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Sylwia Pawlędzio and Xiaoping Wang *

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; pawledzios@ornl.gov
* Correspondence: wangx@ornl.gov; Tel.: +1-(865)576-2148

Abstract: Rising atmospheric CO2 levels demand efficient and sustainable carbon capture solutions.
Direct air capture (DAC) via crystallizing hydrogen-bonded frameworks such as carbonate salts has
emerged as a promising approach. This review explores the potential of crystal engineering, in tandem
with advanced quantum crystallography techniques and computational modeling, to unlock the full
potential of DAC materials. We examine the critical role of hydrogen bonding and other noncovalent
interactions within a family of bis-guanidines that governs the formation of carbonate salts with
high CO2 capture capacity and low regeneration energies for utilization. Quantum crystallography
and charge density analysis prove instrumental in elucidating these interactions. A case study of a
highly insoluble carbonate salt of a 2,6-pyridine-bis-(iminoguanidine) exemplifies the effectiveness
of these approaches. However, challenges remain in the systematic and precise determination
of hydrogen atom positions and atomic displacement parameters within DAC materials using
quantum crystallography, and limitations persist in the accuracy of current energy estimation models
for hydrogen bonding interactions. Future directions lie in exploring diverse functional groups,
designing advanced hydrogen-bonded frameworks, and seamlessly integrating experimental and
computational modeling with machine learning. This synergistic approach promises to propel the
design and optimization of DAC materials, paving the way for a more sustainable future.

Keywords: direct air capture; quantum crystallography; hydrogen bonding; neutron diffraction;
X-ray diffraction; carbon capture; ionic systems; intermolecular interactions; bis-iminoguanidines;
carbon dioxide

1. Introduction

The balance of the planetary climate is facing a significant challenge from the calami-
tous increase in global temperatures due to the increased emissions of greenhouse gases,
most importantly CO2 [1–3]. Addressing climate change requires global efforts to mitigate
greenhouse gas emissions through transitioning to renewable energy sources, improving
energy efficiency, implementing sustainable practices in industries and agriculture, con-
serving ecosystems, and adopting policies to reduce carbon footprints. Direct air capture
(DAC), a technology that removes CO2 directly from ambient air, holds the potential to
reverse the accumulation of CO2 in the atmosphere, enabling its widespread adoption
across various sectors to reduce greenhouse gas emissions [4]. Yet, designing effective
DAC materials remains a challenge. The low atmospheric concentration of CO2 (currently
415 ppm) requires sorbents that bind CO2 strongly and selectively against other compo-
nents in the air (nitrogen, water, etc.). Technical and economic hurdles, including high
energy requirements and a lack of incentives for negative emissions, contribute to DAC’s
higher estimated cost of USD 94 to USD 232 per ton of captured CO2 [5].

An ideal sorbent needs to selectively separate low concentrations of CO2 while allow-
ing other gases to pass through and release CO2 with a low energy input when required.
There are currently few viable CO2 sorbents for DAC. Recently, crystal engineering ap-
proaches have been proven effective in the design of metal–organic and hydrogen-bonded
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frameworks (HBFs) and have emerged as leading contenders for DAC material design [6].
The extended networks of strong yet tunable hydrogen bonds provide the driving force
for the formation of carbonate salts. Understanding the precise geometry and strength of
hydrogen bonds facilitates the design of optimized materials for efficient carbon capture
and utilization [7].

Neutron and X-ray scattering methods, such as neutron diffraction, neutron spec-
troscopy, and X-ray diffraction (XRD), contribute to understanding the atomic-level struc-
ture and dynamics of materials used in carbon capture, including those potentially appli-
cable to DAC [7–9]. This review article introduces the field of quantum crystallography
(QC) [10], a burgeoning field capable of accurately deciphering the geometrical and ener-
getic parameters of hydrogen-bonded materials using experimental data from single-crystal
X-ray and neutron diffraction. Figure 1 illustrates that Bader’s [11] quantum theory of
atoms in molecules (QTAIM) can be employed to analyze the electron density distribution
and identify bond critical points (BCPs). A comparison of experimental and theoretical
hydrogen bond parameters can be used to validate computational models and improve
their accuracy. These techniques help analyze the arrangement of atoms and molecules
within these materials, providing insights into their behavior and interactions relevant
to CO2 capture. The greatest advantage of neutron studies is that neutrons interact with
atomic nuclei and hence provide detailed information about the material’s atomic structure,
including accurate positions of hydrogen atoms [12]. Accurate hydrogen atom positions are
relevant in understanding molecular architecture and interactions between specific molecu-
lar fragments [13]. It is well known that hydrogen atoms often participate in crucial bonding
patterns and can influence molecular properties, e.g., reactivity [14], polarity [15], or biolog-
ical activity [16]. Thus, precise information about their positions is vital for understanding
chemical reactions [17], designing drugs [18,19], or predicting material behaviors [20–22].
While neutron diffraction offers highly accurate information about crystal structures [23,24],
it can be limited by insufficient crystal size and the availability of neutron sources. An
appealing alternative lies in utilizing single-crystal XRD data. However, this technique
does not allow for the exact determination of hydrogen atom positions experimentally.
Due to the weak scattering power of hydrogen atoms in XRD experiments, their positions
are typically inferred closer to their parent atoms, resulting in shorter X–H distances than
those obtained from neutron experiments. Fortunately, this discrepancy can be corrected
using QC, and computational modeling, to gain a comprehensive understanding of the
structures and functionalities of materials for carbon capture, including those explored for
DAC applications [23,25–28].

Utilizing QC for the study of DAC materials presents a promising avenue, particularly
in addressing the challenges associated with refining hydrogen atom parameters against
X-ray diffraction data. Recent advancements in quantum crystallography, as highlighted in
this article, introduce three distinct approaches: Hirshfeld atom refinement (HAR), HAR
coupled to extremely localized molecular orbitals, and X-ray wavefunction refinement
(XWR) [29–31]. New developments in these methods enable a comprehensive examination
of hydrogen bond parameters, facilitating the validation of computational models and
enhancing their precision. The accurately determined topological properties of the electron
density from QC studies can be used to characterize the nature of the hydrogen bonding
in the crystal structure for a precise understanding of the relationship between hydrogen
bonding and the DAC function. The field of QC has the potential to serve as a tool for
guiding the design of optimized materials for efficient carbon capture and utilization. This
review aims to shed light on how single-crystal neutron and XRD methods have found
application in the study of the family of bis-guanidines that form carbonate salts as promis-
ing DAC materials. However, due to the limited availability of works, this review also
intends to demonstrate the potency of using single-crystal neutron and XRD methods in
the field of the family of (bis)carbonate salts tested for DAC materials, highlighting their
complementarity, especially in accurately locating hydrogen atoms and their importance in
the structure–property relationships. Thus, an overview of possible solutions for obtain-
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ing accurate hydrogen positions, where neutron data are not available, is also provided.
This review investigates crystal structures beyond simple geometrical analysis using the
quantum crystallography approach.
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Figure 1. Molecular graph and 2D Laplacian (eÅ−5) obtained with QTAIM for the carbon–
guanidinium complex. Green and red dots correspond to the critical points. Red and blue lines
denote positive and negative values, respectively. The (3, +1) critical point associated is with the ring
position, the (3, −1) critical point is associated either with the covalent or noncovalent bond, and (3,
−3) is the atomic position.

