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Abstract: High-entropy alloys (HEAs) have been attracting growing interest for decades due to their
unique properties. Electrodeposition provides a low-cost and convenient route for producing classi-
fied types of HEAs, compared to other synthesis techniques, making it an attention-grabbing method.
However, fabricating high-quality HEAs through electrodeposition in aqueous electrolytes remains
a great challenge. In this study, the effects of additives and current densities on the compositions,
surface morphologies, microstructures, and corrosion behavior of the electrodeposited NiFeCoCu
alloy are studied. The results indicate that saccharin plays a key role in achieving a flat and bright
surface for NiFeCoCu coatings, while also relieving the internal stress and improving anti-corrosion
properties. Electrodeposition under a current density of 20–40 mA/cm2 results in a uniform and
dense deposit with favorable properties. The present work provides a low-cost and feasible industrial
solution for the preparation of HEA coatings, which holds great potential for innovation in the field
of HEA coatings through electrodeposition.

Keywords: electrodeposition; high-entropy alloys; coatings; corrosion; microstructure

1. Introduction

High-entropy alloys (HEAs) were first proposed by Cantor et al. [1] and Yeh et al. [2],
which have been characterized by a large configuration entropy (usually ∆S > 1.5 R).
HEAs usually consist of four or more elements, which have profoundly higher mixing
entropies than conventional alloys [3]. HEAs have attracted worldwide attention from
scientific researchers to technological engineers since they possess excellent mechanical
properties, such as high hardness, strength, and ductility [4–8], good wear resistance [9], and
excellent corrosion resistance [10–15]. HEAs also have promising functional applications,
such as electrical devices [16] and electrocatalysis [17,18], and energy transformation and
storage [19,20].

MCA coatings with the enhanced corrosion resistance have received significant at-
tention from surface-engineering workers due to the combination of good mechanical
properties and corrosion protection [21,22]. Several studies indicate that MCA coatings can
provide satisfactory protection for ships and ocean engineering, especially in harsh marine
environments [23]. There are different methodologies that have been developed for the
successful synthesis of MCA coatings, such as laser remelting [24,25], magnetron sputter-
ing [26], laser cladding [27], thermal spraying [28,29], electrochemical reduction of oxides
in molten salts [30], mechanical alloying [4], hydrogen reduction of oxide powers [31], and
electrochemical deposition [32–34]. All these techniques, except for electrodeposition, are
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labeled as having a high equipment cost, having relatively high operating temperatures
and energy consumption, and presenting difficulty in controlling the coating morphology
and composition. On the other hand, electrodeposition offers a relatively lower equip-
ment intensity and can provide great convenience for obtaining different MCA coating
microstructures by selecting different deposition parameters, including the current density,
applied voltage, temperature, pH, and deposition time [35]. Therefore, many studies have
been carried out to investigate the relationship between the microstructure-properties of
different multi-component element-containing solutions with the purpose of optimizing
the operation parameters [36,37]. Some studies have focused on the synthesis of MCA
coatings from ionic liquids or organic solutions [10,37,38]. Although ionic liquids have
the advantage of little hydrogen-gas formation during electrodeposition, their higher cost,
compared to aqueous solutions, limits their applications [39].

Therefore, a large amount of work has been conducted to deposit MCA coatings
in aqueous baths. Pavithra et al. [40] deposited the FeCoNiCuZn MCA coatings with
graphene oxides (GO) as reinforcements and found tunable magnetic properties with the
content of GO. Aliyu et al. [41] synthesized and compared the structures and corrosion
properties of MnFeCoNiCu MCA coatings with and without GO, and their results sug-
gested that the incorporation of GO could effectively increase the anti-corrosion properties.
Haché et al. proposed a theoretical strategy for the fabrication of electrodeposited HEAs
with sufficient quality and applied it to NiFeCoW and NiFeCoMo alloys [42]. However,
electrodeposition of multi-elements in an aqueous bath is still challenging because of the
tremendous difference between metal-ion reduction potentials [34], and the challenge in
the fabrication of five or more element alloys with high quality from an aqueous electrolyte.
Furthermore, the complexity of the electrolyte solution and the different combinations
of deposition parameters also make it a difficult task to successfully deposit the MCA
coatings, and the thickness of the MCA coatings is usually around a few microns [43,44].
In addition, there are a limited number of studies on electrodeposited MCAs, compared
to traditional fabrication methods [45,46], and it is widely believed that the current inten-
sity would greatly affect the microstructures and properties of electro-deposited coatings.
In the present study, because of its anticorrosion and magnetic properties, a NiFeCoCu
MCA was selected as a model system for its potential applications in functional materials
and devices [47,48]. We investigated the effect of additives and current densities on the
morphologies, compositions, and microstructures of deposited MCAs, and the corrosion
resistance of MCA coatings was also studied in detail. In addition, saccharin, as one of the
commonly used green additives, has been employed as an effective stress reliever and grain
refiner in the traditional electrodeposition, such as nickel and chrome plating for attaining a
dense and crack-free deposits [49,50]. However, to date, there is no research in the literature
concerning the effect of saccharin addition on electrodepositing MCA coatings. Therefore,
the effect of saccharin content was also investigated in this work.

