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Abstract: Aluminum alloys with low-weight property are promising structure materials for sports
equipment. Alloying element-rich second-phase particles create the risk of localized corrosion and
result in failure of sports equipment. Chromate conversion coatings as conventional and successful
surface treatments were employed to provide a thin but compact film against corrosion. However,
chromate species were toxic and carcinogenic for human beings and this process has been highly
restricted. In this sense, alternative processes such as trivalent chromium conversion coating with low
environmental risk require better corrosion-resistant performance compared to chromate conversion
coating. In addition, the closed-loop system of the chromate electroplating process has been used in
Europe and the United States. This is also a sustainable process for surface treatment of aluminum
alloys applied in sports equipment. The present paper aims to summarize the methods and types of
different aluminum alloy surface treatments and compiles the effects of various surface treatments
on the corrosion resistance of aluminum alloys. The eco-friendly application of aluminum alloys in
the field of sports equipment may be facilitated in the future.

Keywords: aluminum alloy; sports equipment; corrosion; surface treatment

1. Introduction

Health-improving sports activities increase enjoyment and quality of life. The popular-
ity of sports activities boosts the ever-increasing demands for improving sports equipment
to meet different needs. Athletes desire advanced equipment that can improve their per-
formance. Beginners may wish to employ their equipment more comfortably and easily.
Disabled people may hope to use assistive equipment to improve the quality of their life.
Application of light alloys as the primary structure materials is the main method to make
advanced sports equipment. In terms of light alloys, aluminum alloy with low density and
efficient supply outweighs other light alloys (magnesium and titanium alloys, as seen in
Figure 1) [1–3]. Alloying elements such as copper, silicon and iron added into the aluminum
matrix enhance the mechanical properties (stiffness and strength). This also generates ca-
thodic islands at the aluminum alloy surface, inducing the corrosion initiation in corrosive
environments [4,5]. In this sense, surface treatment methods with good corrosion-resistant
performance are required in practice [6].

Aluminum alloys show good resistance against corrosion due to the surface oxide of
a contact Al2O3 film which can block the corrosive ions from the bulk metal surface [7].
Aluminum alloys are favored in many sports such as cycling, golf, tennis, mountaineering
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and racing and the internal instrumentation of athletes and equipment precisely because of
these advantages.
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Figure 1. Plot of hardness vs. E for head materials employed in sports equipment [2].

With consideration of the sports environment, human oil, salts and sweat are the main
corrosion environments. Sweat with a weak acidic property mainly consists of sodium
chloride, influencing the application safety of sports equipment especially regarding long-
term service and strong competition sports. Thus, low-density, corrosion-resistant surface
treatment is required for sports equipment.

In the present paper, aluminum alloys applied in sports equipment and the related
surface treatment with current states and future development are discussed. With consider-
ation of eco-friendliness, the green and sustainable surface treatment of aluminum alloys is
the hot spot of research and practice.

2. Types and Properties of Aluminum Alloy Sport Equipment

Application of aluminum alloys in sports equipment started from 1926 and ushered in
an explosive period. Table 1 displays the types and properties of aluminum alloys applied
in sports and related equipment and instrumentation (+ in the table indicates excellent
performance and − indicates poor performance) [8]. High-strength, low-density and highly
effectively corrosion-resistant aluminum alloys in sports equipment are always required.
For example, the head of a golf club faces impact force of up to 1.47 × 104 N, requiring
advanced high-performance Al-Sc aluminum alloys.

Table 1. Types and properties of aluminum alloys applied in sports equipment [8].

Category Part Name Al Alloy Lightweight Intensity Hardness Corrosion
Resistance

Abrasion
Resistance Machinability Appearance

Baseball

Hard
baseball bat 7001, 7178 + + + − − − −

Soft
baseball bat 6061, 7178 + + + − − − −

Ball case 6063, 1050A + + − + − − +
Pitching
position 1050A + + − + − − +

Tennis

Racket
frame

6061, 2A12,
7046 + + − − + + +

Racket
handle rivet 2A11 + − − − − − −

Tennis
racket hoop 1100 + − − − − − −

Badminton
Badminton

racket frame 6061, 2A12 + + − − + + +

Badminton
racket joint ADC12 + − − − + + +
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Table 1. Cont.

