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Abstract: Self-powered photodetectors have the advantages of high sensitivity, sustainability, and
small size and have become a research hotspot in advanced optoelectronic systems. However, the
low output photocurrent density seriously hinders the practical application of ferroelectric self-
powered photodetectors. Herein, the high-efficiency photoelectric detection performance of the
Bi1-xHoxFeO3 ferroelectric self-powered photodetector is realized by doping Ho. The responsivity
(R) and detectivity (D*) can reach 0.0159 A/W and 1.94 × 1011 Jones under monochromatic light with
a wavelength of 900 nm. Meanwhile, the R and D* can reach 0.022 A/W and 2.65 × 1011 Jones under
sunlight. These excellent photodetection performances are attributed to the high short-circuit current
density (Jsc). When the Ho content is 6%, the output photocurrent reaches up to 0.81 mA/cm2. The
systematic structure and photo-electric characteristic analysis suggest that the decrease in the band
gap leads to the generation of a larger photocurrent while the ferroelectric polarization is reduced
slightly. This work provides a new way to obtain high-performance self-powered photodetectors.

Keywords: ferroelectric; thin-film; photodetector; self-powered; band gap

1. Introduction

Photodetectors have the ability to detect incident light or optical power and con-
vert it into electrical signals, and they are widely used in communication, image sensing,
optoelectronic information processing, medicine, environmental detection, and military
fields [1–6]. Traditional photodetectors rely on an external power supply to realize their
optical detection behavior. However, the external field generally leads to high dark current,
a small switching ratio, large volume, and high energy consumption, which limits their
practical applications [7–9]. Therefore, self-powered photodetectors that can operate with-
out any external bias have effective application potential in future low energy consumption
optoelectronics [10–12].

Among all the photodetectors, ferroelectric photodetectors have become a hotspot for
their unique properties. Conventional photovoltaic semiconductor materials (p-n junction
or metal-semiconductor) drive photogenerated carrier separation through a built-in electric
field generated by the material, while ferroelectric photovoltaic materials are driven by the
polarization electric field generated by their own inherent spontaneous polarization [13–18].
In addition, ferroelectric materials have a stable photocurrent, photovoltage above the band
gap, small dark current, fast light response, and switchable photovoltaic output [19–22].
Recently, self-powered photodetectors based on ferroelectric materials, such as Pb(Zr,Ti)O3
(PZT) [23,24], BaTiO3 (BTO) [25,26], and BiFeO3 (BFO) [27,28], have been investigated.
However, one of the greatest challenges for ferroelectric materials to date has been the low
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photocurrent density, which limits the performance of photodetector. For instance, Gao
et al. deposited BFO thin film on Pt/Ti/SiO2/Si substrate using the sol-gel method and
obtained Jsc of 105 µA/cm2 under a 100 mW/cm2 light intensity [29]. Gupta et al. prepared
multiferroic (Ce, Mn) codoped BFO (BCFMO) thin films using the sol-gel method. Under
the light intensity of 160 mW/cm2 and the wavelength of 405 nm, they obtained a Jsc of
245 µA/cm2 [30]. Inoue et al. prepared Mn-doped BTO single crystals and obtained a Jsc
value of ~35 µA/cm2 at a light intensity of 2.2 mW/cm2 [31]. In fact, the photocurrent
of ferroelectric materials is closely related to light absorption and photogenerated carrier
separation [22,32]. The increase in ferroelectric polarization and the decrease in band gap
are two important ways to improve photoelectric performance, which have been reported
in many fields. Tian et al. found that Bi doping can enhance the ferroelectric properties of
the BTO thin films without changing the band gap, thus improving the photocurrent and
photoelectric detection performance [33]. Zhang et al. found that La doping can enhance
residual polarization (Pr) of the PZT thin films, which improves the photocurrent [34].
Cai et al. showed that doped Ti at BFO thin films produced impurity energy levels,
which reduced the band gap and increased the photocurrent density of the BFO thin
films [35]. Among the conventional ferroelectric materials, like BTO, PZT, and BFO, BFO is
the only single-phase material that has a low optical band gap (2.67 eV) and large remanent
polarization. Hence, it is more appropriate for the fabrication of Vis−NIR self-powered
photodetector [36]. In recent years, various photoelectric devices based on BFO have been
investigated for their photoelectric response behaviors. For instance, Qi et al. designed a
4 × 4 matrix photodetector array based on BFO, which greatly improved the photoelectric
detection performance [37]. Matsuo et al. report a “gap state” engineering method to
enhance the photocurrent and produce an enormous photodetection performance [38].
Wang et al. constructed a mesoporous all-oxide architecture, with BFO as a photosensitizer
and TiO2 as a charge transport layer. This structure greatly promotes the extraction of
photocarriers and achieves a high photovoltage [39]. These results indicate that BFO is the
potential material in photoelectric fields. Because BFO has a markable residual polarization
(Pr), it is relatively tricky to improve further, so it is an effective way to improve the
photocurrent by adjusting the band gap. In this work, we achieve high-performance light
detection by incorporating Ho elements in Bi sites of the BFO thin films, and the resulting
thin film has a relatively small band gap. We investigated the effects of doping on the
structure, ferroelectricity, bandgap, and photodetection performance of thin films.