In the study, NiCoFeCu MCA coatings were directly deposited from sulfide solu-
tions with or without the saccharin addition by the direct current deposition, and the
microstructural evolution, surface morphologies, and corrosion resistance of the NiCoFeCu
MCA coatings were studied systematically with varied concentrations of the saccharin and
applied current density. The effect of the current density and saccharin addition on the
microstructures and properties of MCA coatings was investigated, and the results provide
a highly cost-effective and realizable industrial solution for preparing MCA protective
coatings [51].

2. Materials and Methods
2.1. Materials

A sulfate electrolyte with varying amounts of saccharin additions was used, which
contained boric acid as a buffering agent and sodium citrate as a complexing agent. All
chemicals were of an analytical grade and purchased from the Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). The detailed information about the electrolyte can be found in
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Table 1. The aqueous electrolyte for electrodeposition was prepared, using the deionized
water, and the pH was adjusted to 4.5 by adding a dilute sulfuric acid. The detailed solution-
preparation procedure is as follows: Begin by dissolving sodium citrate in deionized water
at a temperature of 50 ◦C, and then introduce nickel sulfate, followed by cobalt sulfate
and copper sulfate, in precise succession. Stir this solution for a duration of 5 h, after
which it was gently cooled down to ambient room temperature. Given the susceptibility
of iron sulfate to oxidation, it is prudent to employ a separate receptacle. Introduce
ascorbic acid and iron sulfate, meticulously stirring until a uniform dissolution is achieved.
Subsequently, merge this solution of ferric sulfate with the one from the initial beaker.
Maintain the process under the influence of magnetic stirring for another 5 h. During
the electro-deposition, the current densities were varied from 20 to 60 mA/cm2 to study
their effect on the microstructures and properties of the HEA coatings. Pure copper
sheets (20.0 mm × 10.0 mm × 1.0 mm) were used as substrate materials. The substrates
were mechanically polished with SiC abrasive papers up to 1200# grade, washed, and
cleaned with acetone, and then activated in a 12 weight percent (wt.%) hydrochloric
acid solution to obtain a suitable surface condition for electrodeposition. A graphite
electrode, 40 mm × 40 mm, was used as an auxiliary anode. All samples were deposited
for 60 min, followed by ultrasonic cleaning in distilled water and kept in a drying oven.
To facilitate readability and simplicity, e.g., “FeCoCuNi-saccharin 1 g/L–20 mA/cm2” (the
FCCN deposit was processed with 1 g/L saccharin electrolyte under a current density of
20 mA/cm2) is abbreviated as “1g T-20mA”.

Table 1. Compositions of the electrolytes and electrodeposition conditions.

Bath Ingredients FCCN-0g T FCCN-xg T (x = 0.5, 1, 2, 4 g/L Saccharin)

Ferrous sulfate·7H2O (g/L) 8.34 8.34
Nickel sulphate·6H2O (g/L) 131.43 131.43
Cobalt sulfate·6H2O (g/L) 14.05 14.05
Cupric sulfate·5H2O (g/L) 4.00 4.00

Boric acid (g/L) 29.66 29.66
Trisodium Citrate (g/L) 44.00 44.00
Plating temperature (◦C) 35 35

