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Abstract: High-quality single crystals with empirical composition Y2.96Sm0.04Ga5O12 (YGG: Sm3+)
were successfully prepared by the optical floating zone method for the first time and compared with
related single crystals of Y2.96Sm0.04Al5O12 (YAG: Sm3+). With both crystals, XRD showed that Sm3+

entered the cubic-phase structure. Optical absorption spectra produced a series of peaks from Sm3+

in the 250 nm to 550 nm range, and photoluminescence excitation (PLE) spectra detected at 613 nm
showed strong excitation peaks at 407 nm and 468 nm. A strong emission peak at 611 nm (orange-red
light) was observed in the photoluminescence (PL) spectra under excitations at both 407 and 468 nm,
respectively, but it was much brighter under excitation at 407 nm. Furthermore, with both emission
spectra, the peaks from the YGG: Sm3+ crystal were significantly more intense than those from the
YAG: Sm3+ crystal, and both experienced a blue shift. In addition, under excitation at 407 nm, the
color purity of the emitted orange-red light of YGG: Sm3+ was higher than that of the YAG: Sm3+

crystal, and the fluorescence lifetime for the 4G5/2 → 6H7/2 transition of YGG: Sm3+ was longer than
that of the YAG: Sm3+ crystal. The optical properties of the YGG: Sm3+ crystal are better than those of
the YAG: Sm3+ crystal.

Keywords: optical properties; Sm3+-doped yttrium gallium garnet single crystals; optical floating
zone method; orange-red emission materials

1. Introduction

Rare-earth-based luminescent materials have been widely studied for their excellent
spectral properties, which include a high and adjustable luminescence, long fluorescence
lifetime, and large Stokes shift [1,2]. Consequently, they have extensive uses in light-
emitting diodes (LEDs), lasers, optical temperature sensors, optical communications, dis-
play panels, luminescence dosimeters, and biomedical diagnostics [3–6]. Nevertheless,
considerable efforts are still being employed to improve the luminescence properties of
such rare-earth-doped materials [7–9], and the color, intensity, and luminescence efficiency
have been shown to strongly depend on the structure and composition of the luminescent
center [8,10]. Furthermore, the crystal structure, ionic radius, luminescence efficiency,
refractive index, and phonon energy are key factors in determining the suitability of hosts
and dopants, and the usefulness of certain fluorescent materials is dependent on their
unique compositions [11].

Oxides with a garnet structure are commonly used as hosts for rare-earth-doped
luminescent materials, and commercial w-LED lamps are currently manufactured using a
combination of YAG: (Ce3+, Sm3+) yellow and red phosphors [12,13]. However, there are
manufacturing problems associated with the use of these materials, including an uneven

Crystals 2023, 13, 1273. https://doi.org/10.3390/cryst13081273 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13081273
https://doi.org/10.3390/cryst13081273
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-1444-2534
https://doi.org/10.3390/cryst13081273
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13081273?type=check_update&version=1


Crystals 2023, 13, 1273 2 of 12

dispersion of the phosphor particles, short lifetimes, and low thermal conductivity [13,14],
and the search for new white LED fluorescent materials to replace traditional phosphors
is an ongoing research topic [15,16]. Furthermore, although rare-earth-doped materials
with a garnet structure have desirable properties, including high excitation and emis-
sion efficiency, uniform distributions of rare-earth ions, a physical and chemical stability,
long life, and high thermal conductivity, which are suitable for use in high-quality w-
LEDs [17], there is still a need to improve the color temperature and color purity of white
light by obtaining more efficient red light emission [18,19]. Thus, the fact that Sm3+ can
achieve efficient orange-red light emission as a result of high absorptions near 404 nm and
468 nm, and thus can be efficiently excited by InGaN-based blue or UV LEDs, indicates
that Sm3+-doped materials with a garnet structure could be appropriate for use in w-LED
devices [18,20].

Recently, it has been reported that Eu3+ transitions in Eu3+-doped YAG are enhanced
by replacing the Al3+ with Ga3+ [21] and that the luminescence intensity in YGG crystals is
stronger than in YAG [22]. Furthermore, doping of YGG with other rare-earth ions, such
as Er3+ and Tm3+, has also been described [23], but we are unaware of any reports on the
fluorescence properties of Sm3+-doped YGG crystals.

