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Abstract: Recent simulation studies have revealed a wealth of distinct crystal polymorphs encoun-
tered in the self-organization of polymer systems driven by entropy or free energy. The present
analysis, based on the concept of self-avoiding random walks (SAWs) on crystal lattices, is useful
to calculate upper bounds for the entropy difference of the crystals that are formed during polymer
crystallization and thus to predict the thermodynamic stability of distinct polymorphs. Here, we
compare two pairs of crystals sharing the same coordination number, ncoord: hexagonal close-packed
(HCP) and face centered cubic (FCC), both having ncoord = 12 and the same packing density, and the
less dense simple hexagonal (HEX) and body centered cubic (BCC) lattices, with ncoord = 8. In both
cases, once a critical number of steps is reached, one of the crystals shows a higher number of SAWs
compatible with its geometry. We explain the observed trends in terms of the bending and torsion
angles as imposed by the geometric constraints of the crystal lattice.

Keywords: self-avoiding random walk; lattice model; crystallization; hexagonal close-packed; face
centered cubic; body centered cubic; polymer; self-organization; crystal polymorph; bending angle;
torsion angle

1. Introduction

The term “soft matter” refers to a class of physical systems which includes poly-
mers, colloids, granular media, surfactants, and gels. The common feature of all these
diverse materials is that they consist of units whose size is significantly larger than the
constituent atoms [1]. One of the main characteristics of soft matter is the existence of
thermal fluctuations which are mainly manifested as Brownian motion of atoms, particles,
and molecules. Due to this, the molecular shape and size are constantly changing even
under conditions of equilibrium. Thus, to describe equilibrium local and global structure,
a statistical approach is required. Additionally, soft matter systems are characterized by
spontaneous self-assembly, self-organization, and phase transitions. An important tool
to aid in the statistical description of mesoscopic structure, but also of phenomena and
processes relevant to soft matter, in general, and polymer science, in particular, is the
concept of random walk (RW) and its variation in the form of self-avoiding random walk
(SAW) [2].

The mathematical concept of a SAW corresponds to a trajectory of fixed step length
that grows randomly on a lattice under the condition that it cannot visit the same point
twice. In a strict mathematical sense, several salient aspects of SAW are still unknown or
only partially resolved [2]. Still, this has not been an obstacle for its successful applica-
tion in a very wide range of physical systems and topics in chemistry, physics, polymer
science, material technology, mathematics, process optimization, computer science, and
biology [3–12]. Over the years, significant advances have been made in the algorithms
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related to SAW identification and enumeration, further evolving its usage in diverse prob-
lems, especially ones related to synthetic and biological macromolecules. The excluded
volume effect in polymer melts and solutions is, in fact, intimately related to the condition
of self-avoidance in random walks [13–29].

Self-avoiding random walks (SAWs) and polygons (SAPs) have been studied exten-
sively on 2D and 3D lattices [30] with specific examples being the honeycomb [31–34],
square [35,36], triangular [37], simple cubic [35,38–40], body centered cubic (BCC) [41],
and face centered cubic (FCC) [41,42] lattices. Due to their importance and general ap-
plicability, significant algorithmic and theoretical advances have been made in the enu-
meration, characterization, identification, and scaling behavior of SAWs, SAPs, and their
variants [19,20,33,43–62]. It is interesting to notice that while the simple cubic (SC), BCC,
and FCC crystals have been extensively studied in the literature, no such wealth of informa-
tion exists for the hexagonal close-packed (HCP) one. This could be attributed to a possible
assumption that the HCP and FCC crystals are characterized by the same number of SAWs,
independent of the step size [63], because both crystals have the same coordination number
(ncoord = 12) and packing density (ϕ = π

√
2/6). As will be demonstrated in the continuation,

such a claim is not valid: beyond a certain SAW length (number of steps) the number of
SAWs compatible with the HCP crystal becomes marginally higher than the one for the
FCC crystal, the difference increasing as the number of SAW steps grows.