Bath volume (mL) 300 300
Bath pH 4.5 4.5

Plating time (minutes) 60 60
Under continuous agitation (rpm) 250 250

Saccharin addition (g/L) None 0.5, 1, 2, 4, respectively
Current density (mA/cm2) 20, 40 10, 20, 30, 40, 60

2.2. The Electrochemical Measurements

A CHI 660E workstation was used to perform the electrochemical measurements at
room temperature. The cyclic voltammetry (CV) measurements for the deposition process
of the HEA were conducted using a three-electrode setup. The glassy carbon served as
the working electrode, while a platinum plate (10 mm × 10 mm) and a saturated calomel
electrode were used as the auxiliary and reference electrodes, respectively. All potentials
mentioned in the study were referenced to the saturated calomel electrode. The CV experi-
ments were performed in a range of 400 mV to −1100 mV with a scan rate of 30 mV/s, using
a 50 mL solution at room temperature. The corrosion behavior analysis of the HEA coatings
was performed in a three-electrode cell, using the saturated calomel electrode and platinum
foil as the reference and counter electrodes, respectively. The potentiodynamic polarization
and electrochemical impedance spectroscopy (EIS) measurements were conducted in a
3.5 wt.% sodium chloride solution at 25 ◦C. Prior to the tests, the samples were immersed
in the chloride solution for 30 min until they reached a stable open circuit potential (Eocp).
The polarization curves were measured from −0.6 V to 0.1 V with a scanning speed of
1 mV/s, while the EIS data were recorded using a frequency range of 0.01 Hz to 100 kHz
with an amplitude of 15 mV. The potentials mentioned in the potentiodynamic polarization
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and EIS tests were referenced to saturated calomel electrode. The corrosion-current density
for the HEA coatings can be determined, employing the Tafel extrapolation formula [52].
Each electrodeposition experiment was repeated three times to ensure result repeatability
for cyclic voltammetry, as well as polarization curves and impedance tests.

2.3. Microstructural Characterization

The surface morphologies of the HEA coatings were observed by a JOEL-7500F scan-
ning electron microscope (SEM) operating at an accelerating voltage of 5 kV. The com-
positions of the HEA coatings were determined by an Oxford Energy Dispersive X-ray
Spectrometer (EDS) attached to the JOEL-7500F.

The phase structures of the HEA coatings were detected and analyzed using an
X-ray diffraction technique (XRD) on a RIGAKU SmartLab with Cu Kα radiation. The
operating voltage was 30 kV, and the beam current was 30 mA. The diffraction patterns of
specimens were recorded from 30◦ to 100◦, and the Scherrer equation was used to estimate
the crystallite sizes of different HEA coatings [53].

D = kλ/βcosθ (1)

where D denotes the average grain size of the coatings, k represents the Scherrer constant
(0.94), λ is the X-ray wavelength of the Cu-Kα line (0.154056 nm), and β is the peak width
at a half maximum of the diffraction angle, 2θ.

The relative texture coefficients (RTC) for different HEA coatings were estimated by
the following formula [38]:

RTC(hkl) =
I(hkl)/I0(hkl)

∑ I(hkl)/I0(hkl)
(2)

where I0 (h k l) is the intensity of an untextured nickel powder (JCPDF No. 04-0850), and I
(h k l) is the intensity of the (h k l) plane of HEA coatings.

3. Results
3.1. The Cyclic Voltammograms of HEA Coatings

Figure 1 shows the cyclic voltammograms acquired, using an electrolyte previously
described, with a sweep potential rate of 20 mV/s. The cyclic voltammetry exhibits a
similar profile, characterized by the presence of a cathodic peak associated with metal-ion
deposition and an anodic peak related to the dissolution of HEA coatings, respectively.
Figure 1b is an enlarged part of Figure 1a, where it can be observed that with an increase
in the saccharin content, the reduction current peak in the cyclic voltammogram becomes
more pronounced. The sample with a saccharin content of 1 g/L exhibits the highest
reduction current. As a result, the specific loading of 1 g/L saccharin has been thoroughly
investigated, and the obtained results will be presented subsequently.
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3.2. The Morphologies and Microstructures of HEA Coatings