We will discuss how QC can be applied to the study of DAC by crystallization of
hydrogen-bonded frameworks, as outlined in a recent article by Gianopoulos et al. [32].
The relationship between hydrogen bond strengths and CO2 binding energies can be
investigated, providing insights into how structural modifications influence CO2 capture
efficiency. We will also highlight the status and challenges of QC and DAC and suggest
future directions for this interdisciplinary research field.

2. Family of Bis-Iminoguanidine Carbonate Salts Used for DAC Materials

The family of bis-iminoguanidines (BIGs) has been discovered to be effective in DAC,
and there have been significant advancements and diversification in recent years [33].
In 2017, Custelcean and Seipp et al. [34] proposed a simple aqueous guanidine sorbent,
specifically 2,6-pyridine-bis(iminoguanidine) (PyBIG), that effectively captures CO2 from
the ambient air and bonds it as a crystalline carbonate salt through guanidinium hydrogen
bonding (Figure 2). This innovative approach was a milestone as a promising method for
addressing the challenge of CO2 capture from the atmosphere. The authors suggested that
the electron-withdrawing pyridine ring in PyBIG enhances the acidity of the guanidinium
groups, leading to stronger binding and more effective separation of oxoanions. Using
guanidine sorbents for CO2 capture represented a significant step towards the development
of efficient and sustainable methods to reduce atmospheric CO2 levels.
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Figure 2. (a) DAC cycle with aqueous PyBIG as the sorbent, involving crystallization of
PyBIGH2(CO3)(H2O)4 (single-crystal neutron structure shown: C, grey; H, pink; N, blue; O,
red), followed by CO2 release and PyBIG regeneration by mild heating of the carbonate crystals.
(b) Two-stage DAC cycle combining CO2 absorption by an aqueous sorbent with crystallization of
PyBIGH2(CO3)(H2O)4 and sorbent regeneration, followed by CO2 release and PyBIG regeneration by
heating of the carbonate crystals. Reproduced from [35] with permission from Springer Nature, 2018.

Williams et al. [36] demonstrated an efficient CO2 scrubbing process using a glyoxal-
bis(iminoguanidine) (GBIG) compound for CO2 capture from flue gas mixtures. The
synthesis of GBIG involves the imine condensation of glyoxal with aminoguanidinium
salts. Upon CO2 absorption, the aqueous GBIG sorbent leads to the crystallization of a rela-
tively insoluble bicarbonate salt, forming “anti-electrostatic” hydrogen-bonded (HCO3

−)2
dimers stabilized by three hydrogen bonds from the iminoguanidinium cations and by
two from the water molecules. The CO2 was released by mild heating of the bicarbonate
crystals, resulting in quantitative regeneration of GBIG, which could be recycled multiple
times. The CO2 capture cycle was tested with a flue gas simulant, showing excellent
performance over ten consecutive cycles. The regeneration energy of GBIG is 24% lower
than that of monoethanolamine (MEA) [37], a benchmark industrial sorbent, due to the
solid-state regeneration process, avoiding energy-intensive heating and evaporation of
aqueous solutions. The study provided experimental and computational evidence for a
CO2 release mechanism and offered the prospect of an energy-efficient and cost-effective
carbon-capture technology. Unfortunately, no DAC activity was found when GBIG was
used to capture CO2 from the air [8]. The study by Custelcean et al. [8] also mentioned the
structurally analogous meta-benzene-bis(iminoguanidine) (m-BBIG); although it was able
to capture CO2 from the air, it formed a poorly crystalline carbonate solid whose crystal
structure has so far remained elusive.

Next, the DAC of CO2 using aqueous peptides and solid BIGs was tested [38]. The
process involves the absorption of CO2 by small peptides such as GlyGly, which are then
converted into carbonate and bicarbonate anions. The GBIG compound removes H+ and
HCO3

− ions from the solution and crystallizes as a bicarbonate salt, thus regenerating
the peptide absorbent. This crystallization-based regeneration eliminates the need to heat
the aqueous peptide, extend its lifetime, and reduce regeneration energy. The DAC cycle
concludes with the mild heating of the bicarbonate crystals. This process releases CO2 and
efficiently regenerates the GBIG with minimal energy. The unique feature of GBIG among
BIG compounds is its formation of a bicarbonate salt with a specific crystal structure, which
contributes to its stability and efficiency in capturing CO2 from air [38]. The combination
of aqueous peptides and GBIG is essential for an efficient DAC process, as the peptide
solution quickly reacts with CO2 from the atmosphere, resulting in the formation of the
stable crystalline structure GBIGH2(HCO3)2(H2O)2. The relatively low pKa of the peptide
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is critical for lowering the solution pH and enabling efficient DAC with GBIG. However,
most amino acids are less effective due to their higher pKa values.

Kasturi et al. [39] investigated the thermodynamics and kinetics of the regeneration
of glycine using a GBIG compound. The study discovered that regenerating glycine with
GBIG releases heat, unlike the endothermic process involved in the thermally driven re-
generation of aqueous glycine solvent. The kinetics of the system were experimentally
measured, and the reaction of the protonation of GBIG by glycine, along with the sub-
sequent crystallization of GBIGH2

2+(HCO3
−)2(H2O)2, were identified as the controlling

steps of the overall regeneration process. The study also showcased the effectiveness of
an intensified process, wherein CO2 was captured from a gas phase by an amino acid
within a liquid solution in the presence of GBIG. This configuration led to significantly
improved CO2 capture compared to a system without GBIG. The findings underscored the
importance of additional research in identifying optimal combinations of amino acids and
guanidine compounds to further enhance DAC performance.

The GBIG compound was further examined and modified. For example, the synthesis
and evaluation of a modified GBIG chemical sorbent, namely 2,5-furan-bis(iminoguanidine)
(FuBIG), was investigated [40]. Firstly, the study reported the determination of two bind-
ing modes with nine hydrogen bonds between FuBIG, CO2 (as CO3

2−), and H2O using
single-crystal XRD analysis. Secondly, the stepwise and overall thermodynamic and ki-
netic parameters for CO2 absorption and heat release were obtained through van’t Hoff
analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and
in situ reaction analysis. The study revealed that the absorption of CO2 in an aqueous
solution of FuBIG is highly advantageous, as indicated by the overall enthalpy value (∆H7)
of −116.10 kJ/mol and an overall equilibrium constant (K7) of 5.97 × 104 for the CO2
absorption reaction. The release of CO2 from FuBIGH2(CO3) (H2O)4 required relatively
less energy, with an enthalpy value (∆H8) of 209.31 kJ/mol. The study proposed a simple
and intuitive symbol for evaluating CO2 sorbents, the Rs value, representing the ratio of
sorbent solubility to the solubility of carbonate salts. The Rs values for FuBIG, PyBIG,
and GBIG were reported as 43.12, 7.97, and 1.60, respectively, at 25 ◦C. The study also
demonstrated that the CO2 absorption process followed second-order reaction kinetics
with a rate constant (k) of 4.8102 × 10−4 L/mol at 25 ◦C, and the kinetic characteristics
for the release of CO2 and H2O from the FuBIG carbonate salt aligned with the geomet-
ric phase-boundary model based on isothermal TGA analysis. The FuBIG carbonate salt
releases CO2 spontaneously in DMSO, suggesting a near-zero-energy technique for DAC.
Density functional theory (DFT) calculations further elucidated this process of spontaneous
CO2 release in DMSO. The study also highlighted the favorable biocompatibility of the
biomass-derived CO2 sorbent of FuBIG based on acute toxicity and embryo toxicity assays
in a zebrafish model.