In the past, we employed a SAW-based analysis to enumerate the possible configu-
rations of single-chain crystals and thus explain their thermodynamic stability in regular
lattices in slits (tubes) [64] and plates [65]. These studies have been motivated by the
spontaneous, entropy-driven crystallization of chains of tangent hard spheres as demon-
strated in Monte Carlo (MC) simulations of dense packings under various conditions of
spatial confinement [66–68]. Very recently, it was documented that starting from random
(disordered) packings, freely jointed chains of hard spheres in the bulk show a transition
to the ordered state following Ostwald’s rule of stages [69]: initially a random hexagonal
close-packed (rHCP) morphology is formed of mixed HCP and FCC character [70,71].
Given enough observation time, the rHCP ordered morphology is eventually succeeded by
an almost defect-free (perfect) FCC crystal [71]. In parallel modeling efforts, a wealth of
distinct crystal polymorphs, including non-compact crystals like the body centered cubic
(BCC) and holoedric 6/mmm (simple hexagonal, HEX), has also been encountered in the
(free) energy-driven self-assembly of freely jointed chains of tangent monomers interacting
with the square well potential under very dilute conditions [72].

With respect to the stability of the HCP and FCC crystals made of athermal polymer
chains, semi-analytical calculations were presented in [70], based on the separation of
translational and conformational degrees of freedom. Resulting upper-bound estimates
demonstrate that the conformational entropy of an HCP crystal of hard-sphere polymers
is higher than the one of the FCC crystal by a margin of 0.331 × 10−5 k per monomer,
where k is Boltzmann’s constant. However, this minute difference is significantly smaller
than the free energy advantage of the FCC crystal in terms of translational entropy. The
latter can be assumed to be very similar, if not identical, to the translational entropy of
monomers disregarding the constraints imposed by chain connectivity. A widely accepted
value for the entropic difference between FCC and HCP crystals for monomeric hard
spheres, corresponding to approximately 112 × 10−5 k per monomer, has been established
in the literature [73–75], depending further on packing density [76]. The semi-analytical
predictions of [70] have been supported by extremely long molecular simulations based on
Monte Carlo algorithms demonstrating FCC perfection in athermal polymer crystallization
of entangled chains [66,77].

In the present contribution, we further support the semi-analytical calculations of [70]
by exhaustive enumeration of the self-avoiding random walks (SAWs) compatible with
the inter-site geometry as encountered in the FCC and HCP crystals. We also analyze the
SAW statistics, including the local geometry (bending and torsion angles) and the global
size (distribution and mean of the end-to-end distance). Two additional crystals, the HEX
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and BCC, both having ncoord = 8, encountered in simulations of chains whose monomers
interact with the square well potential [72], are considered in the current work.

The manuscript is organized as follows: Section 2 presents the model, the reference
crystals and the method employed for the SAW enumeration. Section 3 hosts the results
on the local and global properties of SAWs on the HCP, FCC, HEX, and BCC lattices. The
discussion of the results can be found in Section 4. The manuscript is concluded with
Section 5 summarizing the main conclusions and listing future extensions.

2. Materials and Methods

As reported in the Introduction, the present work forms part of an ongoing model-
ing study of (free) energy- [72,78] and entropy-driven [70,71,79,80] self-organization of
idealized systems based on polymers interacting with the hard sphere or the square well
potential [81]. Four different crystals have been considered in this work: the hexagonal
close-packed (HCP), face centered cubic (FCC), body centered cubic (BCC or BC), and
holoedric 6/mmm (simple hexagonal, HEX), whose periodic structure and salient charac-
teristics can be found in [77,82]. The HCP and FCC ones have been selected because they
compete as emerging and resulting structures in the disorder–order transition of freely
jointed chains of hard spheres at sufficiently high packing densities [70,71,79,80]. The HEX
and BCC crystals, along with the HCP and FCC crystals and the Frank–Kasper [83,84]
phase, are encountered as final stable morphologies in the crystallization of clusters formed
from chains interacting with the square well attractive potential [72,78] at dilute conditions.
Density-based [85,86] and geometric [72] arguments can accurately explain the dominance
of non-compact crystals in specific ranges of the interaction potential in two and three
dimensions.

