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Abstract: The construction of a heterojunction by coupling two semiconductor photocatalysts with
appropriate band positions can effectively reduce the recombination of photogenerated charge
carriers, thus improving their catalytic efficiency. Recently, ZnO photocatalysts have been highly
sought after in the synthesis of semiconductor heterostructures due to their wide band gap and
low conduction band position. Particularly, transition metal-doped ZnO nanoparticles are attractive
due to the additional charge separation caused by temporary electron trapping by the dopant
ions as well as the improved absorption of visible light. In this paper, we compare the effect of
doping ZnO nanoparticles with 3d (Co and Mn) and 4d (Ag) transition metals on the structural
and optical properties of ZnO/CdZnS heterostructures and their photocatalytic performance. With
the help of scanning electron microscopy, the successful anchoring of doped and undoped ZnO
nanoparticles onto CdZnS nanostructures was confirmed. Among the different heterostructures,
Ag-doped ZnO/CdZnS exhibited the best visible-light-driven degradation of rhodamine B at a rate
of 1.0 × 10−2 min−1. The photocurrent density analysis showed that AgZnO/CdZnS has the highest
amount of photogenerated charges, leading to the highest photocatalytic performance. The reduction
in the photocatalytic performance in the presence of hole scavengers and hydroxyl radical scavengers
confirmed that the availability of photogenerated electrons and holes plays a pivotal role in the
degradation of rhodamine B.

Keywords: semiconductor heterostructures; transition metal-doped ZnO; CdZnS; charge separation;
photocatalysis

1. Introduction

Constructing a heterojunction between two semiconductors is one of the most desired
ways to obtain efficient photocatalysts [1]. Heterojunctions are formed when two semicon-
ductors that possess different energy band structures are brought into contact, resulting
in an electric field at the interface due to the spontaneous diffusion of electrons between
the semiconductors [2–4]. As a result, semiconductor heterostructures in photocatalysis
can facilitate the separation of photogenerated electrons and holes and improve their redox
abilities [5,6]. Different types of heterojunctions have been achieved, categorized depending
on the band alignment between the constituent semiconductors. Among them, Z-type
heterojunctions exhibit significant charge separation upon photoexcitation [7–9]. This type
of heterojunction is formed when both the valence band (VB) and conduction band (CB)
positions of the semiconductor with a higher Fermi level (Ef) are higher than those of the
semiconductor with a lower Ef [10–12]. When photoexcited, electrons in the semiconductor
with a lower Ef could travel across the interface and reduce the holes in the semiconductor
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with the higher Ef; therefore, the electrons in the semiconductors with a high Ef and holes
in the semiconductors with a low Ef are available for redox reactions [13,14].

Some of the widely explored Z-type heterojunctions are ZnO-based heterostructures.
When used solely, ZnO nanomaterials exhibit an impressive photocatalytic performance
in photoreactions, such as water splitting for H2 production and the decomposition of
organic pollutants [15–19]. Additionally, the high oxidation potential of ZnO’s VB edge
(~3.0 eV vs. NHE, normal hydrogen electrode) allows the photoinduced holes to effectively
oxidize a wide range of molecules, including water [20]. However, like many powder
semiconductor photocatalysts, there are some drawbacks in their applications, such as
leaching, aggregation, and agglomeration in the reaction solution upon excitation by
light [21]. This leads to deterioration in the performance as well as the release of toxic
constituent elements [22]. In addition, unfavorable sunlight absorption is limited to the
UV region (only ~5% of the solar energy) due to the wide band gap (3.37 eV) and fast
electron–hole recombination [23–25]. The formation of a Z-type heterostructure using ZnO
and a narrow band gap semiconductor is a plausible remedial strategy to reduce charge
recombination within ZnO. One such heterojunction consists of ZnO/CdZnS [23]. When
ZnO/CdZnS heterostructures are irradiated, the electrons in the CB of CdZnS (higher Ef)
and the holes in the VB of ZnO (lower Ef) can be utilized in photo-redox reactions.