The SEM images of the surface morphologies of HEA coatings are depicted in Figure 2.
It is evident that the surface morphologies are heavily influenced by the content of saccharin.
The HEA coating deposited without the addition of saccharin shows a markedly rough
and uneven surface, characterized by the distribution of many colonies assembled by
numerous near-spherical particles, as presented in a magnified image shown in Figure 2b.
The samples with saccharin all exhibit a smooth surface, with a noticeable reduction in
roughness. Additionally, no obvious defects, such as cracks, pinholes, or pores, were
observed. From the SEM observation, it can be seen that when the addition of saccharin
exceeds 1 g/L, there is not much change in the surface morphologies, which are mainly
composed of granular grains, with nodules spanning from tens to hundreds of micrometers
in size.
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Figure 2. Surface morphologies of (a,b) FCCN-0g T, (c) FCCN-0.5g T, (d) FCCN-1g T, (e) FCCN-2g T,
and (f) FCCN-4g T coatings electrodeposited with 20 mA/cm2 for 60 min, and a photograph with a
magnification of X2000 is inserted in the upper right corner of each image.

The EDS spectra of FCCN-0g T-20mA, as shown in Figure 3, clearly indicates that the
cauliflower-shaped colonies predominantly consist of the Cu element, while the matrix
exhibits a much lower Cu content along with an abundance of other alloying elements.
Furthermore, visible cracks can be observed in the FCCN-0g T-20mA coating, which can be
attributed to the accumulation of the internal stress [54] and have detrimental effects on
the mechanical and anti-corrosion properties of the HEA coating.
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3.3. The Phase Constitutes of HEA Coatings

To investigate the impact of the current density on the compositions and microstruc-
tures of HEA coatings, the FCCN-1g T electrolyte (with 1 g/L saccharin) was selected, and
electrodeposition was conducted at various current densities for 60 min. The XRD patterns
of the HEA coatings deposited from the sulfate bath without the saccharin additive are also
depicted in Figure 4. All the patterns of the HEA coatings exhibit a typical FCC structure,
displaying characteristic peaks corresponding to the (1 1 1), (2 0 0), (2 2 0), (3 1 1), and
(2 2 2) planes, with the diffraction angles of approximately 44.5◦, 51.8◦, 76.4◦, 93.0◦, and
98.4◦, respectively.
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3.4. The Morphologies and Microstructures of FCCN-1g T Coatings Deposited at Various
Current Densities

Figure 5 shows the typical scanning electron micrographs of FCCN-1g T coatings
that were deposited at varying current densities. All the HEA coatings exhibit a relatively
smooth surface morphology characterized by nodular structures of different sizes. The
surfaces of the HEA coatings appear to be compact and free of cracks or pits, suggesting a
more uniform distribution of the electric field during the crystal growth process with the
addition of saccharin. Furthermore, as the current density increases, the surface roughness
of HEA coatings becomes more pronounced, resulting in an uneven distribution of the
nodular grains. For instance, in the case of the HEA coating deposited at 40 mA/cm2, the
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small nodular grains have a size of approximately 5 µm, while the larger nodular grains can
reach up to 40 µm. This disparity in grain size seems to be a consequence of the increasing
deposition rate of metal ions attributed to the higher current density.
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respectively.

The surface EDS mappings in Figure 6 display the homogeneous distribution of Co,
Fe, Ni, and Cu elements in the FCCN-1g T-20mA coatings, which suggests that electrode-
position can be considered as a practical technique for preparing HEA materials with a
uniformly distributed structure. The elemental contents of FCCN coatings are presented
in Table 2, demonstrating that the coatings comprise the four elements in approximately
equimolar ratios.
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Table 2. The elemental contents of FCCN coatings without and with 1 g/L saccharin addition.

Element (at. %)\Sample 0g T-20mA 0g T-40mA 1g T-10mA 1g T-20mA 1g T-30mA 1g T-40mA 1g T-60mA

Ni 42.61 38.15 31.32 28.31 36.81 32.52 54.71
Co 28.12 32.38 34.95 32.32 33.09 33.36 23.96
Fe 18.25 21.26 12.17 16.25 16.16 14.67 10.02
Cu 11.02 8.21 21.56 23.12 13.94 19.45 11.31
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4. Discussion
4.1. Effect of Saccharin on the Cyclic Voltammograms