The GBIG system was structurally modified by substituting specific hydrogen atoms
with methyl groups, demonstrating that crystal engineering can effectively control the DAC
of CO2 with GBIG [8]. The research findings indicated that relatively minor modifications
in the molecular structure of BIGs led to significant differences in the crystal structures and
aqueous solubilities of the resulting compounds. Introducing methyl groups resulted in
a substantial increase in aqueous solubility, with factors of 96 and 14 for methyl-glyoxal-
bis(iminoguanidine) (MGBIG) and diacetyl bis(iminoguanidine) (DABIG), respectively,
compared to the original GBIG. The study also highlighted the impact of π-stacking interac-
tions, conformational flexibility, and steric hindrance from the methyl groups on the crystal
structures and solubilities of the compounds. Furthermore, the study compared the crystal
structures of neutral ligands and their corresponding carbonate salts, revealing differences
in solubilities and thermodynamic driving forces for DAC reactions. The inclusion of water
molecules in the carbonate crystals is identified as a critical factor, providing stability to
the carbonate anions and influencing the regeneration energies for the compounds. The
study revealed essential design principles for crystalline BIG solids favoring DAC chem-
istry. It emphasized the importance of maximizing the aqueous solubility of neutral BIG
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solids while minimizing the solubility of their carbonate counterparts. Additionally, the
study discussed the potential for computational methodologies to predict optimal crystal
structures and thermodynamics for DAC performance and the need for process design and
development to translate fundamental science into practical DAC technology.

The effects of amino acids and small oligopeptides crystallizing MGBIG carbonate
from aqueous solutions on DAC’s efficacy were also tested [41]. The study revealed that
sarcosine, a secondary amino acid, significantly improves DAC by crystallizing MGBIG-
CO3, leading to a six-fold increase in the amount of CO2 extracted from the air when added
to an aqueous solution of MGBIG. This synergy between aqueous MGBIG and sarcosine
offers the prospect of an effective DAC process.

Separating and thermally regenerating the precipitated guanidine carbonate salt could
lead to an overall low-temperature, low-energy direct air capture process. Recently, Jang
et al. [42] evaluated the feasibility of microwave heating of the crystalline solid of MG-
BIG carbonate for efficient CO2 desorption and found that microwave heating effectively
regenerates MGBIG carbonate, resulting in a significant reduction in electrical energy con-
sumption. These findings suggest that microwave regeneration may be an energy-efficient
method for fast regeneration of solid sorbents used for direct air capture.

Also, the regeneration energy required for CO2-loaded aqueous potassium sarcosinate
(K-SAR) solvent and crystalline MGBIG sorbent was evaluated using DSC, TGA, and
Fourier transform infrared spectroscopy (FTIR) in a recent study [43]. The findings revealed
that for aqueous K-SAR, the sensible heat amounts to 1.5 GJ/tCO2, and the desorption
enthalpy is estimated at 3.68 GJ/tCO2. The study also determined that the total regenera-
tion energy required for MGBIG is approximately 7.0 GJ/tCO2. The study also observed
CO2 and H2O release during the thermal regeneration using FTIR measurements. The
regeneration of CO2-loaded aqueous K-SAR solvent and crystalline MGBIG sorbent re-
quires moderate temperatures lower than those required for other DAC solvents/sorbents.
These findings imply that leveraging low-cost heat sources, like geothermal energy, could
potentially reduce the overall cost of DAC.

3. DAC Studied by Single-Crystal Neutron Diffraction

As we already mentioned, the crystal structures of DAC can be studied by neutron
diffraction using either powder or single-crystal samples. Studying accurate hydrogen po-
sitions solely from powder neutron diffraction can be challenging due to several limitations
associated with this technique. Powder neutron diffraction provides valuable information
about the average atomic positions within a crystalline sample, but determining the precise
positions of light atoms like hydrogen is inherently difficult. In contrast, single-crystal neu-
tron diffraction provides higher-resolution data compared to powder diffraction. It allows
for the determination of precise atomic positions and their thermal vibrations within a
crystal structure, as demonstrated by high-resolution single crystal structures from TOPAZ
beamline at the Spallation Neutron Source [24]. Moreover, preferred orientation effects
might occur in powder diffraction, hindering precise structural determination, and single
crystals help to avoid these effects. On the other hand, obtaining a proper size, or a single
crystal itself, may be challenging, and thus, specific single-crystal neutron structures for
DAC materials are not widely available.

However, ongoing research in the field of materials science and carbon capture contin-
ues to leverage single-crystal neutron diffraction techniques to advance the understanding
and development of efficient materials for capturing CO2 from the atmosphere. Recently,
the structure–property relationships have been elucidated for a series of bis-iminoguanidine
(BIG) carbonate salts (Figure 3) [8,34]. The analysis of single crystals of BIGs involved
both X-ray and neutron diffraction techniques (Figures 3–7). The papers emphasized the
importance of hydrogen bonding in determining the structural arrangement and stabil-
ity of the bicarbonate salt formed during CO2 absorption by specific BIGs. The authors
discussed the role of hydrogen bonds in the formation of the BIG bicarbonate salt, specifi-
cally highlighting the unique nature of the hydrogen bonding network in the investigated
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crystalline structures. Both single-crystal X-ray and neutron diffraction analyses revealed
the formation of hydrogen-bonded carbonate-BIG dimers. Water molecules also link the
crystal networks into extended clusters.
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Interestingly, the DAC chemistry for MBIG is concentration-dependent. At concen-
trations > 1.0 M, MGBIG primarily crystallizes as (MGBIGH+)2(CO3

2−)(H2O)2 (P1). Some
high-concentration (>0.75 M) batches exhibit a secondary phase, (MGBIGH+)2(MGBIGH2

2+)
(CO3

2−)2(H2O)6 (P2). Upon lowering the initial concentration below 0.3 M, a third phase
forms, characterized by the composition (MGBIGH2

2+)(CO3
2−)(H2O)2 (P3). Figure 4a

shows the carbonate binding site consisting of eight hydrogen bonds from guanidinium
and guanidine groups for the P1 structure, and for P3, it shows the carbonate binding site
consisting of six hydrogen bonds from guanidinium groups (N–H···O contact distances of
1.654–1.886 Å) and three hydrogen bonds from water molecules (O–H···O contact distances
of 1.737–1.912 Å). Similar to P3, the crystal structure of DABIG (Figure 5) also contains
extended [CO3(H2O)3

2-]n clusters linked by four carbonate–water and water–water hy-
drogen bonds with O–H···O contact distances ranging between 1.635 and 1.846 Å. Each
carbonate anion accepts five guanidinium hydrogen bonds with N–H···O contact distances
ranging between 1.735 and 1.853 Å. The quasi-planar DABIGH+ and DABIGH2