Another strategy for the suppression of charge recombination is the incorporation of
dopant ions in ZnO [26–29]. The addition of dopant ions creates localized energy states
within the band gap and reduces charge recombination as well as narrowing the band gap
of ZnO, which increases visible light absorption [30–33]. First-row transition metals are
the commonly used dopants in ZnO nanoparticles due to their similarities in properties,
such as ionic radii [34–36]. However, transition metals in other periods (4d and 5d), such
as the noble metals Au, Ag, and Pd as well as Cd, have also been successfully applied
as dopants in ZnO nanoparticles to improve ZnO catalytic performance [37–40]. The
differences between 3d transition metals and transition metals in higher periods, such as
ionic radii and oxidation potentials, could impact ZnO structural and optical properties
and photocatalytic performance differently. A clear understanding is lacking of how
transition metal dopants in different periods (for example, 3d and 4d) affect the properties
of ZnO and the subsequent photocatalytic efficiency of ZnO-based heterostructures. This
work compares the impact of 3d (Co, Mn) and 4d (Ag) transition metal dopants in ZnO
nanoparticles on the photocatalytic properties of ZnO/CdZnS-based heterostructures.
It was observed that Ag-doped ZnO/CdZnS showed higher photocatalytic activity in
rhodamine B degradation than Co- and Mn-doped ZnO/CdZnS heterostructures. Reduced
charge recombination within AgZnO was found to be a key factor that improves the
photocatalytic activity of AgZnO/CdZnS.

2. Experimental Section
2.1. Chemicals

All chemicals were purchased from Sigma Aldrich, Burlington, MA USA, and were
used as received without further purification: cadmium chloride (CdCl2, 99.99%, trace
metal basis), zinc acetate dihydrate (Zn(CH3CO2)2·2H2O, ≥98%), thioacetamide (C2H5NS,
≥99.0%), lysine (C6H14N2O2), ≥98%, TLC), methanol, acetone, potassium hydroxide
(KOH, ≥85%, pellets), silver nitrate (AgNO3, ≥99.0%), manganese (II) acetate tetrahy-
drate (Mn(CH3CO2)2·4H2O, ≥99%), cobalt (II) acetate tetrahydrate (Co(CH3CO2)2·4H2O,
≥98.0%), and rhodamine B (C28H31ClN2O3), ≥95%, HPLC).

2.2. Synthesis of CdZnS Nanostructures

A total of 1.28 g of cadmium chloride, 0.658 g of zinc acetate dihydrate, 360 mg of
thioacetamide, and 20 mg of lysine were added to 100 mL of deionized water in a 250 mL
round-bottomed flask. The mixture was heated for 2 h at 100 ◦C under constant stirring.
A yellow precipitate formed was isolated by centrifugation at 3500 rpm and was washed
several times with water.



Crystals 2024, 14, 41 3 of 13

2.3. Synthesis of Undoped and Doped ZnO Nanoparticles

A total of 4.38 g of zinc acetate dihydrate in 15 mL of methanol was heated to 60 ◦C
while stirring for 30 min. A 5 mL solution of 1.1 g of potassium hydroxide in 5 mL of
methanol was then added dropwise and left at the same temperature for 2 h. The white
precipitate was collected via centrifugation and washed using methanol. Afterward, the
product was dried and heated at 150 ◦C in a vacuum oven for 2 h.

Ag-, Mn-, and Co-doped ZnO nanoparticles were prepared following the same pro-
cedure, except that the 2.5% molar ratio of the corresponding precursor (silver nitrate,
manganese (II) acetate tetrahydrate, or cobalt (II) acetate tetrahydrate) was also added to
the zinc acetate dihydrate solution before heating.

2.4. Synthesis of ZnO-CdZnS and Doped ZnO-CdZnS Heterostructures

To fabricate ZnO/CdZnS, 0.219 g of zinc acetate dihydrate in 15 mL of methanol was
first heated to 60 ◦C while stirring for 30 min. A total of 200 mg of the synthesized CdZnS
nanostructures was then added to the solution. Immediately after this, 0.055 g of potassium
hydroxide in 5 mL of methanol was added dropwise and left at the same temperature for
2 h. Doped ZnO/CdZnS heterostructures were synthesized following the same procedure
as that of ZnO/CdZnS, except that a 2.5% molar ratio of the dopant precursor was added
to the zinc acetate dihydrate in the first step of the reaction.

2.5. Photocatalytic Degradation of Rhodamine B

The solutions for photocatalytic reactions consisted of 4 mg/L of rhodamine B and
1 mg/mL of the photocatalyst dispersed in water with a final volume of 3 mL in a quartz
cuvette. The sample solutions were first left to stir in the dark for 45 min to obtain the
adsorption–desorption equilibrium. A broadband (360 to 900 nm) LED lamp with an output
power of 30 mW was used to irradiate the samples. At specified reaction times, the extent
of the photodegradation was analyzed. The sample solutions were centrifuged at 3000 rpm
for 2 min to remove the photocatalyst, to avoid errors in the UV-vis absorption spectra
of rhodamine B resulting from light scattered by the photocatalysts. The precipitate was
set aside, and the supernatant was analyzed via UV-vis spectroscopy. After each analysis,
the photocatalysts were redispersed in the sample solution and left under illumination for
further reaction.