In the present work, a polymer is represented as a linear chain of strictly tangent hard
spheres. This chain is grown on the sites of a crystal, so its bonded geometry is defined by
the linear architecture of the chain, the tangency condition of the bonded atoms, and the
spatial constraints imposed by the crystal sites. As in our past works [64,65], “monomer”
refers to each of the hard spheres that constitute the polymer chain, while “site” refers to
the each of the sites of the ideal crystal. A single chain is grown on each reference lattice,
with a monomer occupying a single site, and bonded monomers lying on adjacent sites,
which are thus separated by a bond/step length. With respect to bond geometry, bending
(θ) and torsion (φ) angles are formed by successive triplets and quartets of monomers along
the chain backbone. These angles must respect the connectivity and geometry of each
lattice. Accordingly, bending and torsion angles along the polymer chain are different
for different crystal types, as can be seen in Table 1 (bending angles) and Table 2 (torsion
angles). Chains on the HCP crystal show the largest variety, with 6 and 19 distinct bending
and torsion angles, respectively, while SAWs on the BCC crystal have only 3 compatible
bending angles.

Table 1. Bending angles, θ, which are compatible with each reference crystal. Compatibility and
incompatibility are indicated by the “+” and “−” symbols, respectively.

θ (Degrees) FCC HCP BCC HEX

0.000 + + + +
33.56 − + − −
60.00 + + − +
70.53 − + + −
90.00 + + − +

109.47 − − + −
120.00 + + − +
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Table 2. Torsion angles, φ, which are compatible with each reference crystal. Compatibility and
incompatibility are indicated by the “+” and “−” symbols, respectively.

φ FCC HCP BCC HEX

0.000 + + + +
25.24 − + − −
29.50 − + − −
35.26 − + − −
50.48 − + − −
54.74 + + − −
60.00 − − + +
70.53 + + − −
79.98 − + − −
90.00 + + + +

100.02 − + − −
109.47 + + − −
115.24 − + − −
120.00 − − + +
125.26 + + − −
141.06 − + − −
144.74 − + − −
150.50 − + − −
154.76 − + − −
164.21 − + − −
180.00 + + + +

Our homemade algorithm is based on direct enumeration of SAWs, as also imple-
mented in our past works on SAWs under confinement [64,65]. The approach includes
the exhaustive identification of all possible sequences of steps which fulfil two essential
conditions: (1) the geometry imposed by the neighbor connectivity of the corresponding
crystal, and (2) the self-avoidance of the random walk according to which the same crystal
site cannot be visited twice by different segments (steps) of the SAW. The step length of the
SAW is taken as unity and coincides with the distance between nearest neighbors in the
crystal. Since the SAW growth is subjected only to the two conditions mentioned above,
the selected bending (between two successive steps) and torsion (between three successive
steps) angles adopt discrete values according to the imposed neighbor geometry of the
corresponding crystals (as reported in Tables 1 and 2). Figure 1 hosts segments of the four
reference crystals (HCP, FCC, BCC, and HEX) along with a SAW of 9 steps (N = 9) grown on
each one of them. Crystal sites are represented as spheres while the SAW steps are shown
as orange lines.

A SAW of N steps consists of the ordered sequence of sites ωN(0), ωN(1), . . ., ωN

(N − 1), ωN(N) with ωN(0) being the SAW origin. In contrast to SAWs on spatially
restricted lattices [64,65], the ones studied here correspond to the unconstrained bulk case.
Thus, any site can be selected as the origin of the SAW, ωN(0), due to the maximal symmetry
of the bulk lattice. Self-avoidance of the random walk (or equivalently excluded volume of
polymer) is fulfilled as ωN(i) 6= ωN(j) for all i 6= j. Bond tangency is satisfied as |ωN(i + 1)
−ωN(i)| = 1, with i ∈ [0, 1, . . ., N − 1] and |ω| = (ω·ω)(1/2) denoting the Euclidean norm.
The size of the SAW is quantified by the square end-to-end distance: |ωN|2 = (ωN(N) −
ωN(0)). (ωN(N) −ωN(0)).