2+ cations
alternate in the crystal and form stacks, with the distance between the mean planes mea-
suring 3.248 Å. The overall crystal packing comprised cationic stacks flanking anionic
carbonate–water clusters, interconnected via guanidinium–carbonate, guanidinium–water,
and guanidine–water hydrogen bonds. The heightened conformational flexibility and steric
hindrance resulted from the presence of methyl groups in MGBIG and DABIG. In stark
contrast to the neutral ligands, the crystal structures of MGBIG and DABIG carbonate salts
exhibit notably planar BIG cations tightly stacked within the crystals (Figure 5d). A recur-
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ring structural characteristic in these carbonate crystals is the incorporation of a minimum
of two water molecules per carbonate anion, forming extended carbonate–water clusters.
Consequently, the solubility of the carbonate salts of DABIG and MGBIG is significantly
reduced compared to their corresponding neutral ligands. This substantial reduction in
solubility provides a substantial thermodynamic driving force for the corresponding DAC
reactions [8].
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2+)0.5(CO3

2−)(H2O)3.
(a) ORTEP representation; (b) hydrogen-bonded [CO3(H2O)3

2−]n clusters with O–H···H contact
distances in Å; (c) carbonate binding site consisting of 5 hydrogen bonds from guanidinium groups
and 4 hydrogen bonds from water molecules, with contact distances in Å; (d) stacking of the
DABIGH+ and DABIGH2

2+ cations; (e) crystal packing consisting of cationic stacks that flank anionic
[CO3(H2O)3

2−]n clusters. Reproduced from [8] with permission from Jon Wiley and Sons, 2020.
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Figure 6. (a) The stacking of PyBIGH2
2+ cations in PyBIGH2(CO3)(H2O)4 based on the neutron

structure, with displacement ellipsoids at the 20% probability level; (b) scheme of the hydrogen
bonds in the anion–water ribbons based on the neutron structure, with displacement ellipsoids at the
20% probability level and distances in Å. Partially reproduced from [32] with permission from the
International Union of Crystallography, 2019.
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The X-ray and neutron studies indicated a complex network of hydrogen bonding
interactions involving carbonate anions, BIG cations, and water molecules. The presence
of these specific hydrogen bonds contributes to the stability of the bicarbonate salt. Inter-
estingly, the carbonate in the studied systems, namely PyBIG, MGBIG (P3), and DABIG,
which exhibit potential for DAC technology, is consistently associated with nine hydrogen
bonds (Table 1).

Table 1. Number of hydrogen bonds found for the carbonate anion in the studied systems.

Name HBs from Cation HBs from Water HBs from Anion

PyBIG 5 4 0
GBIG 3 2 2
MGBIG P1 8 0 0
MGBIG P3 6 3 0
DABIG 5 4 0

Therefore, it seems that a detailed understanding of hydrogen bonding aids in compre-
hending the compound’s behavior during the CO2 capture and release cycles, contributing
to its efficiency and recyclability in the carbon capture process. The combination of single-
crystal neutron and XRD methods, with DFT calculations, provides a powerful approach
for studying DAC materials, allowing for the accurate localization of hydrogen atoms and
providing complementary information crucial for understanding the structure–property
relationships and energy calculations. However, an experimental cross-validation method
for theoretical findings, going beyond the geometrical analysis, is indeed necessary.

4. DAC Studied by High-Resolution Single-Crystal X-ray Diffraction Quantum
Crystallography Studies

One of the possible ways to experimentally determine the interaction energy between
molecular fragments is through the topological analysis of the electron density distribution
in crystals. As previously discussed, the distinctive hydrogen bond network within the
BIG family system necessitates a comprehensive analysis, particularly concerning its signif-
icance in understanding crystal stability and preferences for DAC. Modern crystallography
approaches can help to obtain that information in experimental high-resolution XRD data.

According to the best of our knowledge, the analysis of experimental electron density
for the aforementioned DAC materials from high-resolution XRD data has been docu-
mented in only one paper [32]. The study investigated the DAC of CO2 and focused on
topological analysis of the experimental electron density using the QTAIM and the approach
proposed by Espinosa et al. [44,45]. This method assumes that the energy of intermolecular
interaction for hydrogen bonds (EHB) is equal to half of the local electronic potential energy
density determined at the bond critical point of a hydrogen bond. The advantages and
disadvantages of the Espinosa approach are described later in the “Interactions energy
from X-ray electron density study” section.

The compound under study is the highly insoluble carbonate salt mentioned earlier,
involving a 2,6-pyridine-bis(iminoguanidine) molecule coordinated with CO3

2− and four
water molecules [(PyBIGH)2(CO3)(H2O)4]. The article discussed the crystallographic
analysis and characterization of this specific compound, examining its molecular structure
and properties. The QTAIM method delves into the electron density and likely sheds light
on the chemical bonding and interactions within the crystal structure. Particularly, the
electron density analysis provides an accurate characterization of the bonding situation in
the studied crystals, revealing the delocalized nature of the bonding in the planar cation. It
also identifies a strong hydrogen bonding network, encompassing anion–water ribbons
and connections between anionic ribbons and cationic stacks, significantly contributing to
the extremely low aqueous solubility of this salt (Figure 6).

Water molecules form hydrogen bonds with carbonate anions and guanidinium
cations, which are crucial in stabilizing the crystal structure (Figure 7). Apart from strong
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hydrogen bonds, the analysis identified supplementary weaker interactions, some of which
are characterized as π–π interactions (the values are all less than 5 kJ mol−1). These interac-
tions contributed to the overall stability of the crystal lattice. The conclusion also mentioned
that the electrostatic contribution to the lattice energy remains relatively modest, attributed
to charge transfer and delocalization.

Overall, the primary takeaway is the comprehensive understanding of the molecular
interactions, including the role of hydrogen bonding, water molecules, and supplementary
interactions, determining this carbonate salt’s stability and extremely low aqueous solubility.
The study provided valuable insights into the electronic features that contribute to the
compound’s properties, which are relevant in understanding and potentially manipulating
insoluble carbonate salts or similar compounds.

5. Accurate Hydrogen Atom Positions from Quantum Crystallography Studies

As we mentioned above, the accurate location of hydrogen atoms is crucial to under-
standing the structure–property relationship for DAC materials. In practice, this is true
for any material, pharmaceutical cocrystal, or biological structure. When dealing with
single-crystal XRD data, it is well known that the positions of hydrogen atoms are less
reliable than those obtained from neutron studies. Also, information about their thermal
parameters, going beyond the isotropic treatment, is not accessible, especially when only
the independent atom model (IAM) is applied. Fortunately, there are methods that enable
the estimation of both the positions and anisotropic displacement parameters (ADPs) of
hydrogen atoms when neutron data are unavailable.

First, Allen and Bruno [46] proposed a method for estimating hydrogen atom positions
in a molecule using neutron diffraction data. Their approach involves utilizing positions of
heavier atoms obtained from neutron data diffraction and applying certain empirical rules
or statistical models to predict hydrogen atom positions relative to these heavier atoms
based on the coordinates stored in the Cambridge Structural Database (CSD) [47]. These
positions are calculated (Table 2) and can be accessed in the paper [46]. Table 2 displays
the selected mean X–H distances (Å) obtained from single-crystal neutron diffraction, as
proposed by Allen and Bruno, alongside those available from studies conducted for DAC.
These values underscore that an XRD study, lacking an advanced model or hydrogen atom
treatment, may not accurately determine H-atom positions.