Compared with ceramics and polycrystalline materials, single crystals have a greater
atomic uniformity, better mechanical properties, and a higher electrochemical and thermal
stability [24,25]. Furthermore, garnet single crystals are transparent materials, have a low
defect density, no grain boundaries that affect the properties of ceramics, and negligible
surface effects that influence the properties of powders. As a consequence, they have
high photoluminescence quantum yields [26,27], and their use can improve the power and
lifetime of w-LEDs [18,28]. Additionally, although traditional high-temperature methods
for obtaining single crystals often suffer from contamination from crucibles, this problem is
overcome with the optical floating zone method [29,30], which does not require a crucible
and has a rapid crystal production cycle [31], which is advantageous for investigating the
properties of new crystal materials [32,33].

Sm3+-doped yttrium gallium garnet single crystals were prepared by the optical
floating zone method, and their physical and optical properties were compared with those
of YAG: Sm3+ crystals. These materials were then characterized by XRD, photoluminescence
(PL) spectroscopy, and fluorescence lifetime measurements.

2. Materials and Methods
2.1. Crystal Preparation

Nanometer-size powders of Ga2O3 (99.99%, Maklin), Sm2O3 (99.99%, Aladdin), Y2O3
(99.99%, Maklin) and Al2O3 (99.99%, Maklin) were purchased in China and used to produce
crystals with the empirical composition Y2.96Sm0.04Ga5O12 and Y2.96Sm0.04Al5O12 by
the optical floating zone (OFZ) method. A more detailed description of the preparative
procedures has been presented in previous work [34–36].

As shown in Figure 1, the prepared samples were light yellow in color and had no
cracks or inclusions. Slices were cut and polished on both sides to produce 1.0 mm thick
discs for spectroscopic measurements. In addition, crystal fragments were ground in an
agate mortar to produce fine powders for X-ray diffraction (XRD) measurements (Dandong
Hao Yuan Company, Dandong City, Liaoning Province, China).

2.2. Physical Measurements

Powder samples ground from crystal were measured by XRD (DX-2700, Dandong
Hao Yuan Company, Dandong City, Liaoning Province, China) at room temperature using
Cu-Kα radiation (λ = 1.54060 nm). Measurements were performed over the range 10–90◦ 2θ
in steps of 0.02◦ with sampling times of 3 s, and the resulting XRD patterns were analyzed
using Jade software (MDI Jade 6.0).
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Figure 1. YGG: Sm3+ and YAG: Sm3+ single crystal rods along with cut and polished crystal slices.

Crystal densities were measured by a high-precision density tester (DE-120M, Daho
Meter Company, Dongguan, Guangdong Province, China). By measuring the weight of
YGG: Sm3+ and YAG: Sm3+ single crystal rods in air and pure water, respectively, the
volume of the crystal V can be obtained based on the Archimedes principle:

V =
M− F

ρw
(1)

where M is the weight of the crystal in air (in grams), F is the weight of the crystal in
pure water (in grams), and ρw is the density of pure water at room temperature, which is
1.0 g/cm3. The density of the crystal ρ can be calculated by the following formula:

ρ =
M
V

(2)

Absorption spectra were obtained in the 250–550 nm range with a UV-Vis Spectropho-
tometer (UV-2700, Shimadzu, Kyoto, Japan).

A photoluminescence spectrometer (ZLF-325, Zolix Instruments Co., Ltd., Beijing,
China) was used to measure the photoluminescence emission (PL) and excitation spectra
(PLE), with a 150 W xenon lamp as the excitation light source.

Fluorescence lifetimes were obtained with an Edinburgh steady/transient fluorescence
spectrometer (FLS1000, Edinburgh, UK) under excitation with 407 nm light, and then the
average lifetime of the samples was determined by tri-exponential fitting.

3. Results and Discussion
3.1. X-ray Diffraction

The XRD patterns of powders ground from YGG: Sm3+ and YAG: Sm3+ single crystals
(Figure 2) are consistent with the diffraction peaks of the YGG standard card (PDF c-01-
071-2151) and YAG standard card (PDF c-01-088-2048), respectively. The diffraction peaks
for both samples are narrow and demonstrate that the crystals have a good crystallinity.
One can also see in Figure 2 that the YGG: Sm3+ crystal peaks are shifted to lower angles
compared to the YAG: Sm3+ samples, thus confirming that replacing Al3+ by Ga3+ increases
the lattice parameter, as expected from its larger size.
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Figure 2. XRD patterns of powders ground from YGG: Sm3+ and YAG: Sm3+ single crystals.