Category Part Name Al Alloy Lightweight Intensity Hardness Corrosion
Resistance

Abrasion
Resistance Machinability Appearance

Skis

Stressed part 7A09, 7178 + + − − − − −
Skis edge 7A09, 7178 + + − − − − −

Rear
protection

plate
6061 + − + − + − +

Bevel guard
plate 7178 + − + − + − +

Bottom
fender 5A02 + − + − + − +

Buckle and
shell

ADC6,
ADC12 + + − + − + −

Belt
structure

ADC6,
ADC12 + + − + − + −

Ski pole
Battle itself 6061, 7001,

7178 + + + − − − +

Retaining
ring 6063 + − − − − − −

Arrows Poles, bows 2A12, 7A09 + + − − − − +

Track and
field

Brace, strut,
cross bar 6063, 7A09 + + − + − − +

hurdle 6063, 5A02 + − − + − − +
Javelin
throw 2A12, 7A09 + + − − − + +

Relay baton 1050A, 5A02 + − − + − − +
Starter, flare

gun 6063, ADC12 + − − + − + +

Hiking trip

Cooking
utensils,
eating

utensils,
water bottles

1060, 3003,
5A02 + − − + − − +

Backpack
rack, chair 6063, 7A09 + + − − − − +

Golf

bat 7A09 + + − − − − −
Parachute

column 5A02 + + − + − − −
Club head ADC10, etc. + − − − + − −

box 1050A + − − − − − −

Fencing Mask 2A11 + + − + − + +

Hockey
puck racket stick 7A04, 7178 + + − − − − −

Shoes

Running
shoes nail

nuts
2A11 + + − − − − −

Ski shoe
rivet 2A11 + + − − − − −

Ski shoe
belt buckle 6063 + − − − + − +

Football
shoe bolt ADC12 + − − − + − +

Bicycle Various
parts

2A14, 2A11,
6061 etc + − − + − + +

Swimming
pool

Side plate,
bottom plate 5A02 + − − + − + +

conduit 3003, 6A02,
6063 + − − + − + +

Reinforcement
parts, pillars 6063 + − − + − − +

Football,
water polo,
Ice hockey,

Rugby

Door,
column 6061, 6063 + + − − + − +

Other
facilities

Seats,
trellises,

Changing
room

6063 etc + − − − + − +

Rowing Mast, boat
body

7A19, 5083
etc + + − + − − −

Dive Board, rack 6070 etc + + − + − + +
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As seen from Table 1, badminton sports employed AA 6061 and 2A12 alloys for
the rackets and ADC12 aluminum alloys as racket joints. Different components and
manufacturing methods can distinguish their types as deformed aluminum alloy and cast
aluminum alloys. AA 6061 and 2A12 alloys are deformed aluminum alloys and ADC12
aluminum alloys are cast aluminum alloys.

3. Surface Microstructure and Components

Aluminum is remarkable for its favorable properties, for example, the relatively low
density and good corrosion resistance due to the phenomenon of passivation. Superpure
aluminum, with 99.99% purity, is primarily applied as a reference material in the lab.
The mechanical properties of the alloy are improved by the addition of copper, zinc and
magnesium. AA 2A12 aluminum alloy (Al-Cu alloy) has been used in a wide range of
high-tech applications such as in the aircraft industry, defense components and badminton
rackets. Its nominal composition is 3.8~4.9% Cu, 1.2~1.8% Mg, 0.3~0.9% Mn, with lesser
amounts of Fe, Si and impurity elements. In comparison with AA 2A12 aluminum alloys,
AA 6061 alloys (Al-Mg-Si alloy) with the main components of 0.8–1.2 wt.% Mg, 0.4–0.8 wt.%
Si, 0.15–0.4 wt.% Cu alloying elements display high strength and good weldability and
formability. The superior mechanical properties of these two deformed aluminum alloys
are required for the high quality of badminton rackets. In addition, ADC12 aluminum
alloys, as cast aluminum alloys, contain the main alloying components of 9.6–12 wt.% Si
and 1.5–3.5 wt.% Cu. These cast aluminum alloys with good formability are employed as
the racket joint [9–11].