Table 2. Comparison of mean X–H distances (Å) of organic compounds from single-crystal neutron
diffraction and the mean and median X–H distances of DAC compounds.

Neutron [a] XRD_(BIGs) [b] Neutron_(BIGs) [b]

Substructure d_mean d_mean d_median d_mean d_median

C=Csp2—H 1.082 0.981 0.951 1.096 1.096

C(ar)—H 1.083 0.993 0.950 1.086 1.086

C—Csp3—H3 1.077 0.975 0.980 - -

Csp2—N—H2 1.013 0.893 0.880 1.021 1.021

Z2—N—H 1.027 0.927 0.920 1.049 1.050

Z—O—H 0.983 0.905 0.900 0.976 0.974
[a] Allen et al. [46]. [b] Gianopoulos et al. [32] (X-ray and neutron), Seipp et al. [34] (X-ray), and Custelcean et al.
(X-ray and neutron) [8].

Furthermore, Madsen et al. [48] emphasized the importance of including ADPs for H
atoms when modeling high-resolution XRD data. Specifically, they showed that the static
model electron density for covalent bonds is affected while only the isotropic description of
H atoms is applied. Consequently, the SHADE3 server [49] was designed as a computational
tool enabling the estimation of internal mean square displacements (MSDs) of the H atoms
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by utilizing normal-mode frequencies of high-frequency vibrations. For the vibrating k
atom, the MSD matrix Batom(k) is defined as follows:

Batom(k) =
1

Nmk
∑jq

Ej(q)

ω2
j (q)

e(k|jq)
[
e*(k|jq)

]T
(1)

where:

N is the number of atoms in the unit cell;
N is the number of cells in the crystal;
e(k|jq) represents the kth component of a normalized complex eigenvector e(jq);
ωj is the frequency of mode j;
mk is the mass of atom k;
Ej(q) is the energy of the mode.

Hoser et al. [50] tested various approaches for treating hydrogen atoms in experi-
mental charge density studies within the framework of multipolar refinement [51]. The
authors emphasized the importance of an appropriate refinement strategy when dealing
with different types of hydrogen bonds in molecular structures. They highlighted that
solely standardizing X–H distances based on average neutron data without additional im-
provements in atomic displacement parameters (ADPs) and X–H directions is not sufficient
for accurately determining the topological parameters of the electron density. The authors
suggested employing a mixed refinement strategy, involving high-order refinement of
heavy atoms, low-angle refinement of H atoms. and elongation of the X–H distance to the
average neutron bond lengths plus estimated anisotropic atomic displacement parameters
for H atoms. Otherwise, significant differences in geometric and topological properties
based on different models of H atoms were observed (Figure 8). These differences not only
were notable in properties mapped for strong or weak hydrogen bonds but also impacted
the obtained integrated properties of the non-H atoms, especially for those covalently
bonded to the hydrogen atoms.
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Figure 8. (i) Schemes of (a) the 1,8-bis(dimethylamino)naphthalene (DMANH+) cation and organic
anions from (b) 4,5-dichlorophthalic acid (DMANH+dCldCA−), (c) o-benzoic sulfimide dihydrate
(DMANH+SAC−), and (d) 1,2,4,5-benzenetetracarboxylic acid (DMANH+tCA−) salts. (ii) Illustration
of the hydrogen bond structural parameter D—H· · ·A angle (◦). Only the three most representative
cases of refinement are shown. A typical s.u. for the bond angle is 0.03◦. Reproduced from [50] with
permission from the International Union of Crystallography, 2009.
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The method recommended by Hoser et al. has found successful application in numer-
ous crystallographic studies, particularly those involving high-resolution data modeled
within the framework of multipolar refinement [52–59].

Another method for obtaining ADPs for hydrogen atoms is the NoMoRe method,
developed by Hoser and Madsen [60,61]. NoMoRe is a normal-mode refinement approach
used for crystal structures. It involves refining lattice-dynamical models against diffraction
data by refining ab initio calculated normal-mode frequencies against X-ray or neutron
diffraction data. The program allows users to specify the temperature of the X-ray or
neutron data collection and the frequencies to be optimized. Initially, all normal-mode
coordinates and their frequencies are derived from calculations performed in the CRYSTAL
program, with each frequency assigned a scaling factor of 1.0. The program then calculates
the atomic displacement parameters (ADPs) for all atoms, including hydrogen atoms,
and refines only the coordinates using SHELXL. In subsequent refinement steps, selected
frequencies are optimized by refining frequency scaling factors against the diffraction data
to minimize wR2. The optimization is performed using the quasi-Newton Broyden–Fletcher–
Goldfarb–Shannon algorithm (BFGS) implemented in the Python programming package
Scipy. The NoMoRe model has been successfully used to study the stability of pyrazinamide
polymorphs [61] or hydrogen positions of transition metal hydride complexes [62].

However, when the collection of high-resolution data is not possible, a useful approach
might involve the reconstruction of electron density within pseudoatom databases, such
as ELMAM [63,64], ELMAM2 [65], MATTS [66] (previously UBDB [67,68]), and Invar-
iom [69,70] which store multipolar parameters for specific atom types. The idea of using
pseudoatom databanks is based on the transferability of properties assigned to specific
atom types between different molecules or molecular environments. For instance, the
properties assigned to a carbon atom in one molecule would be applicable to a carbon atom
in another molecule, a concept known as transferable atom refinement (TAAM). Studies
have demonstrated that this approach can accurately reproduce the positions of hydrogen
atoms and their ADPs [71]. Importantly, TAAM refinement is not limited to small molecules
but can also be applied to protein structures.

Another alternative to dealing with hydrogen atoms is the application of QC methods,
which are based on the wavefunction [29,30,72,73] and hold promise in accurate hydrogen
atom positions. In QC, a sophisticated method, among others, is Hirshfeld atom refinement
(HAR), which uses aspherical atomic scattering factors calculated on-fly by HF/DFT
methods, which are then refined against experimental data [29]. HAR was successfully
utilized for small and big molecules [74,75], yielding H-atom positions almost as accurate
as those obtained from the neutron data [76–81]. It was also shown that within HAR, the
H-atom ADPs can be refined even for low-resolution data [82]. HAR can also be combined
with the libraries of extremely localized molecular orbitals (ELMOs) [31,83,84], leading to
the HAR-ELMO method [74], providing a benefit over IAM refinements and improving the
representation of intermolecular interactions in HAR [76]. This approach allows for the
fast, accurate, and precise refinement of crystal structures of various compounds, including
polypeptides, proteins, and molecules containing heavy elements, at a significantly reduced
computational cost compared to traditional methods [76,85,86].

6. Interaction Energies from X-ray Electron Density Study

Comprehending the distinctive properties and challenges inherent in molecular and
ionic systems is pivotal in enhancing the performance of DAC materials. Intermolecular
interactions significantly shape these materials’ structural and chemical properties, influ-
encing their efficiency, selectivity, and CO2 capture kinetics. Among others, amine and
hydroxide functional groups have been explored for CO2 capture due to their ability to
chemically react with and capture CO2 molecules. X-ray and neutron studies have con-
firmed that the O/N—H···O interactions contribute to the adsorption of CO2 molecules
onto surfaces containing amine functional groups [8]. These interactions strengthen the
binding of CO2 to the amine-containing materials, thereby improving the capture efficiency.