For a given number of steps, N, and a reference crystal X (HCP, FCC, HEX, or BCC)
our algorithm is based on the direct enumeration of the total number of distinct SAWs,
cN(X), and proceeds with the calculation of all bending and torsion angles and of the square
end-to-end distance of each identified SAW. Accordingly, for a SAW of N steps, the mean
square end-to-end distance, 〈|ωN|2 〉(X), can be readily calculated as:

〈|ωN |2〉(X) =
1

cN
∑cN

|ωN |2. (1)
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Figure 1. Snapshots showing a self-avoiding random walk of 9 steps (N = 9) grown on the reference
crystals: FCC (top left), HCP (top right), BCC (bottom left), and HEX (bottom right). FCC, HCP,
HEX and BCC crystal sites are shown in red, blue, cyan and purple colors, respectively; SAW steps
are shown as orange lines. Images created with the VMD visualization software (version 1.6.3) [87].

The scaling of the number of distinct SAWs, cN, and of the average SAW size, 〈|ωN|2 〉,
as a function of the number of SAW steps is given by exponential-power-law asymptotic
expressions [2,36,38–40,60,88]:

cN(X) ∼ AµN Nγ−1, (2)

〈|ωN |2〉 (X) ∼ DN2v, (3)

where A and D are the critical amplitudes, µ is the connective constant, and γ and ν are the
critical exponents. The critical exponents are considered universal, while the values of A,
D, and µ are lattice dependent.

Starting from the work of Orr [22], elegant methods and efficient algorithms have
been developed over the years to tackle the exponentially difficult SAW enumeration prob-
lem [6,9,36,38,39,61,62,89,90], reaching various high-N SAWs in distinct lattices. We should
note here that our SAW enumeration algorithm is not as efficient as the state-of-the-art
methods described above, and thus our analysis is limited to SAWs of intermediate number
of steps. However, this should not be considered as a potential disadvantage as extensive
off-lattice simulations, under a wide variety of conditions, have clearly demonstrated that,
beyond a moderate value, chain length has practically no effect on the crystallization of
athermal packings of fully flexible chains. The phase behavior and the established ordered
morphologies are the same, independent of the average length of chains being as low as 12



Crystals 2023, 13, 1316 6 of 16

or as high as 1000 monomers, the former value corresponding to short oligomers while the
latter to well-entangled chains, deep in the polymeric regime [67,79,80].

The main objective of the present work is to provide a quantitative basis for the
study of the thermodynamic stability of the HCP and FCC crystals made of fully flexible,
athermal polymers. As mentioned in the Introduction, by assuming independence of
the translational and conformational degrees of freedom, an argument which is analyzed
in detail in [70], the total entropy of the crystal can be considered as the summation of
two distinct contributions: the conformational one, ∆Sconf, dictated by chain connectivity
respecting the geometric constraints of the reference crystal, and the translational one,
∆Stran, which should be very similar to the one of monomeric systems of hard spheres,
which are free of any constraints imposed by chain connectivity. Accordingly, the entropy
difference of the HCP and FCC crystals can be written as [70]:

∆SFCC−HCP = ∆SFCC−HCP
conf + ∆SFCC−HCP

tran = ln

∣∣ΞFCC
∣∣

|ΞHCP|
+ ∆SFCC−HCP

tran (4)

where Ξ is the complete set (partition function) of all multichain configurations compatible
with the polymer model (here, freely jointed chains of tangent hard spheres) and the
lattice geometry (here, HCP or FCC), and || denote the cardinality of a set [70]. The
translational contribution is known from past studies on monomeric analogs [73–75]. Thus,
the evaluation of Ξ for the multichain configurations is required to arrive at an accurate
estimate for ∆SFCC−HCP. However, such information is not available for any of the crystals.
Accordingly, we need to establish an upper-bound, single-chain estimation. The concept of
random walks (RWs) would not shed any light given that both the HCP and FCC crystals
have the same coordination number and as such the same number of RWs over the whole
range of steps. Toward this end, as a more refined criterion, we resort to self-avoiding
random walks (SAWs), providing a tighter and more discriminating upper-bound estimate
for the difference in the configurational entropy as [70]:∣∣ΞHCP