2. Materials and Methods
2.1. Fabrication

In this study, Bi1-xHoxFeO3/La0.7Sr0.3MnO3 (xBHFO/LSMO, x = 0, 0.02, 0.04, 0.06,
0.08) heterojunction was prepared at 1 cm × 1 cm silicon base using sol-gel method.
LSMO bottom electrode was fabricated by sol-gel method. A certain amount of man-
ganese acetate (6157-78-1, Aladdin Industrial Corporation, Beijing, China), lanthanum
acetate (257212-92-0, Aladdin Industrial Corporation, Beijing, China), and strontium ac-
etate (543-94-2, Aladdin Industrial Corporation, Beijing, China) were added to the mixture
of acetic acid and deionized water, and then acetylacetone was added. The molar con-
centration of the precursor solution was modulated to 0.1 mol/L by adding acetic acid.
The precursor solution was heated at 80 ◦C for 2 h. A certain amount of bismuth nitrate
[Bi(NO)3·5H2O] (10035-06-0, Aladdin Industrial Corporation, Beijing, China), ferric nitrate
[Fe(NO)3·9H2O] (7782-61-8, Aladdin Industrial Corporation, Beijing, China), and holmium
nitrate [Ho(NO)3·5H2O] (14483-18-2, Aladdin Industrial Corporation, Beijing, China) were
dissolved in 2-methoxyethanol to obtain a xBHFO precursor solution. The molar concen-
tration of the precursor solution was modulated to 0.2 mol/L by adding 2-methoxyethanol.
The precursor solution was heated at 60 ◦C for 1 h. xBHFO and LSMO colloids were stirred
at room temperature for 5 h and then aged for 24 h to obtain transparent colloids. The
LSMO precursors were deposited on the Si substrates by using a spin coater with a spin
speed of 1000 rpm for 3 s and then at 5000 rpm for 30 s. The LSMO wet film was pyrolyzed
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at 150 ◦C and 400 ◦C and then annealed at 700 ◦C. The above heat treatment was repeated
5 times to obtain the LSMO film. The xBHFO (x = 0, 0.02, 0.04, 0.06, 0.08) precursors were
deposited on the LSMO thin film by using a spin coater with a spin speed of 1000 rpm
for 3 s and then at 3000 rpm for 30 s. The xBHFO wet film was pyrolyzed at 150 ◦C and
300 ◦C and then annealed at 550 ◦C. The above heat treatment was repeated 10 times to
obtain xBHFO/LSMO heterojunction thin film. All the above annealing was carried out in
an air atmosphere.

