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Abstract: Metal additive manufacturing (AM) technologies can be classified according to the physical
process involving the raw material as fusion-based and solid-state processes. The latter includes
sintering-based technologies, which are aligned with conventional fabrication techniques, such as
metal injection molding (MIM), and take advantage of the freeform fabrication of the initial green part.
In the present work, 17-4PH stainless steel samples were fabricated by material extrusion, or rather
bound metal deposition (BMD), a solid-state AM technology. The powder-based raw material was
characterized together with samples fabricated using different angular infill strategies. By coupling
different characterization technologies, it was possible to identify and classify major properties and
defects of the raw material and the fabricated samples. In addition, microstructural modifications
were found to be linked with the mesostructural defects typical of the BMD solid-state additive
manufacturing technology applied to metals.

Keywords: solid-state additive manufacturing; material extrusion; metals and alloys; defects analysis;
microstructural characterization

1. Introduction

Additive manufacturing (AM) is a class of freeform fabrication technologies based on
layer-wise material addition [1]. The ASTM F2792 [2] regulation defines AM as “a process of
joining materials to make objects from 3D model data, usually layer upon layer, as opposed
to subtractive manufacturing methodologies” and the key of additive manufacturing and its
layer-based approach is that material can be placed only where it is needed in a component.
This allows for the redefining of the shape of a part by applying topology optimization and
following the Design for Additive Manufacturing (DfAM) principles [3–5]. This will have a
crucial impact not only on the performance of the final part but also on the cost and the
sustainability of AM adoption by also reducing the manufacturing waste [3,5–8].

Among a large number of available metal AM technologies, beam-based ones rely
on the complete melting of the feedstock [4–6], which can be in the form of micrometric
powder or wire, using different heat sources. The most popular fusion-based metal AM
technologies are laser beam (LB) and electron beam (EB) powder bed fusion (PBF), or rather
LB-PBF and EB-PBF. The former stands out for its high printing resolution, while the latter
has a higher production speed [9–11].

On the other hand, solid-state AM technologies rely on the use of mechanical defor-
mation or sintering to achieve a strong metallurgical bonding between subsequent layers
of material [12]. Among the sintering-based ones, it is worth mentioning that material
extrusion and binder jetting have similar features since both rely on a multistep approach
based on the use of an organic binder to 3D print the desired geometry [13].
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One of the latest additions to the solid-state AM technology is Bound Metal Deposition
(BMD), a material extrusion process provided by the Desktop Metal (DM) Studio System,
which is characterized by three fabrication steps: 3D printing, debinding, and sintering.
Typically, further postprocessing actions are performed to increase the mechanical proper-
ties and the surface finishing of the fabricated part [8,10,14]. The computer-aided design
model of the object must be subjected to slicing, as all the 3D-printing processes, while the
DM Fabricate software allow for the definition of the BMD processing parameters, such as
part orientation, number of perimeter-wall layers, number of bottom and top layers, infill
pattern, and infill-pattern density. As clarified by Abe et al. [11] compared to as-designed
dimensions, the software increases the as-sliced dimensions by approximately 18.6%, 18.6%,
and 19.5% in the x, y, and z directions, respectively, to account for the shrinkage taking place
during the final sintering step. The BMD feedstock comprises composite rods made up of
a thermoplastic media (wax and polymer binder) filled with metal powder of the chosen
alloy [15]. These rods are extruded by a heated nozzle having a diameter of 250 or 400 µm.
Supports are fabricated using the same material but with a different printing strategy and
they are separated from the surface of the object by a ceramic-interface layer deposited
by an additional print head. This ceramic interface facilitates the separation between the
part and the supports during the furnace sintering. During 3D printing, the alloy and
the interface material are extruded onto the build plate, shaping the final 3D part (the
so-called “green part”) layer by layer, according to the original and sliced geometry. Once
the component is printed, the green part is placed in a tank and immersed in a proprietary
DM organic solvent to dissolve most of the binder. The part resulting from the debinding
process is called “the brown part”. The final step is a thermal sintering which removes the
remaining binder and densifies the part by applying a thermal treatment that promotes the
necking formation and the following interparticle adhesion. Postprocessing steps include
the easy removal of the raft and supports, followed by machining and heat treatments (if
needed) which could affect the inner porosity and/or modify the microstructure and the
mechanical performance of the part [8,16]. BMD process steps are comparable to metal
injection molding (MIM) ones; although both use a polymer-wax binder within green state
parts and take advantage of debinding and sintering steps, the main difference between
the two technologies is how the green state part is obtained. Whereas BMD performs 3D
printing via material extrusion, MIM injects the build material into a mold. Therefore,
BMD parts will benefit from a larger design freedom but will be characterized by a higher
roughness compared to MIM parts [14,17,18].