∣∣
|ΞFCC|

<

(
cN(HCP)
cN(FCC)

)N
⇔ ln

(∣∣ΞHCP
∣∣

|ΞFCC|

)
=

1
N

ln
(

cN(HCP)
cN(FCC)

)
. (5)

3. Results

Table 3 presents the total number of distinct SAWs, cN, and the mean square end-to-
end distance, 〈|ωN|2〉, as a function of SAW steps, N, for the FCC and HCP lattices, along
with the difference in the number of SAWs, ∆cN (=cN(HCP) − cN(FCC)). The corresponding
data for the BCC and HEX crystals are presented in Table 4, which further hosts a column
showcasing the difference in the mean square end-to-end distance. No such column exists
in Table 3 because within the reported accuracy (four significant digits) there is no difference
in the average SAW size between the HCP and the FCC crystals.

The FCC and HCP crystals show the same number of SAWs up to N = 5 steps. However,
for N ≥ 6, the number of SAWs on the two lattices starts to deviate with the HCP crystal
showing systematically more SAWs than the FCC one. At N = 6, ∆cN = 12, the relative
difference is approximately 7.6 × 10−6. For the longest SAW studied here (N = 12) ∆cN =
60,617,100, which corresponds to a relative difference of 3.4 × 10−5, showing increasing
trends as the SAW grows in length. In parallel, as can be seen by the comparison of the
related rows in Table 3, the average size of the SAWs in the HCP and FCC lattices is the
same within a tolerance of 10−5 for all values of N.

Similar trends are observed in the comparison of the BCC and HEX crystals as listed in
Table 4. For N = 3, the BCC crystal has 12 more SAWs compared to the HEX crystal with the
relative difference being 0.031, significantly higher than the one observed for the HCP-FCC
pair at the corresponding deviation point (N = 6). For the longest SAW studied here (N = 14),
the absolute and relative differences for the BCC-HEX pair increase to 89,206,013,508 and
0.20, respectively. Accordingly, even if both lattices have the same coordination number
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(ncoord = 8) the single-chain conformations, as quantified by the number of SAWs, are
significantly fewer in HEX compared to BCC. With respect to the average size, the polymer
grown on the HEX lattice is systematically longer than the one on the BCC with the relative
difference being approximately 0.053 for N = 14.

Table 3. Distinct number of SAWS, cN, and mean square end-to-end distance, 〈|ωN|2〉, as a function
of number of SAW steps, N, for the FCC and HCP crystals. The difference in the number of SAWs
∆cN = cN(HCP) − cN(FCC) is also reported. Within the reported accuracy, there is no difference in the
mean square end-to-end distance between the HCP and the FCC crystals.

N
FCC HCP Difference

cN 〈|ωN|2〉 cN 〈|ωN|2〉 ∆cN

1 12 1.000 12 1.000 0
2 132 2.182 132 2.182 0
3 1404 3.496 1404 3.496 0
4 14,700 4.908 14,700 4.908 0
5 152,532 6.397 152,532 6.397 0
6 1,573,716 7.950 1,573,728 7.950 12
7 16,172,148 9.556 16,172,340 9.556 192
8 165,697,044 11.21 165,699,744 11.21 2700
9 1,693,773,924 12.90 1,693,809,348 12.90 35,424
10 17,281,929,564 14.64 17,282,367,084 14.64 437,520
11 176,064,704,412 16.41 176,069,916,384 16.41 5,211,972
12 1,791,455,071,068 18.21 1,791,515,688,168 18.21 60,617,100

Table 4. Distinct number of SAWS, cN, and mean square end-to-end distance, 〈|ωN|2〉, as a function
of number of SAW steps, N, for the BCC and HEX crystals. The differences ∆cN = cN(BCC) − cN(HEX)
and ∆〈|ωN|2〉 = 〈|ωN|2〉 (BCC) − 〈|ωN|2〉 (HEX) are also reported.