2.6. Photocatalytic Trapping Experiment

Ethanol and isopropanol were used as hole and hydroxyl radical scavengers, respec-
tively. A total of 4 mg/L of rhodamine B and 1 mg/mL of the AgZnO/CdZnS photocata-
lysts were dispersed in 3 mL of ethanol or isopropanol. The samples were stirred in the
dark for 45 min and subsequently illuminated for 75 min by the same light source used for
the photocatalytic degradation. Before the UV-vis analysis of the sample, the photocatalyst
was removed by centrifugation at 3000 rpm for 2 min.

2.7. Instrumentation

Powder X-ray diffraction patterns were obtained using a Rigaku ultima IV powder
X-ray diffractometer by Rigaku, Wilmington, MA USA, with Cu Kα (1.54 Å) radiation
and operated at 40 kV and 44 mA [41]. TEM images were taken using a Talos F200X from
Thermo Fisher Scientific, Waltham, MA, USA, that has an accelerating voltage of 200 kV.
The morphology of the synthesized materials was investigated using a Verios 460 L SEM
manufactured by Thermo Fisher Scientific, Waltham, MA USA. UV-is spectra were acquired
using an Agilent technologies Cary—60 UV-vis spectrometer made by Agilent, Santa
Clara, CA USA. PL spectra were attained using a Horiba FluoroMax spectrofluorometer
manufactured by Horiba, Piscataway, NJ USA. The comparison of the oxygen vacancies in
the undoped and doped ZnO nanoparticles was achieved on a Thermo Fischer Scientific,
Waltham, MA USA, X-ray photoelectron spectrometer (Model: K-Alpha, part number:
1200505) with an Al(mono) X-ray source (1486.6 eV). Peak fittings were conducted using
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CasaXPS (Casa Software Limited, Teignmouth, United Kingdom) and charge correction was
performed concerning the C 1 s photoelectron line (284.8 eV). Photocurrent measurements
were performed in a testing cell arranged with a 3-electrode system composed of SCE as
the reference electrode, platinum counter electrode, and ITO coated-glass electrodes as the
working electrode in a 0.1 M Na2SO4 electrolyte solution. The illuminating light source
was a UV-vis full-range light with a power of 300 W, purchased from Newport Corporation,
Franklin, MA USA.

3. Results and Discussion

The synthesized nanomaterials’ crystal structures and crystallite sizes were deter-
mined using powder XRD; the results are shown in Figure 1a. The XRD patterns for the
CdZnS nanostructures matched those of hexagonal CdS. No peaks associated with the
hexagonal crystal phase of ZnS were registered because, at a molar ratio of 70:30 Cd:Zn,
the predominant features of CdZnS are expected to resemble those of CdS. The analysis
of the heterostructures showed the simple combination of the diffraction peaks from the
undoped and doped ZnO nanoparticles and CdZnS nanostructures, confirming that the
crystal structure of CdZnS was not altered during the anchoring of the doped and undoped
ZnO nanoparticles onto the CdZnS nanostructures.
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Figure 1. XRD patterns for (a) the doped and undoped ZnO nanoparticles and the doped and
undoped ZnO and CdZnS heterostructures. (b) Magnified XRD patterns for the doped and undoped
ZnO nanoparticles.