2.2. Device Preparation

In this work, the LSMO thin films simply conduct electricity. The LSMO colloid
was prepared by sol-gel method. The LSMO colloid was deposited on Si substrate by
spin-coated method to obtain LSMO wet film. The wet LSMO thin film was annealed to
obtain LSMO/Si thin film. The Bi1-xHoxFeO3 (xBHFO) colloid was prepared by sol-gel
method. The xBHFO wet film was obtained by depositing xBHFO on LSMO/Si thin film
via spin-coating method. Using a wet cotton swab, the xBHFO wet film on the edge was
wiped to expose the LSMO bottom electrode, and then the xBHFO/LSMO/Si film was
obtained by annealing. Finally, Au electrodes with an area of 0.00196 cm2 were deposited
on the surface of xBHFO thin film using sputtering method to form Au/xBHFO/LSMO/Si
photodetectors.

2.3. Characterization

The phase composition and structure of BFO film were analyzed by X-ray diffrac-
tometer (XRD, D8 Advance diffractometer, Bruker, Germany). The cross-section of BFO
films was characterized by scanning electron microscopy (SEM, FEI Quanta 200, FEG,
Beijing, China) to determine their stratification and thickness. The surface morphology
of the films was analyzed by atomic force microscopy (AFM, Bruker, Icon, Emmingke,
Tianjing, China). The domain structure of the thin films was analyzed by piezoelectric
force microscopy (PFM, Bruker, Icon). The phase and amplitude of the film were analyzed
by Kelvin probe microscope (KPFM, Bruker, Icon). Ferroelectric hysteresis loop (P-E) is
measured by ferroelectric tester (Radiant Technologies, Inc., Albuquerque, NM, USA) at
2000 Hz. The photoelectric performance was measured by electrometer (2410, Keithley,
Jianrong, Shanghai, China) and tunable color meter (TLS3-X75A-G, Zolix, NBeT, Beijing,
China) under simulated sunlight source (100 mW/cm2).

2.4. First Principle Methods

The calculations on density of states were performed using the CASTEP program
code based on the first-principles plane-wave pseudo-potential method. The generalized
gradient approximation (GGA) was adopted along with the exchange-correlation function
realized by Perdow-Burke-Emzerhof (PBE). The plane wave cutoff energy of 500 eV and
2 × 2 × 2 K-point Monkhorst-Pack grid were applied to guarantee a well-converged
structure under study. A 2a × 2b × c supercell was adopted for all the calculations.

3. Results

Figure 1a shows the X-ray diffraction (XRD) patterns of the xBHFO thin films, which
are deposited onto LSMO/Si substrates. All thin films possess a perovskite structure.
Diffraction peaks of the BFO thin film can be assigned to a rhombohedral structure with
an R3c space group. Figure 1b is the enlarged version of the XRD patterns in the vicinity
of 2θ = 32◦. The (104) and (110) reflections are obviously separate in the pure BFO. With
the increase in Ho content, the two split peaks (104)/(110) merge into one, indicating a
change in phase structure. By analyzing the XRD pattern, it was found that the XRD
diffraction pattern of the BFO thin film is consistent with the standard card PDF # 01-
075-9475, indicating that the BFO thin film has the rhombohedral R3c structure. The
XRD diffraction pattern of the 0.06BHFO thin film is consistent with the standard card
PDF # 01-077-8894, indicating that the 0.06BHFO thin film has the orthorhombic Pbnm
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structure. Therefore, Ho doping caused a structural transition of BFO thin films from the
rhombohedral R3c structure toward the orthorhombic Pbnm structure. This transformation
may result from the ionic radii difference between host ions (Bi3+~1.17 Å) and dopant ions
(Ho3+~1.015 Å). Similar rare earth Ho-doped BFO also showed a corresponding structural
transformation behavior [40].
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The cross-sectional scanning electron microscope (SEM) images of the 0.06BHFO and
the BFO thin films are shown in Figure 1c,d. The thickness of the BFO and the 0.06BHFO
thin films is 300 nm, and the thickness of the LSMO film is 50 nm. With the increase in Ho
content, the surface morphology of the thin film becomes smoother and denser. In addition,
compared with the grain size of BFO thin film, 0.06BHFO thin film has smaller grain sizes.
The reason for the decrease in grain size may be that the doping of Ho enhanced lattice
strain energy and improved sintering quality [41,42].