Material microstructure is a main influence on the corrosion property. Microstructural
heterogeneities are present in aluminum alloys, especially in formed and cast aluminum
alloys, with major consideration given to the distribution of intermetallic particles.

Alloy casting is an important processing procedure in which alloying and impurity
elements are added to change the material properties. Coarse intermetallic compounds,
formed interdendritically by eutectic decomposition during the ingot solidification, can be
classified into two groups: insoluble intermetallic compounds and soluble intermetallic
compounds. The former usually contain the impurity elements iron or silicon, and examples
include Al6(Fe, Mn), Al3Fe, α-Al(Fe, Mn, Si) and Al7Cu2Fe. The latter, as equilibrium
intermetallic compounds of the major alloying elements, consist of Al2Cu, Al2CuMg and
Mg2Si. Lacy networks are formed in both types of particles surrounding the cast grains.
Preheating or ingot homogenization is helpful to dissolve the soluble compounds. In the
meantime, the subsequent fabrication of the cast ingots helps to fracture the remaining
particles and make them aligned in the direction of metal flow. The main second-phase
particles in AA2xxx include Al2Cu, Mg2Si, Al12Si(Mn, Fe), Al2CuMg, Al3(Mn, Fe) and
Al6(Mn, Fe).

It has been shown that the wear resistance of aluminum alloys depends on the depth
of penetration of the abrasive material, and Figure 2a,b shows the abraded material at large
grain sizes. It can be clearly observed that the grain size is large, and for alloys subjected
to higher loads, the larger the abrasive grain size, the higher the wear rate [12]. Buchheit
et al. [13] showed that approximately 60% of intermetallic particles with dimensions greater
than 0.7 µm are S-phase (Al2CuMg) with their fraction corresponding to 2.7% of the total
surface area. Moreover, (Al, Cu)x(Fe, Mn)ySi, such as modified forms of Al8Fe2Si or
Al10Fe2Si type IMCs, is suggested as the base composition of AA2024 by Gao et al. [14].
Hughes et al. [15,16] investigated a minimum of nine separate compositions including the
matrix and at least one periphery zone around S-phase/θ-phase composite particles by
means of a state-of-the-art electron microprobe. They found the composition difference
was in both S-phase/θ-phase composite particles and the matrix, in which the former can
be decomposed into smaller domains of S-phase and θ-phase. Furthermore, most cathodic
particles contained Si similar to the research of Gao et al. [14]. Al6(CuFeMn) particles
are suggested as only one component amongst the cathodic particles without Si, which
is similar to the report of Hughes et al. [15,16]. Shell-shaped particles were reported by
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Campestrini and co-workers in AA2024 alloy after a long quench delay time [17]. However,
differences in their chemical compositions exist between the core and the outer layer. The
same elements are found in both the bulk of the shell-shaped particle and irregular shaped
Al-Cu-Mn-Fe-(Si) particles. Aluminum, copper and magnesium mainly contribute to the
shell, and α-phase particles are generally accepted to be the Al-Cu-Mn-Fe-(Si) type IMCs in
the present study.
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Figure 2. Worn surfaces of (a) Al 6082 alloy operated at larger grit size and (b) Al 6082/SiC/Gr
composite operated at larger grit size [12].

Dispersoids (typically 0.05–0.5 µm) form during homogenization of the aluminum
ingots by solid state precipitation. The elements of intermetallic compounds show modest
solubilities and slow diffusion rates in solid aluminum. It is easy for an aluminum alloy to
develop these particles, such as Al20Mn3Cu, Al12Mg2Cr and Al3Zr, which resist dissolution
and coarsening and retard recrystallization and grain growth during processing and heat
treatment.

In dilute Al-Sc, Al-Zr and Al-Sc-Zr alloys, precipitation of L12-Al3X dispersions leads
to dispersion strengthening and improved high-temperature stability [18]. In AA2024-T3
aluminum alloy, a homogeneous dispersoid distribution was found in the matrix except
for the periphery of Al2CuMg particles by Wang et al. [19]. An Al20Mn3Cu2 dispersoid-
free zone surrounds the coarse intermetallic particles. In truth, the formation of S-phase
particles, which are rich in copper, results in a preferential depletion of copper in the
matrix around them. This is not advantageous to precipitation of dispersoids, because
the dispersoids are also copper-containing intermetallic compounds. Franc et al. showed
that the addition of 0.15–0.25 wt.% Zr promotes the formation of Al3Zr dispersions in AA
6086 alloy, which reduces grain growth during homogenization and solution treatment and
improves grain strengthening [20].