The cell dimensions and cell volumes of the YGG: Sm3+ and YAG: Sm3+ crystals
calculated using Jade software are shown in Table 1 and demonstrate that the substitution
of Ga3+ (ionic radius 0.61 Å) for Al3+ (ionic radius 0.53 Å) [37] results in an increase in
the lattice constant from 1.201 nm to 1.230 nm and in the cell volume from 1.732 nm3 to
1.860 nm3.

Table 1. Lattice constants and cell volumes for YGG: Sm3+ and YAG: Sm3+ crystals.

Sample Lattice Constant
(nm) a = b = c

Cell Volume
(nm3)

YGG: Sm3+ 1.230 1.860
YAG: Sm3+ 1.201 1.732

3.2. Density Measurement

The measured densities of the YGG: Sm3+ and YAG: Sm3+ single crystals are shown in
Table 2, where M is the weight of the crystal in air and V is the volume of the crystal. The
densities of Y2.96Sm0.04Ga5O12 and Y2.96Sm0.04Al5O12 crystals obtained from the present
work (ρ) are 5.756 and 4.533 g/cm3, respectively, which are very close to the densities
of crystals calculated by Jade (ρcal in Table 2), indicating that our experimental data are
effective and reliable. The density of YGG: Sm3+ crystal is higher than that of YAG: Sm3+

crystal because the atomic mass of Ga (69.72) is greater than that of Al (26.98).

Table 2. The densities of Y2.96Sm0.04Ga5O12 and Y2.96Sm0.04Al5O12 single crystals.

Crystal M
(g)

V
(cm3)

ρ
(g/cm3)

ρcal
(g/cm3)

Y2.96Sm0.04Ga5O12 2.498 0.434 5.756 5.765
Y2.96Sm0.04Al5O12 2.561 0.565 4.533 4.551

3.3. Absorption Spectra

Figure 3a shows the absorption spectra of YGG: Sm3+ and YAG: Sm3+ crystals, and
Figure 3b shows the optical band gaps of YGG: Sm3+ and YAG: Sm3+ crystals. The ab-
sorption spectra of YGG: Sm3+ and YAG: Sm3+ single crystals in the range of 250 nm to
550 nm (Figure 3a) are similar because they are derived from transitions between Sm3+ 4f
electronic energy levels, which are largely shielded from external structural effects. Ten
absorption peaks were observed at 345, 362, 377, 390, 407, 419, 439, 468, 482 and 495 nm,
corresponding to 6H5/2 → 4D7/2, 4D3/2, 6P7/2, 4L15/2, 4F7/2, 6P5/2, 4G9/2, 4I13/2, 4I9/2 and
4G7/2 transitions, respectively [38]. The transition 6H5/2 → 4F7/2 (407 nm) appears to be
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stronger than other transitions and is more intense in the YGG: Sm3+ crystal than in the
YAG: Sm3+ crystal, thus demonstrating that crystal density and differences in the ionic radii
of Al3+ and Ga3+ in YAG and YGG can affect the intensity of the Sm3+ electronic absorption
transitions. Moreover, the absorptions at 407 and 468 nm indicate that YGG: Sm3+ crystals
can be excited by InGaN-based light-emitting diodes and are thus fluorescent materials
for manufacturing white LEDs [39]. The absorption peak in the range of 250 nm to 330 nm
(Figure 3a) corresponds to the absorption of the matrix, and the absorption edge of YGG:
Sm3+ single crystal shifts to a longer wavelength than YAG: Sm3+ single crystal, which is
because YGG and YAG crystals are different substrates and have different band gaps [40].
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Figure 3. (a) UV-Vis absorption spectra of YGG: Sm3+ and YAG: Sm3+ single crystals; (b) determina-
tion of Eg (the optical band gap) in YGG: Sm3+ and YAG: Sm3+ single crystals.

The optical band gaps (Eg) of the YGG: Sm3+ and YAG: Sm3+ single crystals were
determined from the position of the charge transfer transition using the Tauc equation [41]:

(αhυ)2 = A(hυ− Eg) (3)

where α and hv are the absorption coefficients and phonon energy of the sample, respec-
tively, and A is a constant. The relationship (αhv)2 versus hv is indicated in Figure 3b,
and Eg is the position of the intersection of the linear part of the curve with the hv axis.
The optical band gaps in YGG: Sm3+ and YAG: Sm3+ single crystals are 4.25 and 4.47 eV,
respectively, showing that YGG: Sm3+ single crystal has a narrower optical band gap than
YAG: Sm3+ single crystal.