The schematic of the photodetector in this work is presented in Figure 2a, where
the area of the Au top electrode is 0.196 mm2. The Au/xBHFO/LSMO/Si device is
electrically poled under +80 V at room temperature. Figure 2b,c show time-dependent
short-circuit current (Jsc) and open-circuit voltage (Voc) of the xBHFO thin films under the
illumination of 100 mW/cm2. Obviously, the thin film exhibits a repeatable response to the
light illumination, and the Jsc and Voc have high stability. In addition, with the increase
in Ho content, Jsc and Voc present a change law of first increasing and then decreasing.
Simultaneously, Figure 2d,e shows the variation of Jsc and Voc with Ho content. Jsc and Voc
reach 0.81 mA/cm2 and 0.052 V in the 0.06BHFO thin film, which are almost quadruple
the Jsc and eightfold Voc of the BFO thin film. Therefore, the doping of Ho improves the
photovoltaic performances of the thin film. Figure 2f shows the external quantum efficiency
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(EQE) of 0.06BHFO thin film at different wavelengths. EQE is one of the main performance
indicators of photodetectors. Its value is the ratio of the number of collected electrons to
the number of incident photons. As shown in Figure 2f, when the wavelength is 900 nm,
the EQE value of 0.06 BHFO thin film is 1.61%. This indicates that light with a wavelength
of 900 nm has a certain excitation effect on the 0.06BHFO thin film; therefore, the 0.06BHFO
thin film will generate a certain photocurrent.
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To explore the origin of the enhanced photocurrent in the 0.06BHFO thin film, the prop-
erties related to the separation and transport of photogenerated carriers were investigated.
Figure 3 shows the ferroelectric hysteresis loops of two thin films at 2000 Hz. The residual
polarization (Pr) of the BFO thin film is 20.9 µC/cm2, while the Pr of the 0.06BHFO thin
film is 16.2 µC/cm2. Obviously, with the increase in Ho content, the ferroelectric property
decreases slightly, indicating that Ho doping at the BFO thin film causes a weak effect
on the ferroelectric property. The reduction in ferroelectric property may be attributed to
the fact that the smaller Ho ions cannot completely fill the blank space between the FeO6
skeleton, resulting in a slight buckling between the ferric oxide octahedrons.

To further verify the ferroelectric result, AFM surface topography and PFM measure-
ments were employed to analyze the domain structures of both thin films. The surface AFM
of the BFO and 0.06BHFO thin films is shown in Figure 4a,d. Smooth and dense surface
morphological features are observed in the BFO and 0.06BHFO thin films. Obviously, the
grain size of the 0.06BHFO thin film is smaller than that of the BFO thin film, in agreement
with the SEM result in Figure 1c,d. In addition, the grain and grain boundary could be dis-
tinguished clearly. Figure 4b,e show the OP PFM phase images of the BFO and 0.06BHFO
thin films. Two thin films exhibit an obvious domain structure. Compared with the BFO
thin film, the 0.06BHFO thin film has a smaller domain size, which may be attributed to the
decrease in the degree of order in Ho doping. Figure 4c,f show the relationship between
the OP phase and amplitude hysteresis loops of the BFO and 0.06BHFO thin films and the
DC voltage. The BFO thin film has a saturated phase loop and a larger value of amplitude
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than the 0.06BHFO thin film. These results imply that the BFO thin film possesses stronger
ferroelectric polarization. Therefore, it can be concluded that the addition of Ho slightly
reduces the ferroelectric polarization of the BFO thin film. However, the addition of Ho
also reduces the size of domains and grains. In general, the ferroelectric polarization is
not the reason for the change in the photovoltaic effect in the BFO thin film. Therefore, the
band gap may be the dominant factor.
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Figure 5a shows the UV-visible-NIR absorption spectra of the BFO and 0.06BHFO thin
films. Obviously, the light absorption intensity of the 0.06BHFO thin film is higher than
that of the BFO thin film. In addition, effective absorption is obtained in the infrared region,
indicating that the thin films have the capacity to absorb a considerable amount of near-
infrared light. In order to assess light absorption performance for the BFO and 0.06BHFO
thin films under the experimental condition, the optical Eg of the BFO and 0.06BHFO thin
films were estimated by using Tauc’s Law, as in the following equation [43,44]:

(ahv)2 = A
(
hv − Eg

)
(1)

where a is the absorption coefficient of the measured sample, A is a constant related to the
material, h is Planck constant, and v is light frequency, respectively. Figure 5b shows the
plot of (ahv)2 as a function of hv around the absorption edge for the BFO and 0.06BHFO
thin films. The Eg of BFO thin film is about 2.4 eV, which is in agreement with the previous
report [22]. With the increase in Ho content, the Eg is decreased, indicating that Ho doping
at the Bi site of the BFO thin film causes a strong effect on the Eg. Moreover, an absorption
peak appears in the 0.06BHFO thin film while the wavelength exceeds 850 nm (Figure 5c).
It is found that the 0.06BHFO thin film also has an absorption edge of 1.27 eV, indicating
that the 0.06BHFO thin film also has absorption in the near-infrared spectrum. Density
functional theory (DFT) based on first principles indicates that the energy band of BFO and
0.06BHFO thin films are different. Figure 5d,e is the total orbital projected electron density
of states for BFO and 0.06BHFO thin films. As shown in Figure 5e, a midgap state is created
between the valence band and conductive band due to the strong interaction between Ho
4f and O s in 0.06BHFO. The midgap state enables the 0.06BHFO thin film to respond to the
photons with lower energy (E1 and E2), as shown in Figure 5f. Particularly, the transition
with the energy (E2) expands the photoresponse range to the near-infrared light band.
Therefore, the energy band is the main reason for the variation of the photovoltaic effect in
the 0.06BHFO thin film.

The 0.06BHFO thin film is a potentially Pb-free ferroelectric material with high pho-
tocurrent density and relatively low bandgap, which is highly expected to be applied as a
self-powered photodetector. Hence, the photodetection performances of the 0.06BHFO were
characterized systematically under sunlight. Figure 6a is the Jsc of Au/0.06BHFO/LSMO/Si
device under illumination with various intensities under sunlight. The Jsc increases with
enhancing illumination intensity, which exhibits obvious intensity-dependent characters.
Response rate (R) and specific detectivity (D*) are two critical parameters used to judge
the performance of a photodetector. The R and D* are calculated by the following equa-
tion [45,46]:

R =
Ion−Ioff

Pin
(2)

D* =
R√

2qIoff/S
(3)

where Ion is the photocurrent, Ioff is the dark current, Pin is the light intensity, R is the
response rate, q is the elementary charge, and S is the electrode area. Figure 6b shows R
and D* of the 0.06BHFO photodetector under illumination with various intensities under
sunlight. The maximum R and D* are 0.022 A/W and 2.65 × 1011 Jones under 10 mW/cm2.
The response time refers to the time taken by the device to complete a photoelectric
conversion process, and the response time is divided into rising time (τr, the time taken
by the electrical signal from the peak value of 10% to 90%) and falling time (τd, the time
taken by the electrical signal from the peak value of 90% to 10%). Figure 6c shows that the
τr and τd of the 0.06BHFO photodetector are 0.6 ms and 9.5 ms, respectively. In addition,
Figure 6d summarizes the comparison of the performances between the BFO and 0.06BHFO
thin films. It is observed that the photodetection properties of the 0.06BHFO photodetector
are superior to those of the BFO photodetector. Figure 6e shows the photocurrent diagram
of 0.06BHFO thin film running under sunlight for 2000 s. Even in a long-running 2000 s
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process, Jsc is almost constant, exhibiting high stability. The inset shows the Jsc-T diagram
for the first 200 s of 0.06BHFO thin film. As shown in the inset, with the opening and closing
of light, the 0.06BHFO thin film exhibits a spontaneous and repeatable response, indicating
that the 0.06BHFO thin film exhibits switchable behavior. Moreover, the reliability of the
device is further investigated. The Jsc does not degrade after aging at room temperature for
more than 1 year (Figure 6f).
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Figure 5. (a) The UV-Vis-NIR absorption spectra of the BFO and 0.06BHFO thin films. (b) The
plot of (ahv)2 as a function of hv around the absorption edge for the BFO and 0.06BHFO thin films.
(c) 0.06BHFO thin film in the range of 1.2–2 eV (ahv)2 variation curve with hv. Total and orbital
projected electronic density of state of the (d) BFO and (e) 0.06BHFO thin films. (f) Band structure
model of 0.06BHFO thin film.