Crystals 2024, 14, 77 14 of 26

Moreover, these interactions can facilitate the selective capture of CO2 over other gases
in a mixture. It is worth noticing that CO2 is a linear molecule with a dipole moment,
meaning it has partial positive and negative charges at different ends. Amines, for example,
have lone pairs of electrons on the nitrogen atom, allowing them to react readily with
CO2 through a process called chemical sorption or chemisorption. This process sometimes
leads to the formation of highly insoluble HBF crystals, capturing CO2, and forms stable
HBF–carbamate compounds. Thus, if a part of a molecule possesses charged or polarized
regions, the electrostatic forces play a role in CO2 capture processes too.

Analyzing these interactions at the subatomic level, going beyond simple structural
analysis, yields crucial insights into the mechanisms governing CO2 adsorption and desorp-
tion, pivotal for developing efficient DAC technologies. Moreover, a profound understand-
ing of intermolecular interactions is indispensable in the design and optimization of DAC
materials. It serves as a guiding force in the development of novel sorbents with enhanced
CO2 capture capabilities. Hence, delving into these interactions stands as a cornerstone in
propelling the advancement of effective and sustainable DAC technologies.

Crystallography offers several methods and software tools for analyzing intermolec-
ular interaction for CO2 capturing from XRD data (Figure 9). Indeed, it is possible to
compute interaction energy from the experimental XRD data, based on the electron density
analysis, within the Exact Potential and Multipole Moments (EPMM) method or Espinosa–
Molins–Lecomte (EML) approach [51]. It serves as a critical starting point for computational
methods and theoretical models that can estimate or calculate these energies too (periodic
DFT [87], dispersion-corrected DFT [88], or ab initio molecular orbital calculations [89,90]).
Combining experimental data with computational approaches allows for a deeper under-
standing of the nature and strength of interatomic interactions within materials and serves
as a cross-validation. For more curious readers, a detailed description of these methods with
examples is provided below. In the context of DAC studies, the intermolecular interactions
present in the (PyBIGH)2(CO3)(H2O)4 system [32] were recently studied from the electron
density point of view within the EML approach. The hydrogen bonds analyzed varied in
strength from modest (14 kJ/mol) to strong (66 kJ/mol). The strongest hydrogen bonds
were associated with the carbonate anion, accepting numerous interactions from guani-
dinium groups and water molecules. Correlating hydrogen bond energies with observed
H···O contact distances showed an exponential relationship, as anticipated. The cumulative
energy from all hydrogen bonds and weaker interactions amounted to 449.9 kJ/mol, with a
significant fraction (37.1%) derived from hydrogen bonding to water molecules. This strong
hydrogen bonding between carbonate and water contributes substantially (441.9 kJ/mol)
to the stability and low aqueous solubility of (PyBIGH2)−(CO3)(H2O)4 crystals, partially
compensating for the considerable free energy of dehydration of the anion. Additionally,
the lattice energy, comprising electrostatic and other interactions, likely contributed to the
crystals’ low solubility.

The EPMM method [91], which can be implemented in the XDPROP module of the
XD2016 [92] software or MoproViewer module of the MoPro (Molecular Properties) [93,94]
software, stands out. It is a computational approach used for the calculation of intermolec-
ular interaction energies and involves the evaluation of the exact Coulomb integral in the
inner region (≤4.5 Å) and combines it with a Buckingham-type multipole moment approxi-
mation for long-range interatomic interactions [95,96]. The EPMM method is particularly
valuable for accurately assessing electrostatic contributions to intermolecular interactions.
It provides a detailed understanding of the forces governing molecular associations [66],
whether based on experimental electron density or theoretical electron densities, such as
those obtained from pseudoatom databanks. This method has found extensive application
across diverse research areas. For instance, it has been used in studying glycopeptide
antibiotics and their complexes, allowing for the calculation of interaction energies based
on charge densities reconstructed with a databank [97]. Additionally, the EPMM method
has been employed in the study of aminoglycoside–RNA complexes, demonstrating its
ability to reproduce Coulombic intermolecular interaction energies determined by ab initio
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methods [98]. Furthermore, the EPMM method has been utilized in the study of proteins,
where atom–atom electrostatic energies are computed by means of a multipole expansion
with regular spherical harmonics, providing insights into the electrostatic interactions
in proteins [99–101]. Additionally, the EPMM method has been applied to the study of
self-assembling systems, such as organotrifluoroborates, where it has been used to assess
intermolecular interactions and the participation of organic fluorine in the formation of
these interactions [102]. Moreover, the EPMM method has been employed in the study
of bis(4-chlorophenylacetate)bis(pyridine-4-carboxamide)zinc(II) complexes, where it has
been used in conjunction with Hirshfeld surface analysis to investigate intermolecular
interactions and energy frameworks [103]. This demonstrates the versatility of the EPMM
method in providing valuable insights into the nature of intermolecular interactions in
diverse chemical systems [104].
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The energy density obtained from crystallographic electron density has been a subject
of interest in various studies [105–108]. It has been demonstrated by Espinosa et al. [44,45]
that relationships between the topology of the electron density in the hydrogen bond
region and some energetic properties, such as the local potential (Vr) and kinetic (Gr)
energy densities at the hydrogen bond critical point (BCP), exist, and this is called the EML
approach:

EHB =
1
2

Vr (2)

This indicates that the electron density in the hydrogen bond region (X—H ··· O,
where X = C, N, O) can provide valuable insights into the energetic properties associated
with the hydrogen bond critical point. Therefore, the electron density obtained from
X-ray crystallography can be used to analyze and understand the energetic aspects of
intermolecular interactions, particularly in the context of hydrogen bonding [44]. For
example, this approach has been used to investigate the distinct characteristics of neutral
and ionic hydrogen bonding in Schiff bases [109]. The study focused on the differences
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in geometrical parameters and electron density distribution between these two types
of hydrogen bonds. Specifically, the research highlighted the unique behavior of ionic
hydrogen bonds, where the corresponding interaction lines appear to be curved in the
vicinity of the hydrogen atoms. This work contributed to a deeper understanding of the
nature of hydrogen bonding in Schiff bases, shedding light on their structural and chemical
properties by using an analysis of the properties of the electron density [11,110]. As one
can notice, the Espinosa approach should be applied only for the specific hydrogen bonds
that are intermolecular interactions. This approach assumes a stabilizing character of the
hydrogen bond interactions (the value of the Vr is always negative), which is not always
true, especially in the case of intramolecular interactions [111]. This observation was also
raised by Gatti et al. [112], Nikolaienko et al. [113], and Kuznetsov [114]. Further works, for
example, by Mata et al. [115] showed that the coefficient applied to the relation between EHB
and Vr should be equal to 0.31 rather than 0.50. Also, other modifications to the Espinosa
equation were proposed. For example, Afonin et al. [116] proposed the following formula:

EHB = 0.277Vr − 0.45 (3)

Jablonski and Monaco [111] proposed a constant value of 3.4 kcal/mol added to the
EML equation while dealing with the C—H ··· O intramolecular hydrogen bond.