3.4. Luminescence Properties
3.4.1. PLE Spectrum

The photoluminescence excitation (PLE) spectra detected at 613 nm for YGG: Sm3+

and YAG: Sm3+ single crystals are shown in Figure 4. The peaks at 336 nm, 348 nm,
365 nm, 379 nm, 407 nm, 420 nm, 440 nm, 468 nm, 482 nm, 493 nm, and 543 nm correspond
to transitions from the Sm3+ 6H5/2 ground state to the 4P3/2, 4D7/2, 4D3/2, 6P7/2, 4F7/2, 6P5/2,
4G9/2, 4I13/2, 4I9/2, 4G7/2, and 4F3/2 excited states, respectively [18]. The excitation peaks
of the YGG: Sm3+ crystal at 407 nm and 468 nm are strong; thus, these two wavelengths of
light are selected to excite this crystal to study the PL spectrum.
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Sm3+ single crystals.

3.4.2. PL Spectrum

Photoluminescence (PL) spectra of YGG: Sm3+ and YAG: Sm3+ crystals under exci-
tation at 407 nm and 468 nm are shown in Figures 5 and 6, respectively, and consist of
three strong bands and one weak band with centers at about 572 nm, 611 nm, 654 nm
and 696 nm corresponding to the Sm3+ 4G5/2 → 6Hj (j = 5/2, 7/2, 9/2, 11/2) transitions,
respectively [18]. Intensities are in the order 6H7/2 > 6H5/2 > 6H9/2 > 6H11/2 in both YGG:
Sm3+ and YAG: Sm3+ crystals.
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Figure 6. Photoluminescence (PL) spectra of YGG: Sm3+ and YAG: Sm3+ single crystals under
excitation at 468 nm.

Under excitation at 407 nm, the YGG: Sm3+ crystal emits bright orange-red light, as
shown in Figure 5, and the intensity of YGG: Sm3+ crystal is obviously higher than that
of YAG: Sm3+ crystal. Additionally, the emission spectrum of YGG: Sm3+ is blue-shifted
relative to the YAG: Sm3+ crystal, with maxima at 611 and 613 nm, and the FWHM are 4.1
and 3.8 nm, respectively.

Under excitation at 468 nm (Figure 6), the YGG: Sm3+ crystal also emits orange-red
light but is two orders of magnitude weaker than under excitation at 407 nm. Furthermore,
the luminescence intensity of YGG: Sm3+ crystal is higher than that of YAG: Sm3+, and the
emission spectrum of YGG: Sm3+ is blue-shifted relative to the YAG: Sm3+ crystal, with
maxima at 611 and 613 nm and FWHM of 4.2 nm.

These results may be a consequence of changing Al3+ in the YAG lattice to Ga3+, and
Ga3+ has a greater atomic mass than Al3+ and results in the YGG: Sm3+ crystal having a
higher density (Table 2) and smaller phonon energy than YAG: Sm3+ [42]. The phonon
energy directly affects the luminescence efficiency [23]; as a consequence, the emission
peak of the YGG: Sm3+ crystal is much stronger than that of the YAG: Sm3+. In addition,
the crystal fields of YGG and YAG crystals are different, which affects the 4f energy level
position and linewidth of Sm3+ [43], resulting in a shorter emission wavelength and a
blue shift of YGG: Sm3+ emission spectra compared with YAG: Sm3+ crystals. Thus, YGG
represents an improvement over YAG as a crystal matrix for observing the luminescence of
rare-earth ions, and at the same time, the YGG: Sm3+ crystal has a highly efficient orange-
red emission (as shown in Figure 5) and has a potential use in w-LEDs and as orange-red
solid-state lasers.