Fine precipitates (up to 0.1 µm) form during age hardening (e.g., AA2A12). In terms
of the Al-Cu-Mg alloys, S-phase (Al2CuMg) precipitate formation is well studied because
of the significance for strengthening of AA2xxx aluminum alloy. The S-phase preferentially
nucleates on dislocations and dislocation loops as an agglomerate form during precipitation
from solid solution. Finally, individual nano-scale particles develop with a homogeneous
distribution for the form of S-phase in the matrix [21]. The alloys AA 6086 and AA 6082
were analyzed as an example. The main difference between the two alloys is the silicon,
copper and zirconium content. AA 6082 has a silicon content of 0.7–1.3 wt.%, while AA
6086 has a silicon content of 1.3–1.7 wt.%. The higher the silicon content in the alloy, the
higher the percentage of magnesium- and silicon-based precipitates in the microstructure.
An increase in copper content from 0.1% to 0.8 wt.% copper (0–0.1 wt.% copper in AA
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6082) promotes the formation of copper-rich precipitates, which improves the precipitation
hardening effect [20].

4. Surface Morphology

Freshly abraded aluminum and its alloys immediately develop a thin alumina oxide
film when exposed to near-neutral environments. The thickness of this film present on
superpure aluminum is approximately 2 nm [22]. In terms of the grown oxide film structure,
various investigations have been carried out with different proposed structures. For
instance, Wilsdorf’s experimental results show the effect on the structure of a large excess
of aluminum ions (existing in <50 Å thin film), which are amorphous and at the same
time have a strong reflection characteristic of crystalline γ-Al2O3, with a rather imperfect
long-range order development [23].

Moreover, this thin film with residual and mechanical flaws is not a “perfect” corrosion
barrier on the aluminum alloy due to the existence of non-metallic inclusions, second-phase
particles, impurity and grain boundaries. The pitting corrosion initially develops at the
imperfection and active flaws of the oxide film in corrosive environments, for example, a
solution containing chloride ions.

The hydration of air-formed film has different characteristics primarily depending
on the temperature. Between 60 ◦C and 70 ◦C, Hart [24] suggested that this film growth
in water proceeds in three stages: (1) “amorphous”, (2) boehmite, γ-Al(OH)3 and (3)
bayerite, β-Al(OH)3, the final film thus consisting of three layers. During the formation
of an amorphous oxide at 25 ◦C, the major aluminum monomer species varies with pH
in the following fashion: Al3+ for pH < 3, Al(OH)2+ for pH 4–5, Al(OH)2+ for pH 5–6 and
Al(OH)4− for Ph > 6.5. So, the temperature and pH value are key parameters that influence
the composition of the amorphous oxides [25].

5. Corrosion

Corrosion in aluminum-based sport equipment happens due to the corrosive working
environment such as human oil. In terms of corrosion type, surface morphologies were
employed for the corrosion categorization and it includes pitting, intergranular corrosion
and stress-induced corrosion cracking.

Pitting or pit corrosion is typical localized corrosion and the alloying second-phase
particles at the surface are the initiation site. As shown in Figure 3, Yang et al. [7] em-
ployed an O2 gas environment transmission electron microscope to investigate the surface
oxide during deformation at room temperature. They revealed the liquid-like and self-
healing aluminum oxide present at the aluminum surface and it determined the corrosion
resistance.
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With consideration of magnesium alloying elements in high-strength aluminum alloys,
intergranular corrosion is prone to occur in corrosive environments. As shown in Figure 4,
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Wei et al. [26] employed a scanning electron microscope and SEM ultamicrotome (GATAN
3View) to reveal the magnesium-rich precipitates resulting in the severe sensitization of
AA 5083 alloy in a marine environment.
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In addition, Zhang et al. [27] employed electrochemical measurement and a scanning
electron microscope to reveal the transition from intergranular corrosion to crystallo-
graphic pitting in AA 2024-T351 aluminum alloys in 3.5 wt.% NaCl solutions as shown in
Figures 5 and 6. Second-phase particles, especially as Al-Cu phase, revealed the corrosion
crevices (as seen in Figure 6d) when aluminum alloys experience polarization close to the
breakdown potential, marked as “Stage 2” (as seen in Figure 5). In comparison, the surface
and particles displayed a negligible effect by the increasing voltage up to “Stage 1”.
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6. Surface Treatment