Saccharin is a commonly used green electroplating additive widely employed in nickel,
chromium, and copper plating [50]. It has the effect of refining the grain sizes and reducing
the internal stress of the deposits. From the cyclic voltammetry curve, compared with the
solution without saccharin, the addition of saccharin leads to a noticeable cathodic peak in
the reduction current during the negative voltage scan, which can be attributed to the co-
deposition of multi-metal ions. Similar cyclic voltammograms have been reported for nickel
deposition [55]. The occurrence of current loops forming upon reverse scanning towards
the positive direction near a voltage of about −1.0 V indicates the nucleation and growth
mechanism for metal-ion depositions [56]. As a result, the co-deposition of multi-metal
ions in the electrolyte solution follows the classical nucleation–growth mechanism [49].
The reduction peaks associated with the mechanism of metal-ion deposition are of vital
importance. The reduction peak positions in the cyclic voltammograms with different
saccharin additions are located near a voltage of 0.6 V, and it should be noted that the cyclic
voltammogram without saccharin exhibits the smallest reduction current, implying the
accelerating effect of saccharin on the deposition of a multi-metal ion solution. It is noted
that when saccharin is added beyond a certain amount (>2 g/L), the current becomes less.
Although saccharin could weaken the anomalous co-deposition of the FeCoNi alloy, slightly
increasing the deposition rate and efficiency, excessive saccharin concentrations may result
in a weakening of cathodic polarization, ultimately reducing the reduction current [57,58].
Hence, a comprehensive investigation of electro-depositions has been conducted on the
electrolyte containing 1 g/L saccharin, and the subsequent results will now be presented.

4.2. Effect of Saccharin on the Morphologies and Microstructures

During electrodeposition, saccharin in the solution can act as a leveling and brighten-
ing agent [50]. From a microscopic perspective, the cathode surface is not perfectly flat. The
protruding region of the growing front on the cathode during electrodeposition has a higher
electric field strength, resulting in a greater current density and preferential reduction of
metal ions. Consequently, the Cu2+ ions with the lowest standard reduction potential
were preferentially deposited, thereby forming the cauliflower-like structure, as shown in
Figure 1a. Conversely, the HEA coatings deposited exhibit a considerably smoother and
even appearance with saccharin addition. FCCN-0.5g T demonstrates a nodular surface
morphology, with nodules having an average size of approximately 100–300 µm, which
can be attributed to the adsorption of saccharin molecules on the active sites of the cathode.
The adsorption of saccharin molecules on the cathode could reduce the growth rate by
impeding the surface diffusion of ions [59], resulting in the uniform deposition and distri-
bution of various alloying elements. With the addition of saccharin, the composition of the
HEA becomes more uniform, with smaller differences in molar fractions among the four
elements, compared to that of FCCN-0g T, as shown in Table 2. In addition, by increasing
the saccharin content, the surface morphologies of the HEA coatings become flatter and
more even.

The results of X-ray diffraction indicate that all the FCCN coatings exhibit a typical FCC
structure without other phase constituents, because all of the diffraction peaks observed can
be correlated to the powder diffraction peaks of nickel (PDF Card No. 04-0850, as shown in
Figure 4). It is noteworthy that there is a slight angular deviation between the diffraction
peaks of the FCCN deposits and those of standard nickel. This deviation is caused by the
slight difference in the lattice constant of the high-entropy alloy solid solution and that
of nickel. The grain sizes and RTCs (relative texture coefficients) of the HEA coatings are
tabulated in Table 3. It can be observed that the addition of saccharin results in a decrease
in the grain sizes of the HEA coatings, with the FCCN-1g T-20mA sample exhibiting the
smallest grain size of 18.4 nm. This trend indicates the grain refinement effect of saccharin,
which aligns with previous reports [50]. The FCCN-0g T samples electrodeposited at 20
and 40 mA/cm2 exhibit a pronounced texture of a (1 0 0) orientation. However, with the
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addition of saccharin, the texture of the HEA coatings gradually shifts towards the (2 0 0)
orientation, and the addition of saccharin could function as an inhibitor of (1 0 0) growth
for the HEA, providing more nucleation sites, and leading to grain refinement.

Table 3. The grain size and relative texture coefficients (RTC) of the coatings.