A chromium–nickel–copper precipitation-hardened steel, 17-4PH is used in a wide
range of industrial applications, including those characterized by mildly corrosive environ-
ments and high-strength requirements [11,14,19–21]; 17-4PH has a martensitic microstruc-
ture in the annealed condition and is further strengthened by a low-temperature heat
treatment, which results in the precipitation of a copper-rich phase in the alloy. Precipitation-
hardening steels are difficult to manufacture with conventional fabrication technologies
and, therefore, AM has the potential to be disruptive for this class of stainless steels [22].

Currently, several 17-4PH-based filaments are available on the market and can be
processed by material extrusion-based 3D printers [23–25], while the novelty of the BMD
process stands in the use of rigid rods instead of filaments, which guarantees a higher metal-
to-binder ratio. Pellegrini et al. [23] investigated the effect of two aging treatments applied
on 17-4PH samples fabricated by three material extrusion technologies, such as BMD,
fused filament fabrication (FFF), and atomic diffusion additive manufacturing (ADAM).
Akessa [26], Bjørheim, et al. [10] and Gonzalez-Gutierrez et al. [24] fabricated specimens
for tensile tests, the first two with the ADAM technology and the latter with a highly filled
polymeric filament of 17-4PH; the authors attributed the high standard deviation (up to
38%) of the measured tensile data to the large number of defects and to the lack of cohesion
between the layers and deposited tracks. Galati et al. [25] mainly evaluated the density,
accuracy, and surface roughness of cubic and complex reference samples, fabricated by the
ADAM technology. Kedziora et al. [27] performed a comparison between 316L and 17-4PH
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stainless steels fabricated by fused filament fabrication (FFF) and selective laser melting
(SLM), in order to validate the use of FFF for the fabrication of structural parts. For this
purpose, the paper focused on tensile, fatigue, and impact mechanical properties as well as
the surface roughness and hardness of the fabricated samples, showing the detrimental
impact of internal defects on the randomness of the results.

Most papers addressing material extrusion of metals are focused on the density and
mechanical performance of the fabricated samples; therefore, the current literature lacks a
study focused on the microstructural implications of process parameter variations and the
related defects formation.

The goal of the present study is to give an overview of the solid-state AM technology
called Bound Metal Deposition (BMD), from feedstock characterization to the final as-
sintered structures fabricated with two different infill deposition strategies, in order to
identify the main defects, define their nature, and classify them accordingly.

2. Materials and Methods

The feedstock material used in the BMD process is stainless steel 17-4PH micrometric
powder, embedded in a polymeric binder to form composite rods. The chemical composi-
tion (wt.%) of the alloy provided by Desktop Metal [28] is reported in Table 1.

Table 1. Chemical composition (wt.%) of the 17-4PH stainless steel feedstock.

Fe Cr Cu Ni Nb + Ta Mn C

Bal. 15.5–17.5 3–5 3–5 0.29 <1.00 <0.07

The investigated sample was fabricated in the form of a hollow square for two main
reasons: (i) to maximize the success rate of solvent debinding, thermal debinding, and
sintering and (ii) to simplify the fixing and cutting phases. The schematic of the 3D-printed
sample is reported in Figure 1a and the indicated dimensions are as follows: h = 50 mm,
s = 5 mm, a = 50 mm, b = 50 mm.
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The BMD process was performed with Desktop Metal Studio System equipment, 
with the combination of process parameters reported in Table 2. 

  

Figure 1. Details of the sample used in the current study: (a) Schematic design of the 3D-printed
stainless steel sample used in the present work; (b) Section of the sample in the build preparation
software printing software, (c) Picture of one of the fabricated samples. Investigated areas are arrowed
in blue, while the printing direction is indicated in red.

Figure 1b shows a section for the printed sample in the Fabricate software for build
preparation. It is worth noting that the printing direction indicates the direction in which
the printing head is moving along the single deposited layer; this direction is fixed during
the 3D-printing process.

The BMD process was performed with Desktop Metal Studio System equipment, with
the combination of process parameters reported in Table 2.
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Table 2. List of the process parameters used for the 3D-printing process.