Conversion coating is often employed in the metal finishing industry as a pre-treatment
layer to provide the final corrosion-protective barrier in the case that the coating system is
completely damaged. It involves conversion of part of the substrate surface into the coating
by means of a chemical or electrochemical process, e.g., anodizing and chromate conversion
treatment. The coating thickness can range from several nanometers to hundreds of
nanometers.

In Figure 7, the structure of a typical coating system on an Al alloy is schematically
illustrated, which normally consists of three coating layers [25]. The innermost layer is
formed by a pre-treatment (usually conversion coating) to improve the adhesion between
the substrate and the primer and provide corrosion protection. As the principal corrosion-
protective layer, the primer is composed of a pigmented organic resin matrix in the middle
of the coating system. The top, decorative layer is paint with the ability to prevent corrosion
of the materials. The principal conversion coatings used on Al alloys include chromate
conversion coating (CCC), trivalent chromium process (TCP) coating and anodic film
as shown in Table 2. With consideration of the complex structure in sports equipment,
conversion coatings were employed first for the surface treatment on aluminum alloy. In
this paper, we focused on the advances of research and application of chemical conversion
coatings.

6.1. Chromate Conversion Coating

Chromate conversion coatings (CCCs) are primarily used as a primer, corrosion
inhibitor and decorative finish. It has been more than ninety years since Bauer and Vogel
formed this protective conversion coating on aluminum alloys in dichromate-based solution
in 1915 [28]. A comprehensive understanding of the composition and corrosion-protective
mechanisms of CCCs has been obtained in the last twenty years or so. The coatings are
regarded as the most effective and common coating system so far for aluminum and its



Crystals 2024, 14, 101 9 of 17

alloys. It is due to the carcinogenetic toxicity of Cr(VI) that alternatives with environment-
friendly and equally corrosion-protective properties are studied extensively.
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Table 2. Types of surface treatment applied on aluminum alloys.

Types Features

Chemical conversion coatings No electrocity input; high economic efficiency; strong operability;
coating thickness ranging from 10 nm to 100 µm.

Electroplating

The coating thickness can be controlled over a large range, with the
least amount of metal used for the coating, without the need for

heating or low temperature. The purity of the coating is high, and it
firmly adheres to the surface of the plated part. The coating thickness

is relatively uniform.

Anodizing film

The film generated by anodizing ranges from a few micrometers to
several tens of micrometers and is hard and wear-resistant; the film
generated by conductive oxidation is only 0.01–0.15 microns, and its
wear resistance is not very good, but it can conduct electricity and

resist atmospheric corrosion.

It is generally accepted that the nature of CCC formation is a chemical or electrochem-
ical process on aluminum and its alloys [29–31]. On pure aluminum, Brown et al. [29–31]
have studied CCC development in typical chromate/fluoride solutions. They found that
the initial sites for CCCs are flaw sites on the surface, e.g., dislocations and grain boundaries.
They are cathodic with respect to the surrounding anodic matrix because of the impurity
accumulation at these flaw sites. They developed the overall cell reaction for CCC growth
as follows:

2Al0 + Cr2O7
2− + 2H+ + 6HF→2AlF3(soluble) + Cr2O3·H2O + 3H2O (1)

Between the pre-existing metal ridges, the fluoride-containing acid solution chemically
removes the initial oxide film, resulting in a dynamic equilibrium between alumina film
growth and its dissolution. Consequently, local scalloping forms at the metal/conversion
coating interface because of the transport of Al3+ ions from the surface into the solution.