From a closer look at the diffraction patterns for the undoped ZnO nanoparticles in
Figure 1b, they exhibited peaks at 2θ degrees that were indexed to the hkl crystal planes of
the hexagonal wurtzite crystal phase of ZnO [42]. These same diffraction patterns were
recorded in the Co- and Mn-doped ZnO nanoparticles. The absence of foreign peaks
for the oxides of cobalt and manganese indicated that the addition of a dopant did not
alter the crystal structure of ZnO [43]. However, two additional small peaks at 38 and
44 degrees were seen in the XRD pattern of AgZnO, which correspond to the Ag(111)
and Ag(200) planes [44], respectively, likely because some Ag+ was reduced to Ag0 and
subsequently nucleated to form Ag domains. Peak broadening, often seen upon successful
doping, was observed in the doped ZnO nanoparticles [45]. The magnified diffraction
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patterns in Figure 1b clearly showed that, among Co-, Mn-, and Ag-doped ZnO, the AgZnO
nanoparticles displayed the most peak broadening. The broadening of the diffraction peaks
indicates a reduction in the crystalline size of ZnO upon substituting Zn2+ with Co2+, Mn2+,
and Ag+ [46]. The larger size of the 4d metal cation Ag+ (115 pm) compared to those of
the 3d metal cations Co2+ (74 pm) and Mn2+ (83 pm) may have impaired the incorporation
of Ag+ into the Zn2+ (74 pm) site in the crystal, resulting in the lattice distortion of the
ZnO nanoparticles. In addition, the crystallite size calculations obtained using Scherrer’s
equation and noted in Table S1 revealed that AgZnO had the smallest crystallite size of
3.4 nm compared to 7.3 nm, 5.6 nm, and 5.1 nm for ZnO, CoZnO, and MnZnO respectively.
This is because, among all the doped ZnO nanoparticles, AgZnO could have more stress
induced in the crystal edges and boundaries during the growth and formation process due
to the presence of a large Ag+ cation [20,47].

The morphology of the undoped and doped ZnO nanoparticles and the CdZnS-based
heterostructures was revealed by TEM and SEM. The TEM micrographs of the undoped
and doped ZnO are displayed in Figure 2. The morphology of the ZnO nanoparticles
was quasi-spherical structures. Similar morphologies were observed for the Ag-, Co-,
and Mn-doped ZnO nanoparticles. However, diameter size calculation obtained using
ImageJ software revealed a decrease upon doping from 21 ± 4 nm for ZnO to 13 ± 4 nm,
15 ± 2 nm, and 17 ± 3 nm for AgZnO, CoZnO, and MnZnO, respectively. The SEM images
of the CdZnS nanostructures and the undoped and doped ZnO/CdZnS heterostructures
are shown in Figure 3a–e. The CdZnS nanostructures appeared aggregated due to the
heating process in the synthesis. In each micrograph of the heterostructures, many lighter
dots appeared on the CdZnS nanostructures, resulting from the undoped or doped ZnO
nanoparticles. These images demonstrated the successful growth of the undoped and
doped ZnO nanoparticles on CdZnS.
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Scale bars = 500 nm. (f) Diffuse reflectance UV-vis spectra of CdZnS, ZnO/CdZnS, and the doped
ZnO/CdZnS heterostructures.

The optical features of the undoped and doped ZnO/CdZnS heterostructures were
determined by UV-vis diffuse reflectance spectroscopy (DRS). The samples were prepared
by evenly spreading 20 mg of each sample on 1 g of barium sulfate standard powder.
The obtained UV-vis diffuse reflectance spectra in Figure 3f showed negligible shifts in
the absorption edges of the undoped and doped ZnO/CdZnS heterostructures from that
of CdZnS. The DRS absorption peaks of ZnO and the Ag-, Co-, and Mn-doped ZnO
nanoparticles are shown in Figure S1a. These features were not observed in the DRS spectra
due to the low amounts of nanoparticles (10% by weight) in the heterostructures.

The visible-light-driven photocatalytic performance of the heterostructures was evalu-
ated by comparing the rate and extent of rhodamine B dye photodegradation. Rhodamine
B is a common synthetic dye used mainly in textile industries, which, upon release to
the environment in wastewater, poses health risks to both humans and animals [48]. Its
effective removal from wastewater is thus important. In this work, rhodamine B was
particularly adequate for photocatalytic performance testing because its UV-vis absorption
at 55 nm did not overlap with the absorbance of the photocatalysts used. The change in
rhodamine B concentration in the samples upon irradiation was monitored by analyzing
the UV-vis absorbance. Figures 4a and S2 show the UV-vis spectra of rhodamine B at
varying reaction times using the different photocatalysts. The adsorption–desorption equi-
librium was achieved between −45 min (45 min before visible light illumination) and 0 min.
The decrease in dye concentration in the solution was due to the dye’s adsorption on the
surface of the photocatalyst [49]. With the increase in the irradiation time, the absorbance
of rhodamine 6G decreased. Among the photocatalysts tested, AgZnO/CdZnS showed
the highest photocatalytic performance, exhibiting 88% photodegradation after 100 min of
illumination with visible light.
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Figure 4. (a) UV-vis spectra of rhodamine B during photodegradation reaction using AgZnO/CdZnS
at specified time intervals. (b) Kinetic study of the time-dependent degradation of 4 mg/L of a
rhodamine B solution using 1 mg/mL of the photocatalyst under visible light irradiation. (c) Bar graph
representation of the rate constants for the reaction using different photocatalysts. (d) Scavenging
experiment comparing the photodegradation of rhodamine B in water and in two scavengers. In both
(c,d), 3 experimental trials were carried out for each material. The representative bar graphs are the
average values, and the error bars are representative of the standard deviations.