Process Parameter Value

Nozzle diameter [mm] 400
Printing speed [mm/s] 30

Infill strategy 100%
Overlap 0%

Layer height [mm] 0.15

Two different sets of two hollow square samples were fabricated by maintaining the
same processing parameters and using a different deposition strategy in terms of infill
direction with respect to the 3D-printed perimeter wall (Figure 2):

• BMD_90 sample, with a 90◦ deposition strategy;
• BMD_45 sample, with a 45◦ deposition strategy.
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Figure 2. Schematics of the XY cross-section of the characterized samples: (a) BMD_90, (b) BMD_45.
Microstructural investigations were performed on the edge (blue dot) and on the core (red rectangle)
of the samples.

As per the BMD process specifications, the samples were fabricated on top of a raft
and a ceramic interface layer, which are used to hold the part during the printing process
and the final sintering step. After printing, the sample (green part) was subjected to the
debinding operation for a time duration of about 30 h. To eliminate a large part of the
polymeric binder, the debinding process was performed with the Desktop Metal equipment
where the parts are immersed in a 300 × 300 × 300 mm3 volume of solvent. After this step,
the 3D-printed part becomes very fragile (brown part) since the metal-powder particles
are still separated and kept together by the residual polymeric binder. The final step of the
Desktop Metal process is the sintering of the brown part. The process was performed in a
furnace under an inert gas atmosphere (Ar + 3%H2) and consisted of two phases, an initial
thermal debinding during which the residual binder is dissolved by heat, followed by a
thermal cycle (sintering), during which metal particles are finally sintered at a temperature
up to 1350 ◦C. The total sintering time was 35 h; the first 5 h are dedicated to thermal
debinding, followed by 10 h for sintering, and the remaining time for cooling.

Specimens were cut from the original part in section XY (plane parallel to the build
plate) and YZ (along the growth direction) and embedded in a phenolic resin for the
metallographic preparation. Samples were then ground and polished on a Struers Tegramin-
20 automatic grinding machine. Mirror-polished surfaces were used to investigate the pore
formation and to quantify their dimensions and distribution. For this purpose, 20 optical
micrographs were collected and all the defects were characterized using the software
ImageJ (version 1.53 v21) [29]. To reveal the microstructure, samples were subjected to
etching by immersion in a solution of 10 mL HNO3 + 15 mL HCl + 12 mL acetic acid for
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1 min and then washed with ethylic alcohol. A Leica DMi8 optical microscope was used to
acquire micrographs on the mirror-polished and etched surfaces of all the samples. Phase
quantification was performed on 5 micrographs acquired in a position close to the edge
of the samples and 5 micrographs acquired on the core of the samples; quantification was
performed according to the ASTM E562 standard [30] for the volume fraction manual point
count, using the software ImageJ [29].

X-ray diffraction (XRD) patterns were acquired using a Bruker D8 Advance diffrac-
tometer operating at V = 40 kV and I = 40 mA, with a Bragg–Brentano geometry and Cu-Kα

radiation. Measurements were performed on the YZ plane direction of both samples, using
an angular range 2θ = 20–80◦ with a step size of 2θ = 0.02◦ and a dwell time of 2 s. Lattice
parameters were extracted by Rietveld refinement performed using the Profex software
(version 5.2.2) [31].

In order to fully characterize the features of the 17-4PH feedstock (composite rods)
and as-built BMD samples, field-emission gun scanning electron microscopy (FEGSEM)
observations were performed using a Zeiss Supra 40 microscope, equipped with a Bruker
Quantax Z200 microanalysis to perform energy dispersive spectroscopy (EDS) investiga-
tions. EDS was used to analyze the chemical composition and to characterize inclusions
and other defects. Backscattered electrons signal (BSE) was used for all the SEM inves-
tigations. Postacquisition statistical analysis on the SEM micrographs was performed
using the ImageJ software [29]. Particle size distribution (PSD), cumulative fraction, and
other representative granulometric quantities (i.e., percentiles D10, D50 D90) related to the
metal-powder fraction of the rods were calculated from five SEM micrographs.

Hardness Rockwell C measurements were performed with an Ernst Hardness tester,
using a load of 150 kgf. Five indentations were performed along the XY plane and five
along the growth direction (YZ plane).