In terms of the composition and morphology, Kim et al. [28] suggested that CCCs
on pure Al are primarily composed of chromium-containing material, probably hydrated
chromic oxide with a small amount of included dichromate anion. The amorphous and
cellular-like structures were essentially investigated, in which aluminum and fluoride
penetrated into the intercellular regions, probably in the form of a complex oxyfluoride.
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For aluminum alloys, it is well-accepted that the formation of CCCs on Al alloys is
via a redox reaction between chromate species in solution and component parts of alloys, e.g.,
IMCs and aluminum matrix. Thus, the following is suggested as the overall CCC reaction
in chromate/fluoride solutions:

Cr2O7
2− + 2Al0 + 2H + + H2O→2CrOOH↓ + 2AlOOH↓ (2)

The presence of HF facilitates the dissolution of a thin air-formed film to activate the
alloy surface to permit nucleation and lateral growth of the conversion coating and also
helps dissolve the AlOOH to promote the continuous reaction of chromate species at the
Al interface above [32].

The mechanism of CCC formation on an Al alloy is made more complex owing to
dissimilarities of surface composition and reactivity between constituent particles and
matrix. For the initial growth of CCCs on AA2024-T3, Kunlinich et al. [33] found evidence
to support the notion that the CCC process is electrochemical in nature and suggested
that the reduction of Cr(VI) to Cr(III) begins on the Al-Cu-Fe-Mn IMCs, which act as
cathodic sites, and then over the entire Al matrix surface. The function of processing time
and environmental exposure was investigated by Kendig et al. [34], and they suggested
the major constituent of CCCs on Al and its alloys is Cr(VI) (the ratio of Cr(VI):Cr(III) is
approximately 4:1) and the Cr(III) is not crystalline Cr2O3 but has a closer resemblance to
an amorphous hydrated Cr(OH)3. In addition, there exists a limit for both the total amount
of chromium and the ratio of Cr(VI):Cr(III) in CCCs after about 5 min of processing.

A so-called sol–gel mechanism, as a newer interpretation of CCC formation on Al, has
been proposed [34,35]. It was suggested that there are three steps for coating formation,
that is, hydrolysis, polymerization and condensation of Cr3+ (Figure 8). During the reaction
process, Cr6+ species are reduced at the metal surface and hydrogen reduction leads to
near-surface pH increases on the activated Al surface. In the consequent coatings, a
chromium hydroxide (Cr(OH)3) polymer “backbone” consists of edge- and corner-sharing
Cr3+ octahedral units. The labile Cr6+ reservoir builds up in the coating simultaneously
with backbone formation. It was suggested that the freshly formed conversion coating is a
well-hydrated gel within the first 24 h after coating application. The gel coating becomes
decreasingly receptive to organic overcoats, after aging for more than 24 h. The hardening
CCCs can be used for stand-alone corrosion protection at that time.
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Figure 8. Schematic representation of the hydrolysis–polymerization–precipitation mechanism for
Cr(OH)3 backbone formation [36].

In addition, Figure 9 shows the scanning electron microscopy observations of the
fracture surfaces of the deoxidized well-coated samples after fatigue tests. The fatigue life
of the deoxidized and coated samples is significantly shorter at medium stress levels, which
indicates a change in the point of crack initiation [37].
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Figure 9. Fracture surface observations by SEM of deoxidized (a) and coated (b) AA 2024-T3 after
fatigue tests [37].

Researchers have developed different models in recent decades to facilitate a better
understanding of the morphology and composition of CCCs on individual IMCs and on
the entire AA 2024-T3 alloy surface [34–42]. For instance, Hughes et al. [38] illustrated
the structures of CCCs as shown in Figure 10, in which the external layer is composed
of CrOOH, with a significant level of Fe(CN)6

3− and small amounts of chromate species.
A mixture of Cr2O3·CrOOH, F- and Fe(CN)6

3− anions makes up the bulk coatings and
the interface between the bulk coating and substrate contains (Cr, Al)OF, Al2O3 and Cu.
In Figure 11, it is shown that Vasquez [4] developed a new compositional model for the
CCC, which suggests the following: (1) the CCC is of chemically and topographically
heterogeneous composition; (2) the CCC composition varies laterally with the distribution
and morphology of the IMCs in the alloy substrate; (3) a thinner CCC is formed on Cu-
enriched particles due to ferrricyanide being absorbed and retained on these IMCs and the
lack of Al availability; (4) the chromate of the CCC on the regions over the Cu-rich IMCs is
not available for repair.