The rhodamine B degradation reaction was recognized to follow first-order kinet-
ics [50]. The results are presented in Figure 4b as linear plots of ln(C/C0) versus time,
where C is the concentration of rhodamine B after a specified irradiation time and C0 is the
initial concentration of the dye [50]. Among all the doped ZnO/CdZnS heterostructures,
AgZnO/CdZnS exhibited the best photocatalytic performance, at a rate of 1.0 × 10−2 min−1,
which is 1.2 and 1.6 times faster than those of MnZnO/CdZnS and CoZnO/CdZnS, respec-
tively. This high performance of AgZnO/CdZnS is comparable to those of N-TiO2/rGO
nanocomposites and g-C3N4 nanorods, which were recently reported to degrade 78% Rho-
damine B in 90 minutes, or at a rate of 1 × 10−2 min−1, respectively [51,52]. The proposed
mechanism for the degradation process using the heterostructures is illustrated in Scheme 1.
Upon illumination, photoexcited electrons and holes are generated in the VB and CB of
the two constituent semiconductors, respectively. The excitons could directly recombine
within each semiconductor (not shown in the scheme). Alternatively, electrons in the CB
of the doped ZnO could directly recombine with the holes in the VB of CdZnS as in a
Z-scheme system, or they could temporarily transfer to the dopant Ag+, Co2+, or Mn2+

cations. These cations act as electron traps for a short duration. Next, the trapped electrons
in the doped ZnO are released to reduce the holes in CdZnS or to directly react with the
O2 adsorbed on the catalysts. The electrons in the CB of CdZnS reduce O2 to O2

−•, which
are then reduced to form the OH• radical. Subsequently, OH• oxidizes rhodamine B to
obtain degradation products and H2O. The holes in AgZnO, CoZnO, and MnZnO could
also oxidize the rhodamine B dye to yield degradation products.
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Scheme 1. Proposed photocatalytic mechanism for the degradation of rhodamine B using transition
metal-doped ZnO anchored on CdZnS.

To confirm the role of holes (h+) and OH• in the reaction, scavenging experiments
were conducted using a hole scavenger (ethanol) and a hydroxy radical (isopropanol).
Experimentally, AgZnO/CdZnS were dispersed in either ethanol or isopropanol for the
reactions instead of water. Figure 4d shows an obvious decrease in the photodegradation
of rhodamine B by 52.3% in the presence of hole scavengers (ethanol) and 29.3% when
hydroxy radical scavengers (isopropanol) are present. The decrease in the photocatalytic
degradation when both holes and OH• are removed revealed that the photogenerated
holes and OH• obtained from the photogenerated electrons were critical for the successful
degradation reaction using AgZnO/CdZnS.

We hypothesize that the major reason causing the higher photocatalytic efficiency
of AgZnO/CdZnS, compared to those of CoZnO/CdZnS and MnZnO/CdZnS, is due to
the greater suppression of charge recombination in the presence of Ag+ than of Co2+ and
Mn2+. To verify this, charge carrier density measurements were carried out by testing the
hydrogen evolution reaction (HER) using the undoped and doped ZnO/CdZnS under
dark and light conditions. The results are displayed in Figure 5b. The dark and light
current densities represent the electrochemical and photoelectrochemical performances of
the samples applied in the HER reaction, respectively. The difference between the light
and dark current density, referred to as ∆J, represents the density of the charge carriers
generated from light. As observed in the results, AgZnO/CdZnS showed the highest
∆J (2.82 µA·cm−1) and, therefore, the highest charge carrier density among all the tested
heterostructures. The high charge carrier density represents a way to confirm the optimal
charge separation in AgZnO/CdZnS [53,54].