The punctual characterization of the mechanical response of the 3D-printed steel
was performed by Vickers microhardness measurements using a REMET HX-1000 tester
with a load of 300 gf and a dwell time of 10 s. Microhardness was tested by performing
three systematic indentations every 2 mm 13 times in the XY plane (Figure 3) and three
indentations every 2 mm 22 times in the YZ plane, in order to cover all the available space
throughout the sample.
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3. Results and Discussion
3.1. Feedstock Characterization

The SEM analysis of the starting 17-4PH composite rods revealed the presence of
mainly circular 17-4PH particles (Figure 4a), with the calculated particle size distribution
and cumulative fraction reported in Figure 4b. From the data reported in Figure 4, rep-
resentative percentiles have been calculated corresponding to the 10%, 50%, and 90% of
the obtained particles’ diameters (D10, D50, and D90, respectively); values are reported
in Table 3.
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Table 3. Representative percentiles calculated from SEM micrographs of the composite rod (AVG
stands for average and SD for standard deviation).

D10 D50 D90

AVG 4.5 15.5 45.0
SD 0.5 0.5 2.0

In principle, based on the paper by Hausnerova et al. [32], the same properties of
the MIM powder feedstock can apply for the BMD composite rods, including shape, size
distribution, loading, and packing density, which are properties also shared with the
powder bed fusion feedstock. In particular, powder particle size plays a crucial role in
realizing a dense sintered part with limited shrinkage, either with MIM or any other binder
jetting or material extrusion-based (i.e., BMD) technology [33,34]. The particle population
in Figure 4 comprises a large amount (more than half) of very fine particles, showing a
diameter lower than 20 µm. The width distribution or distribution slope parameter, Sw,
can be calculated using the following equation (Equation (1)) [35]:

Sw =
2.56

log
(

d90
d10

) (1)

Using the percentile values calculated on multiple SEM micrographs and reported in
Table 3, the Sw value of the present distribution is 5.5 and clearly indicates a very wide
distribution, as can be evinced also by the SEM-BSE micrograph reported in Figure 4.
This wide dimensional range of the powder particles has no influence on the 3D-printing
step of the BMD technology, being that the printing conditions are influenced only by
the properties of the polymeric binder material. However, it is during the final sintering
phase that the particle size dimension (PSD) becomes crucial because a dimensional range
as wide as the one reported in Table 3 will result in the formation of pores due to the
stacking of powder particles one on top of the other. While this phenomenon is mitigated
during the MIM process owing to the pressure applied to the feedstock by the molds, the
BMD freeform fabrication technology leads to residual porosities related to the particle size
dimension of the metallic fraction.

While the investigation of the particle size distribution and the sphericity of the pow-
der particles was performed with scanning electron microscopy, the energy dispersive
spectroscopy (EDS) detector was used to investigate peculiarities in the chemical com-
position of the feedstock. Figure 5 shows the EDS elemental map acquired on the area
indicated by the BSE micrograph and highlights the presence of contaminant particles with
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high concentrations of silicon, oxygen, aluminum, and manganese as well. It is worth
mentioning that the contrast of the EDS map micrograph was intentionally enhanced in
order to highlight the presence of a contaminant particle that was not visible with the
standard contrast-balanced BSE micrograph.
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While other papers in the literature report on silicon oxide formation on the surface
of atomized metal-powder particles and on sintered stainless steels [36–38], the results
of this investigation show that these oxides are in the form of free particles with the
same granulometric size of the base alloy and totally different composition, owing also to
the presence of high percentage of aluminum and total absence of Fe (confirmed by the
peaks deconvolution reported in the spectrum of Figure 5). This suggests that, while the
low atomization temperature and slow cooling rates can play a major role in the oxides
formation, it is also reasonable to consider them as particles with a totally different nature
inside the feedstock.

3.2. Analysis and Classification of Defects

The mirror-polished surfaces of the 17-4PH BMD_90 and BMD_45 samples allowed
for the characterization of the structural integrity of the part and the eventual presence of
pores within the structure. Figure 6 shows the optical microscopy results of the YZ section
investigation and the SEM-BSE details of the extrusion defects.
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Figure 6. Optical micrographs of the YZ samples: (a) BMD_45, (b) BMD_90, and SEM-BSE mi-
crographs of the mirror-polished YZ surface (BMD_90): (c) low magnification image with low
brightness–high contrast balance to highlight the brightest inclusions, (d) high magnification image
with high brightness–mid contrast balance to highlight the darker areas surrounding the extrusion-
related pore.