3.5. Chromaticity Coordinates

The luminescence color and color purity are important parameters for evaluating
the quality and potential uses of luminescent materials [22,44]. CIE-1931 [45] was used to
calculate the chromaticity coordinates for the emission spectra of YGG: Sm3+ and YAG:
Sm3+ single crystals under excitation at 407 nm. As shown in Figure 7 and Table 3, the color
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coordinates for the spectra from both crystals are located in the orange-red light region,
and their color purity was calculated by the following formula [46,47]:

color purity =

√
(xs − xi)

2 + (ys − yi)
2√

(xd − xi)
2 + (yd − yi)

2
× 100% (4)

where (xs, ys), (xi, yi), and (xd, yd) are the color coordinates of the crystals, the color
coordinates of isoenergetic white light (0.333, 0.333), and the color coordinates of the main
peak of the emission spectrum, respectively. As shown in Table 3, under excitation at
407 nm, the color purity is around 85% for the YGG: Sm3+ crystal and around 83% for YAG:
Sm3+. Thus, YGG: Sm3+ single crystals are high-quality materials that emit orange-red
light, with notable improvements in efficiency over YAG: Sm3+.
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Table 3. Values of CIE coordinates (xs, ys) and color purities calculated for YGG: Sm3+ and YAG:
Sm3+ crystals.

Sample λex (nm) (xs, ys) (xd, yd) Color Purity

YGG: Sm3+ 407 (0.590, 0.407) (0.646, 0.354) 85%
YAG: Sm3+ 407 (0.584, 0.405) (0.647, 0.353) 83%

3.6. Fluorescence Lifetime Measurements

The fluorescence lifetime (τ) is defined as the time required after ceasing excitation
for the fluorescence intensity to drop to 1/e of its maximum [48]. The fluorescence decay
curves (Figure 8) for the Sm3+ 4G5/2 → 6H7/2 transition in YGG: Sm3+ and YAG: Sm3+

crystals under excitation at 407 nm are similar and were fitted with a three-exponential
function [49]:

I(t) = A1e(−t/τ1) + A2e(−t/τ2) + A3e(−t/τ3) (5)

where I(t) is the luminescence intensity as a function of time t, and A1, A2, and A3 are the
pre-exponential factors of the three lifetimes τ1, τ2 and τ3 (Table 4) [49]. This indicates
that there are three decay behaviors. The first component (τ1) is dominant and could be
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attributed to the Sm3+ ions [50]. The second (τ2) and third (τ3) components are longer than
the first component (τ1); therefore, τ2 and τ3 could be related to the flicker light emitted by
excitons associated with antisite defects in the matrix [51]. The average decay time of the
sample is then defined by (6) [49]:

τ =
A1τ2

1 + A2τ2
2 + A3τ2

3
A1τ1 + A2τ2 + A3τ3

(6)

Crystals 2023, 13, x FOR PEER REVIEW 9 of 12 
 

 

there are three decay behaviors. The first component (τ1) is dominant and could be 
attributed to the Sm3+ ions [50]. The second (τ2) and third (τ3) components are longer than 
the first component (τ1); therefore, τ2 and τ3 could be related to the flicker light emitted by 
excitons associated with antisite defects in the matrix [51]. The average decay time of the 
sample is then defined by (6) [49]: 

2 2 2
1 2 31 2 3

1 2 31 2 3

A A A
A A A

τ τ τ τ
τ τ τ

+ +
=

+ +
 

(6)

 
Figure 8. Fluorescence decay curves for the YGG: Sm3+ and YAG: Sm3+ single crystals. 

Table 4. Pre-exponential factors (A) and individual lifetimes (τ) for YGG: Sm3+ and YAG: Sm3+ single 
crystals. 

Crystal A1 τ1  A2 τ2 A3 τ3 𝝉 (ms) R2 
YGG: Sm3+ 69.89 0.06 0.24 0.95 0.76 2.21 0.705 0.998 
YAG: Sm3+ 124.01 0.05 0.46 0.78 0.61 2.24 0.466 0.998 

The fluorescence lifetimes for the 4G5/2 → 6H7/2 emission peak from YGG: Sm3+ and 
YAG: Sm3+ single crystals were then calculated to be 0.705 ms and 0.466 ms, respectively 
(Table 4). Thus, the fluorescence lifetime of YGG: Sm3+ is not only longer than that of the 
YAG: Sm3+ crystal, but it is also longer than those of CaGdAlO4: Sm3+ (0.69 ms) and 
NaGd(MnO4): Sm3+ crystals (0.5574 ms) [18,52,53]; this is probably the consequence of the 
greater intensity of its 4G5/2 → 6H7/2 emission peak, which allows for a greater participation 
of Sm3+ ions in this transition and results in a longer fluorescence lifetime [54,55]. 