N
BCC HEX Difference

cN
∣∣ωN

∣∣2 cN
∣∣ωN

∣∣2 ∆cN ∆
∣∣ωN

∣∣2
1 8 1.000 8 1.000 0 0.000
2 56 2.286 56 2.286 0 0.000
3 392 3.612 380 3.726 12 −0.114
4 2648 5.124 2540 5.280 108 −0.156
5 17,960 6.645 16,844 6.918 1116 −0.274
6 120,056 8.294 111,068 8.628 8988 −0.334
7 804,824 9.940 729,524 10.40 75,300 −0.458
8 5,351,720 11.69 4,777,628 12.22 574,092 −0.533
9 35,652,680 13.43 31,217,552 14.09 4,435,128 −0.661

10 236,291,096 15.26 203,608,520 16.01 32,682,576 −0.747
11 1,568,049,560 17.08 1,326,015,428 17.96 242,034,132 −0.879
12 10,368,669,992 18.97 8,625,090,800 19.95 1,743,579,192 −0.973
13 68,626,647,608 20.86 56,043,338,096 21.97 12,583,309,512 −1.11
14 453,032,542,040 22.81 363,826,528,532 24.02 89,206,013,508 −1.21

The left panel of Figure 2 shows the logarithm of the total number of distinct SAWs, cN,
as a function of the logarithm of the total number of SAW steps, N, for all lattices studied
here. The differences of the two pairs are also shown. On the right panel of Figure 2,
we can observe the dependence of the logarithm of the mean square end-to-end distance,
〈|ωN|2 〉(X), as calculated from Equation (1), on the logarithm of the number of SAW steps,
N. Furthermore, we have fitted all available data with best linear fits corresponding to the
scaling formula of Equation (3). Figure 2 shows one such best linear fit corresponding to
the data for the HEX crystal, with the reliability fitting coefficient being practically equal to
1. The complete set of the parameter values, according to Equations (2) and (3), as obtained
from best linear fits on current SAW data, are reported in Table 5. Very little variation
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is observed for both the critical amplitude and exponent between the different lattices,
especially when the FCC and HCP crystals are compared. A minimal trend suggests that
the exponent increases slightly for the crystals of the lower coordination number, while the
opposite behavior is observed for the amplitude. Given the short or intermediate length
of the studied SAWs, the universal exponent of 0.588 is nicely matched for the HCP and
FCC crystals. Between the HCP and the FCC crystal there is no appreciable difference
suggesting that the corresponding SAW sizes will be very similar, but strictly not identical,
for the limit of infinitely long chains (N→ ∞).
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Figure 2. (Left panel): Logarithm of the total number of distinct SAWs, cN, as a function of the 
logarithm of the total number of SAW steps, N, for all la ices studied here: HCP, FCC, BCC, and 
HEX. The corresponding differences between the pairs: ΔcN(HCP-FCC) and ΔcN(BCC-HEX) are also 
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The green dashed line is the best linear fit on the data for the HEX crystal. 

  

Figure 2. (Left panel): Logarithm of the total number of distinct SAWs, cN, as a function of the
logarithm of the total number of SAW steps, N, for all lattices studied here: HCP, FCC, BCC, and
HEX. The corresponding differences between the pairs: ∆cN(HCP-FCC) and ∆cN(BCC-HEX) are also
reported. The red curve (FCC) is obscured by the blue (HCP) one and the cyan (BCC) by the magenta
(HEX) due to minimal differences. (Right panel): Logarithm of the mean square end-to-end distance,
〈|ωN|2〉, as a function of the logarithm of the total number of SAW steps, N, for all lattices. The
green dashed line is the best linear fit on the data for the HEX crystal.