Figure 6 highlights the presence of pores with a particular geometrical shape which
can be ascribed to the space left by the extrusion of the composite material during the
3D-printing process, beyond the specific deposition strategy. It is worth mentioning that
owing to the different deposition angles, pores related to the YZ plane of the BMD_45
sample (Figure 6a) appear smaller than for the YZ BMD_90 sample, thus increasing the
density in the realized section perpendicular to the square. Figure 6 shows the structure of
the BMD_45 and BMD_90 samples along the growth direction (YZ plane). The orientation
of the pores is directly connected with the printing strategy and is enhanced by the binder
dissolution and evaporation during the debinding and sintering phases, respectively. This
suggests that the final thermal process is not able to limit the presence of such large defects
and that a low bond between subsequent layers can be expected. The presence of the
triangular-like defects highlights how the deposition of tracks and the following squash
of the melted composite material by the extrusion nozzle play a major role in defining the
shape of the pores. These findings are in line with the literature concerning the material
extrusion of metals where, despite a different form of the starting feedstock (composite
wire instead of composite rods), large geometrically shaped voids are found in the final
part, confirming the link between the defect and the 3D-printing process itself [10,26,39].

Figure 6c,d show SEM-BSE micrographs acquired at different magnifications and
using different levels of brightness–contrast. It is worth noting that while Figure 6c allows
for highlighting the presence of very bright inclusions, the high brightness option used
for Figure 6d enables the detection of darker areas concentrated around the edge of the
extrusion-related pore corresponding to high concentrations of silicon oxides as the ones
that will be discussed later in the paper.

The highly bright inclusions shown in Figure 6c were characterized by energy disper-
sive spectroscopy and the results showed the high presence of Nb and C (~40 ± 10 wt.% Nb,
10 ± 2 wt.% C, calculated by averaging the EDS values acquired from every bright region),
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suggesting that these inclusions correspond to niobium carbides (NbC). The presence of
these carbides can be expected since the temperatures reached during the sintering phase
and the corresponding dwell times are similar to the conditions at which solution annealing
is typically performed on 17-4PH stainless steel (also known as “condition A”) [26,40].
Compared to the recently published results by Akessa et al. [26], niobium carbides in the
sample fabricated by BMD are located in different positions across the analyzed surface,
while in the samples obtained by using the ADAM technology, carbides are found on the
edges of the pores [26].

The optical micrographs of the BMD_45 and BMD_90 XY mirror-polished samples are
shown in Figure 7.
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Figure 7. Optical micrographs of the XY samples: (a) BMD_90 close to the edge, (b) BMD_90 core of
the sample, (c) BMD_45 close to the edge, and (d) BMD_45 core of the sample.

The planar arrangement of the deposited tracks (Figure 7) close to the edge of the
fabricated square (Figure 7a,c) and in the central area (Figure 7b,d) for both the BMD_45
and BMD_90 samples is quite peculiar. A remarkable decohesion between different tracks
is clearly visible in the areas closer to the outer edge of both samples (Figure 7a,c); the
structure of both samples densifies with limited large defects formed next to the samples’
core. Edge micrographs have a different scale bar to highlight the impact of the infill
deposition strategy on the evolution of the defects.

The structure of the samples in the plane perpendicular to the growth direction shows
large defects appearing as void lines close to the edges of the samples and aligned with
the infill strategy (Figure 7a,c), while a higher density is reached in the core of the samples
(Figure 7b,d). This effect is indeed independent of the infill deposition angle and is likely to
be due to the combination of printing parameters such as the deposition strategy, overlap,
and density profile chosen for the fabrication. While the literature shows continuous void
lines [10,26,39], Figure 7a highlights discontinuous void lines preferentially located close
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to the outer wall of the 3D sample and suggests a better overall performance. During the
sintering process, the evaporated residual binder increases the content of the pores since
this thermal process takes place without the application of pressure and there is no further
infiltration with additional material. Therefore, while the thermal cycle is able to densify
the part and completely dissolve the polymeric binder, a residual porosity content should
always be expected. Furthermore, as outlined above, the wide range of powder dimensions
increases the inherent porosity and results in the formation of the round-shaped pores
visible in the optical micrographs of Figures 6 and 7

Scanning electron microscopy investigations, together with element microanalysis,
have been also performed on the polished surfaces of both sets of samples and the findings
referring to the BMD_90 sample (YZ plane) are reported in Figure 8. It is worth mentioning
that similar results were obtained in BMD_90 and BMD_45 samples.
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Figure 8. Energy dispersive spectroscopy (EDS) spectra taken in positions A and B of the SEM
micrograph on the left (BMD_90 sample). Quantitative (wt.%) amounts of the main elements varying
between point A and point B are also reported.

