being confined within a fixed-shape particle and to an incomplete transformation [50]. A
similar episode could have occurred during the martensitic transformation process in Fe-
Mn-Ga for the present work. When the sample was cooled to 150 K, as shown in Figure 7c,
some long strip-type grains could be seen, some of which referred to the martensite. The
width of the long strip-type grain was about 70 nm, as measured in Figure 7d. The
corresponding selected area diffraction patterns of Figure 7c are shown in Figure 7c’, and
one can see that, except for the L21 austenite phase (body-centered-cubic, bcc), some
reflections can be identified as variants of [112] martensite (body-centered-tetragonal, bct),
while the ordered B2 precipitates with {100} superlattice reflection spots can be detected
within in the matrix along the [011] zone axis.
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Figure 7. TEM observations of the Fe41.5Mn28Ga30.5 alloy at (a) 300 K and (c) 150 K, with the selected
area diffraction patterns at these temperatures shown in (a’,c’), respectively. (b,d) are two enlarged
views of a local area in in (b,c), respectively.

In the present work, the existence of APBs was able to weaken the degree of local
ordering, further leading to a decrease in the kinetics during martensitic transformation
and an increase in internal stress around APBs to inhibit the subsequent development
of martensitic transformation. Furthermore, the existence of B2 precipitates and their
nucleation may only result from the vacancy absorption [51]. As precipitates, they may
be formed by certain element enrichment of the Fe-Mn-Ga alloy, leading to a difference in
their unit cell volume and an increase in local stress. In this case, precipitation is possible
only if the absorbed excess vacancies annihilate this extra volume and, thus, eliminate
the transformation-induced stress preventing decomposition. To some extent, the field-
induced martensitic transformation of the L21 phase is restricted by the ordered B2 phase,
either in the actual sample space or characterized by the reciprocal space. This incomplete
martensitic transformation can also be discussed from a geometric compatibility (measured
by the middle eigenvalue λ2 of the transformation stretch matrix U) point of view [52,53],
and the middle eigenvalue λ2 for the Fe-Mn-Ga alloys usually seriously deviates from the
perfect geometric compatibility of λ2 = 1 [54]. This indicates that the present alloy with
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λ2 = 0.92 has poor geometric compatibility between austenite and martensite, making the
phase transformation between the two phases difficult. The above combined factors collec-
tively affect the temperature- and magnetic-field-induced incomplete phase transformation
behaviors of the Fe41.5Mn28Ga30.5 alloy.

4. Conclusions

In this work, the temperature- and magnetic-field-induced incomplete martensitic
transformation of the Fe41.5Mn28Ga30.5 magnetic shape memory alloy was systematically
investigated. The temperature-field-induced incomplete phase transformation was directly
evidenced by the crystal structure evolution during cooling and heating using the in situ
synchrotron high-energy X-ray diffraction technique. The magnetic-field-induced phase
transformation was revealed by the crystal structure evolution while increasing and de-
creasing the magnetic fields by means of in situ neutron diffraction experiments. The results
show that even at 4 K, the alloy still presented a two-phase coexistence state. When chang-
ing the magnetic fields at 250 K, the phase transformation, which is always accompanied by
the competing between martensite and austenite, cannot be accomplished. The variation in
the magnitude of the applied magnetic field leads to an irreversible effect of changing the
phase composition. TEM observation indicates that the existence of anti-phase boundaries
and B2 precipitates may lead to difficulties during field-induced phase transformation. This
work may help us to understanding the complex phase transition under external fields in
Fe-Mn-Ga alloy systems, and may provide suggestions for the development of applicable
Fe-Mn-Ga magnetic shape memory alloys with novel functionalities.
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