Table 5. Critical amplitudes, A and D, critical exponents, γ and v, and connective constant, µ, as
calculated from best linear fits using the SAW enumeration data as reported in Tables 3 and 4 and
Figure 2 for the HCP, BCC, and HEX lattices. Due to the minimal differences between the HCP and
FCC crystals in Section 4 (Discussion), we present the correlation of the difference.

Lattice A µ γ D v

HCP 1.19 10.07 1.134 0.977 0.587
BCC 1.21 6.565 1.124 0.995 0.593
HEX 1.24 6.436 1.129 0.994 0.603

The distribution of the discrete bending angles, which are compatible with each lattice
studied here, is given in Figure 3 as a function of the number of SAW steps. For all crystal
types, as N grows, the population of obtuse angles experiences small decreases in favor of
the acute ones because of the self-avoidance condition. The fraction of bending angles with
90◦, where available (HCP, FCC, and HEX), rapidly reaches a stable plateau. Extrapolating
the current trends, to longer N, the most probable bending angle is 60◦, 60◦, 70.53◦, and 90◦

for the FCC, HCP, BCC, and HEX crystals, respectively.
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Figure 3. Distribution of discrete bending angles of the SAWs on the (top left) FCC, (top right) HCP,
(bottom left) BCC, and (bottom right) HEX crystals as a function of total number of SAW steps, N.
All SAW bending angles compatible with each crystal are reported in Table 1. For a given angle,
different colors correspond to SAWs of different lengths as indicated in the legend.

Figure 4 hosts the corresponding results for the distribution of discrete torsion angles
which are compatible with each lattice crystal. For FCC, as N increases, the populations at
54.7, 125.3, and 180◦ increase, while the one at 90◦ shows a significant reduction. Compared
to other crystals, the SAWs on the HCP lattice show a richer behavior with the primary
angles resting at 54.7◦, 70.5◦, 109.5◦, and 180◦. The HEX crystal is the one that shows the
smallest variation with increasing number of SAW steps.
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cumulative distribution function (CDF) is shown in the inset. Given the major differences 
in the bonded geometry between HCP and FCC la ices, it is not surprising that the 
distribution of the SAW size shows significant deviations. However, it is interesting to 
notice that in spite of these variations, the global SAW size, on average, is 
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Figure 4. Distribution of discrete torsion (dihedral) angles of the SAWs on the (top left) FCC, (top
right) HCP, (bottom left) BCC, and (bottom right) HEX lattices as a function of the total number of
SAW steps, N. All SAW torsion angles compatible with each lattice are reported in Table 2. For a
given angle, different colors correspond to SAWs of different lengths as indicated in the legend.

The distribution of SAW size, as quantified by the square end-to-end distance, |ωN|2,
is shown in Figures 5 and 6 for the HCP–FCC and BCC–HEX pairs, respectively. The
probability distribution function (PDF) is presented in the main figure while the cumulative
distribution function (CDF) is shown in the inset. Given the major differences in the bonded
geometry between HCP and FCC lattices, it is not surprising that the distribution of the
SAW size shows significant deviations. However, it is interesting to notice that in spite
of these variations, the global SAW size, on average, is indistinguishable between the
close-packed FCC and HCP crystals, as shown in Table 1, and further confirmed by the
CDF trends in the inset of Figure 5. On the other hand, SAWs on the BCC lattice have a
smaller size than the ones on the HEX as indicated by the concentrated maxima of the BCC
distribution at small values of the square end-to-end distance.
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4. Discussion