The BSE signal allowed for the highlighting of differences in the chemical composition
of the final part (Figure 8) and the use of the energy dispersive microanalysis performed
on specific positions (being A the matrix and B the discontinuity) allows identifying the
presence of an inclusion rich in silicon and oxygen. It resulted that particles with a high
amount of O, Si, Al, and Mn were found inside the metal-powder feedstock (Figure 5) and
these are likely to be the cause of the inclusions reported here in Figure 8, with an associated
redistribution of alloying elements during surface and volumetric diffusion occurring in
the sintering furnace. These oxide particles are also responsible for the darker BSE contrast
areas in Figure 6d and highlight how their concentration is particularly remarkable near
extrusion-related pores.

Investigations allowed for the isolation of different defects and to correlate their
nature with different production steps as (i) extrusion-related defects, related to large pores
having remarkable dimensions (i.e., 20 microns) and a particular geometrical arrangement
(from triangular to star-shaped in the growth direction) and (ii) feedstock-related defects,
which include all the discontinuities inside the final part depending on the feedstock only.
With reference to the latter, an additional classification of the feedstock’s defects can be
suggested: (i) chemistry-related defects, that is defects and inclusions connected with the
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chemical composition and peculiar metallurgical behavior of the alloy and (ii) geometry-
related defects, such as rounded pores connected with the sintering of the metal particles.
In this latter case, the surfaces of the particles impinge on one another and cause gaseous
inclusions to form in the remaining space after the binding removal. These small, rounded
pores are typical of AM sintering-based technologies, as well as MIM, and are linked
with the formation of necks between metal particles during furnace sintering [18,23–27,35].
Decohesion of the deposited tracks, as highlighted in Figure 7, can be classified as an
additional extrusion-related defect, being due to the particular BMD 3D-printing process.
It is worth pointing out that chemistry-related defects are due to the presence of peculiar
particles in the feedstock rods and to the formation of silicon oxides due to the high
percentage of Si in the chemical composition to prevent the formation of other detrimental
oxides [36].

3.3. Microstructural Characterization

Mirror-polished samples were subjected to etching to reveal the microstructure and
the results are shown by the optical micrographs reported in Figure 9.
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Figure 9. Optical micrographs of the etched investigated samples: (a) BMD_90 XY, (b) BMD_90 YZ,
(c), BMD_45 XY, and (d) BMD_45 YZ.

The microstructure of all the samples revealed by optical microscopy (Figure 9) is
a combination of ferrite and martensite; no remarkable differences can be highlighted
between the two sets of samples.

Concerning the microstructure, Figure 9 shows the presence of ferrite and martensite
for both the BMD_45 and BMD_90 samples; the phase distribution is consistent with the
“condition A” status, that is, after a solubilization process [26,40,41]. In this respect, quan-
tification of the δ-ferrite phase according to the ASTM E562 standard was performed for
both samples in two different regions, close to the edge and in the core of the sample. In
particular, the edges of both the BMD_45 and BMD_90 samples are characterized by higher
δ-ferrite percentages, a trend which is more pronounced for the former sample, whose core
shows the lowest δ-ferrite amount. As reported in the literature by Wu et al. [42] carbon
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diffusion is the driving mechanism of δ-ferrite formation in 17-4PH fabricated by injection
molding. Diffusion is determined by the sintering temperature and dwell time and can
lead to a remarkable variation of the martensite–ferrite contents in martensitic stainless
steels [42,43]. Sintering parameters cannot be varied in the BMD system used in the present
study and this suggests that any microstructural modification between edge and core must
be related to the structural defects of the samples. The large linear pores (Figure 7) corre-
sponding to tracks’ decohesion occurring at the edges of the analyzed samples enhanced
carbon diffusion and, therefore, the formation of a larger amount of δ-ferrite compared to
the core of the samples. Therefore, the results of this quantification reported in Figure 10
highlight that the phase distribution is determined by the mesostructure of the sample.
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Figure 10. The δ-ferrite volume fraction resulting from phase quantification (ASTM E562) on the
edge and on the core of both the BMD_90 (blue bars) and BMD_45 (red bars) samples. The error bar
of the BMD_45 edge condition is very thin and overlaps with the contour of the bar itself.

This result can be considered in good agreement with the current literature about
binder jetting of 17-4PH [43] and highlights that phase composition can be tailored with
material extrusion by changing the extrusion pattern. This is of particular importance since
a δ-ferrite content below 10% allows for the mitigation of potentially detrimental effects on
the mechanical properties of the final parts [18,44].