4. Conclusions 
High-quality Y2.96Sm0.04Ga5O12 (YGG: Sm3+) single crystals were successfully pre-

pared for the first time by the optical floating zone method and were compared with 
Y2.96Sm0.04Al5O12 (YAG: Sm3+) single crystals. The density of Y2.96Sm0.04Ga5O12 single crystal 
(5.756 g/cm3) is larger than that of Y2.96Sm0.04Al5O12 single crystal (4.481 g/cm3), because of 
the larger atomic mass of Ga compared with Al. XRD analysis showed that Sm3+ success-
fully entered into the cubic-phase structure of the garnet crystals. Ten absorption peaks 

Figure 8. Fluorescence decay curves for the YGG: Sm3+ and YAG: Sm3+ single crystals.

Table 4. Pre-exponential factors (A) and individual lifetimes (τ) for YGG: Sm3+ and YAG: Sm3+ single
crystals.

Crystal A1 τ1 A2 τ2 A3 τ3
−
τ R2

YGG: Sm3+ 69.89 0.06 0.24 0.95 0.76 2.21 0.705 0.998
YAG: Sm3+ 124.01 0.05 0.46 0.78 0.61 2.24 0.466 0.998

The fluorescence lifetimes for the 4G5/2 → 6H7/2 emission peak from YGG: Sm3+ and
YAG: Sm3+ single crystals were then calculated to be 0.705 ms and 0.466 ms, respectively
(Table 4). Thus, the fluorescence lifetime of YGG: Sm3+ is not only longer than that of
the YAG: Sm3+ crystal, but it is also longer than those of CaGdAlO4: Sm3+ (0.69 ms) and
NaGd(MnO4): Sm3+ crystals (0.5574 ms) [18,52,53]; this is probably the consequence of the
greater intensity of its 4G5/2 → 6H7/2 emission peak, which allows for a greater participa-
tion of Sm3+ ions in this transition and results in a longer fluorescence lifetime [54,55].

4. Conclusions

High-quality Y2.96Sm0.04Ga5O12 (YGG: Sm3+) single crystals were successfully pre-
pared for the first time by the optical floating zone method and were compared with
Y2.96Sm0.04Al5O12 (YAG: Sm3+) single crystals. The density of Y2.96Sm0.04Ga5O12 single
crystal (5.756 g/cm3) is larger than that of Y2.96Sm0.04Al5O12 single crystal (4.481 g/cm3),
because of the larger atomic mass of Ga compared with Al. XRD analysis showed that Sm3+

successfully entered into the cubic-phase structure of the garnet crystals. Ten absorption
peaks were observed at 345, 362, 377, 390, 407, 419, 439, 468, 482 and 495 nm, corresponding
to 6H5/2→ 4D7/2, 4D3/2, 6P7/2, 4L15/2, 4F7/2, 6P5/2, 4G9/2, 4I13/2, 4I9/2 and 4G7/2 transitions
of Sm3+, respectively. Excitation peaks at similar wavelengths were observed in the PLE
spectra detected at 613 nm, including strong peaks at 407 nm and 468 nm. Both YGG:
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Sm3+ and YAG: Sm3+ crystals emit orange-red light with a wavelength of about 611 nm
under excitation at 407 and 468 nm, respectively, and the luminescence intensity is much
stronger with 407 nm excitation. Furthermore, with both PL spectra, the emission peaks
from YGG: Sm3+ crystal are both significantly more intense than those from YAG: Sm3+,
and both experience a blue shift. The YGG: Sm3+ crystal has a highly efficient orange-red
emission. In addition, under the excitation of 407 nm, the color purity of the orange-red
light emitted by the YGG: Sm3+ crystal (85%) is higher than that emitted by the YAG: Sm3+

crystal (83%). Additionally, the fluorescence lifetime at the 4G5/2 → 6H7/2 transition of the
YGG: Sm3+ crystal (0.705 ms) is longer than that of the YAG: Sm3+ crystal (0.466 ms). This
shows that the optical properties of YGG: Sm3+ crystal are better than those of YAG: Sm3+

crystal and that they have a potential use in w-LEDs and as orange-red solid-state lasers.
In other words, YGG: Sm3+ crystals are promising new materials for use in w-LEDs and
orange-red solid-state lasers.
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