We enumerate and describe the self-avoiding random walks, SAWs, grown on different
crystals, characterized by the same coordination number (ncoord = 12 or 8). We observe that
for the HCP and FCC pair, once a critical number of steps is reached (N = 6) the number
of distinct SAWs becomes different. In relative numbers, this difference is minute but
definitely non-zero with the HCP crystal showing a larger number of SAWs compared to
FCC (cN(HCP) > cN(FCC) for N > 5). The present finding is clear evidence that the SAW
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behavior in the HCP and FCC crystals should not be considered as identical even though
both are characterized by the same coordination number and packing density. In parallel,
the average size of SAWs on these two crystals is indistinguishable for the whole range of
studied SAW steps even if the internal chain/SAW bonded geometry, as quantified by the
bending and torsion angles, is significantly different: the HCP crystal shows a much richer
variety in bond geometry and same is true for the size distribution as quantified by the
end-to-end distance.

The data presented here in Tables 3 and 4, and Figure 2 for the HCP-FCC and BCC-
HEX pairs clearly identify a difference in the number of SAWs once a critical number of
steps is reached. The ratio of the SAWs in Equation (5) can be fitted using an asymptotic
formula:

cN(X)
cN(Y) − 1

N
= A1 − Be−dN (6)

where X and Y are the two crystals to be compared and A1, B, and d are the fitting parame-
ters. Fittings using the exponential formula of Equation (6) on available SAW enumeration
data are reported in Figure 7.
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Figure 7. ((cN(X)-cN(Y))− 1)/N versus number of steps, N, as obtained from direct SAW enumeration
for the HCP/FCC and BCC/HEX pairs. Fittings with the asymptotic formula of Equation (6) are also
shown.

Both pairs suggest an asymptotic behavior of the conformational entropy difference
per monomer. For the HCP and FCC crystals, the established behavior is far from the
asymptotic regime and significantly longer SAWs are required, pointedly increasing the
computational complexity of the problem. However, application of the exponential formula
(Equation (6)) allows for the prediction of the ratio for very long SAWs from short and
intermediate values as the ones presented here. The fitting parameters for the HCP/FCC
and BCC/HEX are summarized in Table 6. Although the maximum chain length for which
we could exhaustively enumerate SAWs is moderate, the quality of the fit in Figure 7
suggests that the values of the parameter A1 in Table 6 are a quite accurate approximation
to the asymptotic value, i.e., for infinite chain length, which is the physically relevant
quantity for long polymers.
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Table 6. Fitting parameters A1, B, and d of the asymptotic formula (Equation (6)) applied on the
current SAW enumeration data for the HCP/FCC and BCC/HEX pairs of crystal lattices.

Pair of Crystals A1 B d Range of
Validity

HCP-FCC 3.31 × 10−6 8.63 × 10−6 0.24 N > 5
BCC-HEX 0.0188 0.0144 0.17 N > 2

Concentrating on the HCP-FCC pair, which is the main focus of the present study,
placing the asymptotic formula in Equation (5) and considering the limit of very long chains
provides an upper-bound estimate, ∆SFCC−HCP

conf ≈ −0.331× 10−5 k, as the HCP polymer
crystal has a higher conformational entropy than the FCC one. However, this value is
significantly lower than the translational entropy ∆SFCC−HCP

trans ≈ 112× 10−5 k. Accordingly,
the FCC is the most stable crystal among the polymorphs for freely jointed polymers of
tangent hard spheres.

5. Conclusions

Prediction of the thermodynamic stability of crystals made of athermal polymers
is significantly more complicated than for monomeric analogs due to the presence of
constraints imposed by chain connectivity. Here, we demonstrate that once a critical
number of steps is reached, the HCP crystal has more self-avoiding random walks than
the FCC one. Accordingly, a tight upper-bound estimate of the conformational entropic
advantage of the HCP crystal suggests that this lead is not sufficient to overcome the
significantly larger translational advantage of the FCC crystal [70]. Hence, the FCC crystal
is the thermodynamically most stable athermal polymer crystal and should prevail among
competing polymorphs, as confirmed by recent off-lattice simulations of freely jointed
chains of hard spheres [71]. The present work is currently being extended to tackle freely
rotating chains on crystals in two and three dimensions.
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