The volume fraction of δ-ferrite was quantified from optical micrographs taken on
the edge and in the core (see Figure 2) of both the BMD_45 and BMD_90 samples; the
corresponding quantitative analyses are reported in Figure 10.

Calculated values of the δ-ferrite phase show a variation between 9% and 12%, with
a significantly lower value recorded on the cores of both samples (Figure 10), a trend
more pronounced for the BMD_45 sample. In the latter (Figure 10, red bars) the different
deposition strategies of the filling pattern are shown to have a remarkable influence not
only on the pore distribution (Figure 7) but also on the phase evolution during sintering.

To further investigate the phase distribution and crystallinity of the samples, X-ray
diffraction was performed and the results are shown in Figure 11.
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Figure 11. X-ray diffraction patterns of the two samples. Grey dashed lines are the peak positions
identified by the PDF card 06-0696 (bcc ferrite).

The X-ray diffraction patterns of the BMD_45 (black line) and BMD_90 (blue line)
samples reported in Figure 11 were acquired along the growth direction (YZ plane). The
gray dashed lines identify the δ-ferrite peak positions, corresponding to the PDF card
06-0696. No peaks related to the fcc γ-iron phase are visible in the acquired patterns [26].

It is known that the lattice parameters of the bct martensite crystal vary with carbon
content and temperature. In particular, in the case of low-carbon steels (<0.6 wt% C),
the tetragonality of the martensite crystal is almost nonexistent [45–47]. For this reason,
while the presence of both δ-ferrite and martensite has been clearly detected with metal-
lography (Figure 9), X-ray diffraction patterns show only two clear peaks related to the
bcc phase [48,49]. Rietveld refinement was performed on both the diffraction patterns
of Figure 11 and the comparison between experimental values of the bcc and bct lattice
parameters are reported in Table 4, together with the comparison with the nominal lattice
parameter value of the ferrite PDF card 06-9606. Rietveld refinement performed on the
X-ray diffraction patterns of both samples allowed for the calculation of the lattice parame-
ters of both phases (Table 4) and to compare them with the reference PDF cards (06-0696
PDF card for ferrite and 44-1290 PDF card for martensite).

Table 4. Experimental lattice parameters were calculated from peak position in the XRD patterns by
Rietveld refinement. First row shows the nominal lattice parameter value from the ferrite 06-0696
PDF card and martensite 44-1290 PDF card.

Sample δ-Ferrite (nm) α-Martensite (nm)

Reference a = 0.2866 (PDF 06-0696) a = 0.2859 (PDF 44-1290)
c = 0.2937

BMD_45 a = 0.2863 ± 0.0001 a = 0.2851
c = 0.2878 ± 0.0001

BMD_90 a = 0.2863 ± 0.0001 a = 0.2851
c = 0.2877 ± 0.0001
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The values of Table 4 show how the a and c parameters of the tetragonal body-centered
lattice structure of martensite are strongly deformed, making this crystalline structure closer
to a body-centered one, leading to the diffraction peaks visible in Figure 11. While the
obtained ferrite/martensite peaks overlap is typical of 17-4PH stainless steel and similar
diffraction patterns can be found in the literature [48,49], the current results are in contrast
with the literature about ADAM processing of the same alloy [26], since no peaks related to
retained austenite are visible.

3.4. Mechanical Characterization

Figure 12a shows the microhardness (µHV, 300 gf) profiles for the BMD_90 sample
along the growth direction (YZ plane) and remarkable differences can be highlighted
between this plane and the XY base plate one (Figure 12b). Along the growth direction,
the average microhardness value varies between 289 and 303 HV, without following a
particular trend. On the other hand, the average microhardness value on the XY plane
varies between 252 and 262 HV. It should be mentioned that some spikes in the µHV
average values characterized by a related large standard deviation can be noted in both
directions; these can be ascribed to the presence of a large number of pores with different
dimensions, ranging between ~5 and ~60 µm, as well as to the presence of inclusions
having a chemical composition which differs from the 17-4PH one.
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Figure 13 shows the microhardness profiles of the BMD_45 sample in the two consid-
ered planes. Along the growth direction, the average microhardness value varies between
279 and 297 HV, on the XY plane values vary between 283 and 293 HV.