Figure 7a is the Jsc of the Au/0.06BHFO/LSMO/Si device with different illumination
intensities under near-infrared light (λ = 900 nm). Jsc increases with enhancing illumination
intensity. When the light intensity is 100 µW/cm2, the maximum Jsc is 1.18 µA/cm2. In
addition, the maximum R and D* are 0.0159 A/W and 1.94 × 1011 Jones under near-infrared
light, as shown in Figure 7b. Figure 7c shows the τr and τd of the 0.06BHFO photodetector
in near-infrared light. The τr and τd are about 16.1 and 20.9 ms, indicating a fast near-
infrared photodetector property. Figure 7d summarizes the performance comparison of
the BFO and 0.06BHFO thin films at 900 nm. The results show that the photodetection
performance of the 0.06BHFO photodetector is better than that of the BFO photodetec-
tor at a 900 nm wavelength. Table 1 summarizes the parameters of other self-powered
photodetectors from the literature. It is worth noting that the R and D* of the 0.06BHFO
photodetector are several orders of magnitude larger than those of traditional perovskite
ferroelectric photodetectors. Therefore, the 0.06BHFO-based self-powered photodetector,
as a large polarization, narrow band gap, and high-efficiency photodetector, will have great
application potential in optoelectronics.
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Figure 7. (a) Time-dependent Jsc of the 0.06BHFO photodetector under illumination with various
intensities under 900 nm wavelength. (b) R and D* of the 0.06BHFO photodetector versus illumina-
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Table 1. The comparison of the performance of self-powered photodetector based on the various materials.

Photodetector Light (nm) τr (ms) τd (ms) Responsivity
(A W−1)

Detectivity
(Jones) Ref.

Au/0.06BHFO/LSMO sunlight 0.6 9.5 0.022 2.65 × 1011 This work
Au/0.06BHFO/LSMO 900 16.1 20.9 0.0159 1.94 × 1011 This work

Au/BLFO/LNO sunlight 4.88 4.19 3.95 × 10−3 5.05 × 109 [22]
FTO/BFO-TU/C sunlight 4 × 103 4 × 103 2.85 × 10−6 4.06 × 107 [47]
Au/BZT-BCT/Pt sunlight - - 0.25 2.4 × 109 [48]

Pt/LFO/LNO/LAO sunlight 15 × 10−3 1 × 10−4 108 [49]
BiFeO3/NiO/RGO sunlight 16.01 11.79 0.24 × 10−3 3.67 × 1010 [50]

ZnO/PbS 900 - - 1.1 × 10−5 7.2 × 107 [51]
MAPb0.5Sn0.5I3 900 - - 0.514 1.49 × 1011 [52]

FTO/BFCO/NiO/Ag sunlight 0.23 0.38 9 × 10−6 6.74 × 106 [53]

4. Conclusions

In summary, Au/xBHFO/LSMO/Si photodetectors with different holmium content
were prepared using the sol-gel method. When the Ho content is 6%, the Jsc value is
0.81 mA/cm2, practically four times that of BFO, and the Voc value is 0.052 V, almost eight
times that of BFO. A large output photocurrent will inevitably lead to high-sensitivity
photoelectric detection. The Au/0.06BHFO/LSMO/Si photodetector has a maximum R
and D* of 0.022 A/W and 2.65 × 1011 Jones in single sunlight, respectively. Meanwhile,
the maximum R and D* are 0.0159 A/W and 1.94 × 1011 Jones in the near-infrared band
(900 nm), respectively. Compared with pure Au/BFO/LSMO/Si devices, the performance
of Au/0.06BHFO/LSMO/Si devices has been dramatically improved. The results show
that high responsivity, significant detectivity, and fast response time from near-infrared
were achieved in the BFO thin film photodetectors via Ho doping. This work provides a
strategy for developing high-performance ferroelectric photodetectors.
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