The CCCs are remarkable for this “self-healing” ability, that is, the soluble chromate
species can transport and migrate to scratch sites to repair defects and damage of the con-
version coating when exposed to a corrosive environment [43]. Frankel [43–48] investigated
the mechanism of chromates and CCCs against corrosion and gave a number of specific
working hypotheses. Cr6+ oxoanions have the following roles:

• being highly soluble and very mobile in solution, migrating to the vicinity of localized
corrosion where they are reduced to Cr3+ and irreversibly adsorb at metal surfaces
where they inhibit oxygen reduction;

• inhibiting pit initiation of Al and dissolution of active IMCs in Al alloys;
• modifying the chemical composition of surface of passive oxides and passivating

IMCs by adsorption and buffering;
• lowering the zeta potential by adsorption on Al oxides, thus halting adsorption of

corrosive anions such as chloride.

CCCs:

• are a good, hydrophobic Cr3+ hydroxide barrier with adhesion-promoting chemical
and mechanical properties;

• not only contain Cr6+ oxoanions but also provide a continuous timed-release source
into an aggressive solution and then migrate to repair defects to inhibit corrosion;

• inhibit anodic and cathodic reactions, at least temporarily, resulting in corrosion
protection.
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Akiyama et al. [49] extensively investigated the release of chromate ions from CCC
on aluminum alloys by UV–visible spectroscopy and the effect of CCC aging on chromate
release in order to facilitate optimum corrosion protection. They suggested that heat
treatment and increasing aging time at room temperature can decrease the chromate release
rate and proposed a diffusion-control model, resulting in a concentration gradient of soluble
Cr(VI) as the chromate is released.

6.2. Trivalent Chromium Conversion (TCC)

TCC coating solution contains trivalent chromium sulfate, sodium hexafluoroalka-
noate, sodium fluoride and other additives, and the recommended pH value for film.

formation is 3.8–4.0 and the temperature is 40 ◦C [4]. The formation mechanism
of trivalent chromium conversion (TCC) coatings is a pH-driven reaction of trivalent
chromium at the solution–metal interface to produce chromium/zirconium hydroxide
deposits. They are the main components of the coatings. Figure 12 shows the polarization
curve of electropolished aluminum in SurTec 650 solution (40 ◦C, pH 3.9), with a scan from
−2.0 VSCE to 0 VSCE, where the polarization curve is affected by cathodic polarization,
with lower potentials in the polarization curve where the current density is zero [50].
Sun et al. compared the interfacial pH evolution of aluminum and its alloys with that
of magnesium alloys during the formation of TCC coatings and discussed the pH-based
coating formation mechanism. The peak and final pH values of pre-treated Al, AA 2024



Crystals 2024, 14, 101 13 of 17

and AZ91D alloys were 4.9 and 3.5, 4.3, 4.1, 4.7 and 3.5, respectively. The changes in the
interfacial pH were related to the hydrolysis of the weakly acidic nature of the zirconium
and chromium salts, which are the main constituents of the TCC coating solutions [4].
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7. Challenges and Prospects

CCCs are regarded as effective corrosion inhibitors on high-strength aluminum alloys.
However, the use of Cr(VI) is tightly regulated by environmental requirements due to a
toxic and carcinogenic risk to human beings and the environment. Underlying studies find
that the static presence of Cr3+ or Cr6+ cannot directly contribute to DNA damage, leading
to cancer [44,51,52]. Indeed, critical damage to DNA is induced by molecular fragmentation
associated with the process of reduction of Cr(IV) to Cr(III) [44,51,52]. Thus, there has been
a high focus in recent years on promising alternative and less toxic conversion coatings that
offer equally effective corrosion-protective properties as CCCs.