Microhardness values of the BMD_45 samples show a trend towards lower average
values from the bottom to the top of the YZ sample (Figure 12a), while in the XY direction
(Figure 13b) values are quite in line with each other and there is no remarkable trend to be
pointed out.

Microhardness results acquired on the XY and YZ planes are reported in Figure 12 for
the BMD_90 and in Figure 13 for the BMD_45 one. There is an interesting trend followed
by the BMD_45 sample towards lower average values from the bottom to the top of the
YZ sample (Figure 13a), while in the XY direction (Figure 13b), values are quite in line
with each other. By comparing Figures 12b and 13b, it is clear that the infill deposition
strategy impacts also the microhardness values, together with the phase composition.
The microhardness values obtained with the 45◦ (BMD_45) infill deposition strategy are
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remarkably higher compared to the 90◦ (BMD_90) strategy. Since all the samples were 3D
printed and postprocessed in the same batch and with the same processing conditions, the
microhardness results suggest that extrusion-related defects and decohesion of deposited
tracks and layers play a major role in determining the local mechanical properties.
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Figure 13a suggests a major role for the sintering process, with a pronounced relaxation
of the microstructure compared to the bottom side, where the locking effect of the raft
and the ceramic interphase layer is consistent. In the XY plane of the BMD_90 sample
(Figure 12b), microhardness values seem to be influenced more by the process parameter
than by the sintering process. This explains the µHV trend towards higher values moving
from the outer area; that is, the contour or the outer border of the sample to the core. While
in the former (contour), the printing parameters are optimized to improve the surface
finishing, close to the core the printing parameters are optimized to enhance the mechanical
properties. In this regard, to improve the surface finishing, the printer extrudes less material
on the edge than it does in the inner zone and the applied forces on the layer during the
deposition phase are low. This behavior is typical of metal AM processes in general, where
the hatching strategy influences the mechanical properties regardless of the nature of the
process and the specific alloy, as demonstrated by Saboori et al. [50]. The shown anisotropy
is in line with the typical behavior of material extrusion AM parts, suggesting how the
combination of the extrusion technology for the green part production and the debinding
and sintering operations to get the brown and the final 100% metallic part, are essential
and represent an added value peculiar of the BMD technology.

A different mechanical behavior was observed during the Rockwell hardness (HRC)
analysis because the measurement was less affected by the printing deposition strategy.
Figure 14 summarizes and compares the hardness of three different fabrication processes
applied to the 17-4PH stainless steel. Rockwell hardness results for BMD (Figure 14) show
a lower value compared to casting since the cooling phase typical of the casting technology
is higher than the BMD one. MIM and BMD show comparable hardness values despite the
large and well-oriented defects of the latter.

The Results obtained for the BMD_45 and BMD_90 samples, and shown in Figure 14,
refer to top-to-bottom YZ plane and to edge-to-core XY plane. The decrease of HRC values
for the BMD_90 YZ sample suggests a local anchoring effect of the interface ceramic layer
and the raft, which keeps the sample in a fixed position during the furnace sintering. This
effect is remarkably influenced by the infill deposition strategy within the first fabricated
layers since it is not relevant in the BMD_45 YZ sample nor in the rest of the two YZ samples.
A comparison of the obtained values with the literature confirms that this solid-state AM
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technology is outperforming MIM (ca. 27 HRC, in the as-sintered condition [23]). In partic-
ular, comparing experimental values with the literature results concerning other material
extrusion AM processes, such as fused filament fabrication (22 HRC [51] to 26 HRC [27]),
the performance improvement due to the higher metal-to-binder ratio of the BMD feedstock
is remarkable.
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4. Conclusions

The purpose of the present paper was to characterize the microstructure and the
integrity of samples fabricated by the solid-state AM technology called bound metal depo-
sition (BMD) using 17-4PH stainless steel, using two different infill deposition strategies,
namely 45◦ (BMD_45) and 90◦ (BMD_90). The main conclusions can be listed as follows:

− The composite feedstock rods characterization highlighted the presence of contami-
nant particles, whose nature shall be further investigated;

− Oxide particles with a high percentage of silicon, oxygen, aluminum, and manganese
were found inside the feedstock rod. Their presence was spotted as well on the
as-fabricated sample;

− Investigations allowed for the isolation of different defects and to correlate their nature
with the AM process and/or the feedstock quality;

− The infill deposition strategy was shown to have a direct influence on the phase
composition and the microhardness of the fabricated samples. The 45◦ infill strategy is
shown to be the most reliable option when limited δ-ferrite content and high hardness
are required.
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