Another approach involves using X-ray crystallography to obtain experimental coor-
dinates and then employing theoretical methods to estimate interaction energies. The Pixel
method, initially developed by Gavezzotti [117–120], employs a semi-empirical approach
to represent molecules in a crystal structure using electron and nuclear density blocks di-
vided into small cubic volume elements known as pixels. The method calculates molecular
electron densities ab initio using Gaussian [121] at the MP2/6-31G** level of theory [122].
The electrostatic energy between molecules is then computed by applying Coulomb’s law
to pairs of pixels from each molecule and summing the values. The method has been
applied to various systems, including the quantitative investigation of synthons for crystal
engineering and the elucidation of intermolecular interactions and lattice energies for
polymorphs of 5-methyl-2-(2-nitro-phenyl)-amino-3-thio-phene-carbo-nitrile (ROY) at high
pressure [123]. The Pixel method is implemented in the Pixel-C module of the CLP-Pixel
package and is sensitive to H-atom positions, requiring “normalized” distances for accurate
results. The method has been compared to periodic density functional theory and is similar
in estimating sublimation enthalpies of organic solids but at a fraction of the computing
time [124]. Moreover, the Pixel method has been used to explain the effect of chemical
substitution on halogen bonding [125], identify the features of racemic and homochiral
polymorphs [126], and rationalize the metastable form of glycolide [127]. The method
is also used to calculate lattice energies and intermolecular interaction energies, and the
results of each calculation are stored in plain text files. The Pixel method is a valuable tool
for the screening of many molecular crystals and is generally applicable throughout the
periodic table, offering a cost-effective approach for predicting crystal polymorphism and
studying crystal growth processes. Recently, the MrPIXEL procedure was proposed [128]. It
enables Pixel calculations to be carried out with minimal user intervention from the graphi-
cal interface of Mercury [129], a software distributed with the Cambridge Structural Database
(CSD) [47]. The integration of MrPIXEL with the Mercury interface provides a user-friendly
and automated approach for conducting Pixel calculations, offering convenience and ease
of use for researchers working with crystallographic data. Furthermore, the CrystalEx-
plorer17.5 [88] software has a feature for calculating pairwise interaction energies within a
crystal. It allows for the visualization and analysis of crystal structures, providing insights
into intermolecular interactions, lattice energies, and molecular properties [130–133]. The
software has been utilized in diverse research areas, including the investigation and de-
scription of synthons for crystal engineering, the elucidation of intermolecular interactions
and lattice energies for polymorphs, and the identification of metastable forms of organic
compounds [134].
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Finally, experimental geometries obtained from diffraction studies can be optimized
in CRYSTAL software [87] within periodic DFT to analyze the electronic structure and
properties of crystalline materials. This method facilitates the exploration of various
phenomena, including lattice energies and crystal stability, and the prediction of crystal
structures. Periodic DFT calculations have been shown to be valuable in elucidating the
crystal structures of organic compounds, predicting phase stability, and understanding
the properties of molecular crystals. Additionally, periodic DFT calculations have been
employed to explore the energy landscape, investigate the freezing transition of vortex-line
liquids, and study the spectroscopic properties of materials. The non-empirical nature
of DFT allows for precise exploration of the energy landscape, making it a versatile and
powerful tool for understanding the properties and behavior of crystalline materials. This
approach is particularly significant and can serve as a cross-validation method.

7. Challenges

The recognition of the critical role of chemical engineering aspects in the development
of DAC technology has recently been highlighted [7]. The development of DAC systems is
complex, involving design, optimization, scale-up, manufacturing, and testing of efficient
air–solid or air–liquid contactors, crystallizers, and solid–liquid separator steps. Also, CO2
desorption processes are analyzed to minimize temperature requirements and maximize
the purity of the CO2 product. The economic feasibility and environmental impact of DAC
technologies are evaluated through rigorous technoeconomic and lifecycle analysis. Fur-
thermore, the large-scale deployment of crystalline organic materials for DAC applications
is limited. Therefore, understanding and improving the fundamental DAC chemistry is a
critical first step in the development of viable DAC technologies.

First, the determination of hydrogen atom positions and their anisotropic displacement
parameters (ADPs) in molecular and ionic systems is a significant challenge in X-ray
crystallography. This is particularly relevant in the context of molecular/ionic systems,
where the accurate determination of atomic positions is crucial for understanding the
structural and chemical properties of the system. Despite various proposed solutions to
determine accurate information about hydrogen atom positions and ADPs, there is still
a lack of systematic and statistical studies regarding the accuracy of determined H-atom
ADPs within quantum crystallography. Current studies have shown that accurate hydrogen
atom positions can be obtained using wavefunction-based methods [79,80]. However, it
has been highlighted that the determination of H-atom ADPs depends on the level of
theory used during wavefunction calculations. Including electron correlation effects is
necessary to avoid non-positive defined thermal parameters [76]. Moreover, it has been
shown that the distributions of the dynamic structure factors showing the effects of electron
correlation and treatment of H-atom ADPs have similar shapes [135], which supports the
observation made by Malaspina et al. [76]. In the context of data quality, it is essential to
ensure that the data used for these studies are of high quality and accurately represent
the experimental observations. Data quality and data quality assessment challenges have
been recognized in the context of the big data era. The continuous improvement of data
quality in crystallography has been identified as a challenging task, emphasizing the
importance of maintaining high data quality standards for scientific research. Accurate
determination of H-atom ADPs in crystallography is influenced by various experimental
errors such as X-ray absorption, extinction, sample decay, anharmonic vibrations of atoms,
and anomalous dispersion. These errors can lead to systematic errors in XRD data, affecting
the precision and accuracy of the results [136]. Although sophisticated XRD experiments,
data reduction, and electron density modeling are required to minimize these errors, there
remains a gap in crystallography regarding the influence of these experimental errors on
the accurate determination of H-atom ADPs. The discrepancy observed in the results of
X-ray absorption spectroscopy (XAS) and XRD highlights the need for further investigation
into the impact of experimental errors on the determination of ADPs of H atoms [137].
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Therefore, filling this gap is of great importance to ensure the reliability and accuracy of
crystallographic studies.

Secondly, special attention must be paid while dealing with the intermolecular inter-
action energies. As we have shown in Section 6, the EML approach for intermolecular
interactions has been discussed in the literature, and some studies have highlighted impor-
tant caveats associated with its use [138]. Although the EML relationship has been used to
calculate the interaction energies for various intermolecular interactions [139–141], there
are indications that this approach may not work as expected in certain cases. The EML rela-
tionship has been applied to estimate the interaction energies between molecules in ionic
systems, but there are instances in which the calculated energies differ significantly from
those predicted solely from net molecular charge [142]. Furthermore, the EML approach
may not provide a general relation between interaction energies and charge penetration
contributions to the exact electrostatic energies (resulting from EPMM), as observed by Ku-
mar et al. [142]. However, the relationship between EML energies and charge penetration
contributions has been noted as a significant observation, suggesting a quantitative link
between structural analysis and interactions based on whole molecular charge densities.
However, further investigations are necessary to fully understand the physics behind the
observed phenomenological relationship between EML energies and charge penetration.
Therefore, while the EML approach has been widely used to estimate interaction energies,
its limitations and the need for additional understanding of its applicability in different
contexts are evident from the literature. On the other hand, recent theoretical work has
shown that the ionic character of the molecules has no influence on the nature of the
hydrogen bond, as both neutral and ionic complexes exhibit similar electrostatic forces
in the hydrogen bond region. Additionally, energy decomposition methods indicate that
the hydrogen bond contribution to the dissociation profile resembles that of the neutral
complexes [143].