One possible reason for the better charge separation in AgZnO/CdZnS than in the
other heterostructures is the higher oxidizing power of Ag+ compared to those of Co2+

and Mn2+. Hence, Ag+ has a greater ability to temporarily accept photoexcited electrons
from the VB of ZnO. The electrons from Ag are subsequently released to reduce the holes
in the VB of CdZnS. This process reduces exciton recombination in both ZnO and CdZnS.
Other than the largest enhancement in charge separation by Ag doping, a few other factors
should be considered. Firstly, pure Ag domains were detected in the Ag-doped ZnO
nanoparticles according to the XRD spectrum in Figure 1b, as well as the AgZnO XPS
spectrum (as displayed in Figure S3a) that shows Ag 3d peaks arouse from metallic Ag.
These observations suggest that the Ag/CdZnS metal-semiconductor heterojunction could
have subsequently formed and facilitated the charge separation [55,56]. Additionally, both
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the AgZnO and CoZnO nanoparticles were found to have slightly narrower band gaps
than those of MnZnO and ZnO. Consequently, AgZnO/CdZnS and CoZnO/CdZnS could
have slightly increased the light absorption during photoexcitation, thus improving the
photocatalytic performance [57,58]. Lastly, XPS studies have revealed that doping has
impact on the amount of oxygen vacancies in ZnO. By deconvolution of the O 1s spectrum
using Gaussian functions, 3 peaks corresponding to lattice oxygen, adsorbed oxygen, and
oxygen vacancies were obtained as is shown in Figure S3b. A comparison of the percent
oxygen vacancies as is given in Table S2 reveals that the incorporation of Ag+ dopants
increased the oxygen vacancies in the heterostructures compared to ZnO alone. The increase
could be beneficial to the photocatalyst. Upon photoexcitation, these oxygen vacancies
could temporarily trap electrons that could then be released and used in the photocatalytic
reaction, thus contributing to enhanced charge separation [59].Considering all these factors,
the highest photocatalytic efficiency of the AgZnO/CdZnS heterostructures was achieved
among all the catalysts tested.
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4. Conclusions

In this work, we reported the impact of doping ZnO nanoparticles with 3d (Co and
Mn) and 4d (Ag) transition metals on the photocatalytic performance of ZnO/CdZnS
heterostructures. The photodegradation of rhodamine B conducted by illumination with
visible light showed that AgZnO/CdZnS achieved a better photocatalytic activity than
CoZnO/CdZnS and MnZnO/CdZnS. The photocurrent density study revealed that this
good performance was hinged upon the effective charge separation in AgZnO/CdZnS,
which is possibly a result of the higher oxidizing power of Ag+ compared to those of
Co2+ and Mn2+. Additionally, the XRD data showed that, when Ag+ was the dopant
transition metal, Ag domains were formed, which also facilitated the charge separation via
the formation of metal/semiconductor heterostructures. This work showed that, although
it is more plausible to substitute Zn2+ in ZnO with a transition metal dopant in the 3d
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period due to similarities in atomic properties compared to metals in different periods, the
photocatalytic performance of heterostructures based on the 3d transition metal-doped
ZnO is not necessarily better. The impact of the dopant cation on the structural and optical
properties of ZnO as well as its contribution to charge separation is vital. Hence, there is a
need to explore further the performance of heterostructures based on not only 3d transition
metal-doped ZnO but also 4d and 5d transition metal-doped ZnO.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst14010041/s1. Included in the Supplementary Materials are
the crystallite sizes, band gap determination, and XPS results and data analysis for the undoped and
Ag-, Co-, and Mn-doped ZnO, and UV-vis spectra for the degradation of rhodamine B using different
photocatalysts. Figure S1: (a) Diffuse reflectance UV-vis spectra of ZnO and Ag, Co, and Mn doped
ZnO nanoparticles. (b) to (e) are the band gap determination plot of (F(R)hv)n vs hv obtained from
diffuse reflectance data; Figure S2: (a–e) UV-vis spectra for the degradation of Rhodamine B using
different photocatalysts; Figure S3: (a) XPS spectra for O 1s, Zn 2p, Mn 2p, Zn 3s and Zn 3d and Ag 3d.
(b) Enlarged XPS spectra of O1s peaks and deconvolutions representing the binding energies of the
lattice oxygen (OL), chemisorbed oxygen (Oads), and oxygen vacancies (OV); Table S1: Calculated
crystallite sizes of ZnO and Ag, Mn, and Co-doped ZnO nanoparticle; Table S2: Percent lattice
composition, adsorbed, and defect oxygen for undoped and doped ZnO nanoparticles [19,59–63].
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