Kendig and Buchheit [43] reviewed the considerable efforts, suggested alternatives for
chromium element were considered from the periodic table, and the inorganic species were
categorized as follows:

• reducible hypervalent transition metals (mixtures of Mo, V, Mn, Tc), like Cr, being
highly soluble and mobile due to their high-valent oxoanions in aqueous solution. The
results of Qian et al. showed that Mo-Zr-Ti composite conversion coating improves
the corrosion resistance of LY12 aluminum alloy [53,54]. Compared with the Al
alloy matrix, the MoTiZrCC surface under the optimal transformation parameters is
more uniform and denser. In the meantime, the interstitial space related to corrosion
resistance basically disappears, so the corrosion resistance of the alloy is improved by
nearly six times [55].

• noble transition metal oxides (Zr, Hf, Ta, Ti, Y) and covalent oxides (oxides and
mixed oxides of Si, Ge, P, Te), all processed by means of sol–gel chemistry. Among
them, Ti/Zr/Mo composite conversion coatings, zirconium conversion coatings and
titanium–zinc-based conversion coatings have been applied to improve the corrosion
resistance of aluminum alloys, for example, to improve the corrosion resistance of
outdoor fitness equipment [55–57].

• precipitated coatings as a type of barrier layer (boehmite and hydrotalcite coatings)
and rare-earth metal (REM) used as “drop-in” methods. For example, nano-oxide-
decorated nickel–aluminum–polyvanadate layered double hydroxides and the re-
placement of Mg-Al layered double hydroxides with Ce can improve the corrosion
protection of aluminum alloys and thus prolong their life span [58–60].

For the future trends, self-organizing chemistries and biomemetic technologies, ad-
vances in the development of smart, self-diagnosing corrosion-protective coatings present
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a fruitful area of research effort. In the past, pharmaceutical companies have used combina-
tional methods to synthesize and screen classes of chemical methods for a particular drug
application. Thus, it may be an appropriate methodology to discover an effective corrosion
inhibitor of key aerospace alloys [43].

Kulinich and Akhtar [52] also indicated that the increasing research on Cr(VI)-free coat-
ings includes stand-alone chemistry and combinations for organosilane-based chemistries,
electroactive polymers, sol–gel coatings and inorganic conversion coating systems. A
number of such non-chromate coatings exhibit similar performance to CrCCs under certain
conditions, and the problems of formation and large-scale processing details require much
study in the future. Thus, extensive studies should focus on comparisons between the
various candidate coatings (combination of theory and mechanism) and those based on
chromates. Among the various alternatives for CrCCs, the trivalent conversion coatings are
well-accepted promising candidates within low toxicity and similarity to CrCCs. However,
a concern is to optimize the corrosion-protective properties to reach the level of CrCCs.

In terms of the chromate electroplating process, the closed-loop system has been
widely employed in the European Union and United States as reported in [61–63]. In
comparison, this application is on the way in China such as at Northeast Electric Group
High-voltage Switch Co., Ltd. The closed-loop system of chromate electroplating as the
surface treatment of aluminum alloys is an eco-friendly, efficient and sustainable process.
Chromate electroplating can provide good formability and corrosion-resistant performance
and the toxic waste water and gas can be efficiently recycled [64]. Notably, 30% chromate
acid mist could be generated during the conventional chromate electroplating process
without the closed-loop system and such mist is toxic and carcinogenic to human beings [65].
The mist containing perfluorooctane sulfonate (PFOS) was widely used while PFOS is an
organic pollutant that is highly limited by European POP Regulation (EC) No. 850/2004.
In this sense, the closed-loop system of chromate electroplating is of great significance to
the sustainable development of surface treatment of aluminum alloys.

8. Conclusions

Low-weight aluminum alloys are promising materials for sports equipment and
second-phase particles create the risk of localized corrosion and result in the failure of
sports equipment. Chromate conversion coatings were employed to provide a thin but
compact film against corrosion and improve the binding property between alloys and outer
paint. However, chromate species are regarded as toxic and carcinogenic chemicals for
human beings. Thus, this process has been highly limited. Non-toxic TCCs, containing
trivalent chromium, zirconium and titanium salts, have become the best surface treatment.
In addition, the closed-loop system of the chromate electroplating process has been used in
Europe and the United States. This is also a sustainable process for surface treatment of
aluminum alloys applied in sports equipment.
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