This suggests that more complex studies of ionic systems should be conducted, proba-
bly supported by the machine learning approach, as proposed by Bauer et al. [144]. Their
work presents machine learning models for hydrogen bond acceptor (HBA) and hydrogen
bond donor (HBD) strengths. Large and diverse training data generated by first-principles
interaction free energies were utilized to develop these models. This approach is significant
as it leverages machine learning to predict hydrogen bond strengths, offering potential
applications in various fields such as chemistry, biology, and solvation. The use of first-
principles interaction free energies as training data enhances the accuracy and reliability
of the machine learning models, providing valuable insights into the nature of hydrogen
bond interactions. This publication contributes to the advancement of predictive models for
hydrogen bond strengths, offering potential implications for understanding intermolecular
interactions and their impact on various chemical and biological processes.

The competition and reaction with atmospheric moisture significantly affect the perfor-
mance of physisorbents in DAC, underlining the crucial role of detailed structural studies
in understanding these interactions at the atomic level. DAC materials also pose several
challenges for diffraction studies. The limited-resolution data present a significant obstacle
to accurately characterizing these materials [145]. Optimizing solid-supported amine-based
materials for DAC requires a comprehensive understanding of their atomic and molecu-
lar structures to enhance their CO2 uptake and sorption kinetics at ambient temperature.
However, obtaining high-resolution and high-quality XRD data at this temperature can
be extremely challenging or even unfeasible, which is crucial for accurately estimating the
interaction energy from experimental data. Furthermore, the performance of quantum
crystallography in the context of ionic systems has not been entirely clear, indicating a need
for further research and development in this area. Investigating DAC materials not only is
challenging from the experimental point of view but also requires the use of sophisticated
crystallographic software. While significant progress has been made in this field recently,
there is still a gap in systematic studies for polymeric structures, ionic systems, and larger
complexes, especially under periodic conditions.
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8. Conclusions

In conclusion, DAC technology development involves complex chemical engineering
processes. The large-scale deployment of crystalline organic materials for DAC applica-
tions is limited, emphasizing the critical importance of understanding and improving the
fundamental DAC chemistry as a first step in developing viable DAC technologies.

In X-ray crystallography, accurately determining the positions and anisotropic dis-
placement parameters (ADPs) of hydrogen atoms is crucial for understanding the structural
and chemical properties of molecular and ionic systems. Although various solutions have
been proposed to determine accurate information about hydrogen atom positions and
ADPs, there is still a lack of systematic and statistical studies regarding the accuracy of
determined H-atom ADPs within quantum crystallography. The influence of experimental
errors such as X-ray absorption, extinction, sample decay, anharmonic vibrations of atoms,
and anomalous dispersion on the accurate determination of H-atom ADPs remains a gap
in crystallography, highlighting the need for further investigation to ensure the reliability
and accuracy of crystallographic studies.

The EML approach for intermolecular interactions has been discussed recently in the
literature, with some studies highlighting important caveats associated with its use [44,45].
Although the EML relationship has been used to calculate interaction energies for various
intermolecular interactions, there are indications that this approach may not work as
expected in some instances. The limitations of the EML approach and the need for an
additional understanding of its applicability in different contexts are evident from the
literature. Additionally, recent theoretical work has shown that the ionic character of
molecules has no influence on the nature of the hydrogen bond, emphasizing the need
for more complex studies of ionic systems, potentially supported by machine learning
approaches.

Moreover, the diffraction studies of DAC materials pose several challenges, including
limited resolution and the amount of diffraction data compared to the number of atoms
in the system, as well as competition and reaction with atmospheric moisture, which
significantly affect the performance of physisorbents in DAC. The effectiveness of solid-
supported amine-based materials for DAC requires a thorough understanding of their
atomic and molecular structures to optimize their CO2 uptake and sorption kinetics at
ambient temperature, highlighting the need for detailed structural studies to understand
these interactions at the atomic level.

In summary, the development of DAC technology, the accurate determination of
hydrogen atom positions and ADPs in crystallography, and the challenges of diffraction
studies of DAC materials all require further research and development to address the
existing gaps and limitations. These areas present opportunities to advance scientific
understanding and technological innovation, with potential implications for various fields
such as chemistry, biology, and environmental sustainability.
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Abbreviations

Abbreviation Description
ADPs Anisotropic Displacement Parameters
BCPs Bond Critical Points
BIGs Bis-iminoguanidines
CSD Cambridge Structural Database
DABIG Diacetyl bis(iminoguanidine)
DAC Direct Air Capture
DFT Density Functional Theory
DSC Differential Scanning Calorimetry
ELMOs Extremely Localized Molecular Orbitals
EML Espinosa–Molins–Lecomte approach
EPMM Exact Potential and Multipole Moments
FTIR Fourier Transform Infrared Spectroscopy
FuBIG 2,5-Furan-bis(iminoguanidine)
GBIG Glyoxal-bis(iminoguanidine) Compound
HAR Hirshfeld Atom Refinement
HBA Hydrogen Bond Acceptor
HBD Hydrogen Bond Donor
HBFs Hydrogen-Bonded Frameworks
IAM Independent Atom Model
m-BBIG Meta-benzene-bis(iminoguanidine)
MEA Monoethanolamine
MGBIG Methyl-glyoxal-bis(iminoguanidine)
MSDs Mean Square Displacements
NoMoRe Normal-Mode Refinement
P1 Phase 1 of the MGBIG
P2 Phase 2 of the MGBIG
P3 Phase 3 of the MGBIG
PyBIG 2,6-Pyridine-bis(iminoguanidine)
TAAM Transferable Atom Refinement
QC Quantum Crystallography
QTAIM Quantum Theory of Atoms in Molecules
TGA Thermogravimetric Analysis
XAS X-ray Absorption Spectroscopy
XRD X-ray Diffraction
XWR X-ray Wavefunction Refinement
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98. Kulik, M.; Goral, A.M.; Jasiński, M.; Dominiak, P.M.; Trylska, J. Electrostatic Interactions in Aminoglycoside-RNA Complexes.
Biophys. J. 2015, 108, 655–665. [CrossRef] [PubMed]

99. Budniak, U.A.; Karolak, N.K.; Kulik, M.; Młynarczyk, K.; Górna, M.W.; Dominiak, P.M. The Role of Electrostatic Interactions in
IFIT5-RNA Complexes Predicted by the UBDB+EPMM Method. J. Phys. Chem. B 2022, 126, 9152–9167. [CrossRef] [PubMed]

100. Yuan, Y.; Mills, M.J.L.; Popelier, P.L.A. Multipolar Electrostatics for Proteins: Atom–Atom Electrostatic Energies in Crambin. J.
Comput. Chem. 2014, 35, 343–359. [CrossRef] [PubMed]
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