Sample ID Grain Size (111)
nm

Grain Size (200)
nm RTC111 RTC200 RTC220 RTC311

1g T-10mA 20.6 17.1 0.451 0.125 0.087 0.155
1g T-20mA 19.3 15.8 0.412 0.144 0.096 0.101
1g T-30mA 19.3 17.2 0.545 0.204 0.086 0.166
1g T-40mA 18.4 14.8 0.521 0.134 0.069 0.104
1g T-60mA 20.1 15.5 0.644 0.205 0.074 0.077
0g T-20mA 23.4 19.8 0.316 0.215 0.251 0.265
0g T-40mA 21.1 18.6 0.226 0.131 0.339 0.305

4.3. Effect of Current Density on the Morphologies, Compositions, and Microstructures of
FCCN-1g T Coatings

The current density is one of the important parameters in the electrodeposition pro-
cess [51]. To investigate the impact of the current density on the compositions and mi-
crostructures of HEA coatings, the FCCN-1g T was investigated as a model system to find
out the effect of the current density on morphologies, compositions, and microstructures.

As the current density increases, the surface roughness of FCCN-1g T coatings becomes
more pronounced, resulting in an uneven distribution of the nodular grains (Figure 5).
For instance, in the case of the HEA coating deposited at 40 mA/cm2, the small nodular
grains have a size of approximately 5 µm, while the larger nodular grains can reach up to
40 µm. This disparity in grain size seems to be a consequence of increasing the deposition
rate of metal ions attributed to a higher current density. Moreover, the intensity of RTC111
decreases while that of RTC200 increases as the current density increases. These changes
suggest a preference for metal ions to selectively deposit on (2 0 0) crystal planes under a
higher current density. A similar result has been observed in electrodeposited copper [60],
where metal ions tend to preferentially deposit on (1 1 1) planes and grow along the <1 1 1>
direction to minimize the total surface energy.

Although the standard reduction potentials of the four elements (Ni = 0.25 V, Fe = 0.44 V,
Co = 0.28 V, and Cu = 0.34 V) varied considerably, with the Cu element in particular having
the highest standard reduction potential, the EDS results indicated that the four elements
could be successfully co-deposited to produce a uniform high-entropy alloy coating. At
lower current densities (10–20 mA/cm2), the molar fractions among the four elements are
closer to each other. However, as the current density increases, the copper content decreases
while the nickel content increases noticeably, which is similar to the previous report [61].
The alterations in the cobalt and iron contents exhibit less significant variations in response
to changes in current densities, indicating that an equimolar fraction of HEAs could be
derived by adjusting the current densities. Consequently, electrodeposition emerges as a
practical technique for preparing HEA materials with uniformly distributed structures and
controllable compositions.

4.4. Corrosion Properties of the FCCN-1g T Coatings

The results of the polarization tests for the FCCN coatings conducted in a 3.5 wt.%
sodium chloride solution are presented in Figure 7. The critical parameters obtained
through the Tafel tests, namely the open circuit potential (Ecorr), corrosion current density
(icorr), and Tafel slopes (βa and βc), have been determined by the Tafel extrapolation
method [52]. It is known that icorr represents the corrosion rate and durability of coatings
under similar corrosive environments, making it a useful parameter for comparing the
anti-corrosion properties of different FCCN coatings. Compared to FCCN-0g T-20mA,
which has the highest values of icorr and a negative Ecorr of −0.397 V, the Ecorr value of
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FCCN-1g T coatings noticeably decreases, and the Ecorr value shifts towards a more positive
direction with the introduction of saccharin. The icorr value of the FCCN-1g T coating is
approximately one order of magnitude lower than that of the FCCN-0g T deposit, indicating
a remarkable improvement in protective properties. This trend confirms the comprehensive
beneficial effect resulting from the formation of dense, homogeneous coatings with the
incorporation of saccharin.
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Figure 8 illustrates the Electrochemical Impedance Spectroscopy (EIS) results of FCCN-
1g T coatings immersed in a 3.5 wt.% NaCl solution with a frequency range of 0.01 Hz
to 100 kHz. The Nyquist plots exhibit depressed semicircles of varying sizes, suggesting
that all FCCN-1g T coatings display a similar corrosion mechanism within this frequency
range. Notably, the impedance-arc sizes of the FCCN-1g T-20mA and FCCN-1g T-60mA
coatings are obviously larger than the others, indicating better anti-corrosion properties
in the 3.5 wt.% NaCl solution compared to other samples. These EIS results align with
the findings of previous Tafel polarization studies. To gain a better understanding of the
corrosion mechanism at the open circuit potential, the EIS data were fitted to an electrical
equivalent circuit (EEC), as shown in Figure 8c, which is characterized by two time constants
that correspond to two close capacitive loops. Because of the dispersing effect of capacitive
loops, the electrode is not a pure capacitor, and a constant-phase element (CPE) is used to
replace the ideal capacitor on the surface, which can be defined as follows:

ZCPE =
1

Q(jω)n (3)

where j denotes the imaginary unit, Q represents the CPE constant, n is an empirical
constant with values from 0 to 1, and ω represents the frequency. Therefore, the EEC
includes the following: non-ideal coating capacitance (CPE1), double-layer capacitance
(CPE2), charge transfer resistance (Rct), coating resistance (Rcoat), and solution resistance
(Rs). The analysis of the EEC parameters was carried out, using the ZVIEW software [62],
and the values of these parameters in the EEC are presented in Table 4, suggesting that
the FCCN-1g T coatings with saccharin addition of 1 g/L demonstrate better corrosion
resistance compared to the one without saccharin addition, which is aligned with the
impedance loops shown in Figure 8a,b. The aggressive ions in the solution, e.g., Cl−,
would attack the passivation film, resulting in a decrease in impedance value [63]. It is
known that a higher Rct and lower electron transfer value are correlated to higher corrosion
resistance [41]. Specifically, the FCCN-1g T-20mA coating demonstrates the lowest icorr
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value of 0.34 µA/cm2 and the highest charge transfer resistance of 48,170 Ωcm2, indicating
that the passive film formed on the HEA surface was denser and provided higher protective
performance. However, a further increase in the deposition current density leads to a
decline in corrosion resistance with the formation of increasingly uneven microstructures.
Interestingly, when the deposition current density is increased to 60 mA/cm2, the icorr
decreases to 0.46 µA/cm2, and Rct increases up to 39,170 Ωcm2, suggesting an improvement
in corrosion-resistant properties for FCCN-1g T-60mA, compared to those of FCCN-1g
T-30mA and FCCN-1g T-40mA. This phenomenon could be attributed to changes in the
composition of the FCCN-1g T at higher current densities. As the current density increases,
the nickel content rises to 50%, while the iron content decreases to its minimum among all
samples. Since the iron element exhibits a lower corrosion potential, compared to other
elements, the FCCN-1g T sample deposited at 60 mA/cm2 demonstrates a partial recovery
in its anti-corrosion property.
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Table 4. Values of corrosion parameters determined from polarization curves and fitting of impedance
spectra using the equivalent circuit proposed in Figure 8c.

Sample Ecorr (V) icorr
(µA/cm2) βa (V/dec) βc (V/dec) CPE1

(µFcm−2)
CPE2

(µFcm−2) Rct (Ωcm2)

0g T-20mA −0.397 9.52 0.1612 0.1385 50.2 15.2 3245
1g T-10mA −0.201 2.23 0.1357 0.1493 10.3 7.8 12,600
1g T-20mA −0.245 0.41 0.1198 0.1217 5.1 3.4 48,170
1g T-30mA −0.117 1.31 0.1305 0.1610 8.6 6.8 29,065
1g T-40mA −0.223 0.88 0.0992 0.1151 17.2 8.6 35,632
1g T-60mA −0.229 0.46 0.1350 0.1079 18.5 14.1 39,170

Corrosion resistance is one of the crucial performance indicators for electrodeposited
HEA coatings used for a protective purpose. Previous studies have usually employed
the addition of inert reinforcing agents, such as a graphene oxide (GO) [41] and carbon
nanotubes [64], to enhance the stability of the HEA matrix and improve its corrosion
resistance. These inert reinforcement phases aid in the formation of stable oxide layers on
the surface of the HEA coatings, thereby hindering the diffusion of ions and significantly
enhancing their corrosion resistance, often by an order of magnitude, compared to the
HEA coatings without such reinforcement. In addition, Michel et al. [42] propose an
alternative approach for the development of high-quality MoW-containing HEAs through
electrodeposition from an aqueous solution, but primarily with an amorphous structure.
However, in the present study, we demonstrate remarkable improvements in the structure
and corrosion resistance of HEA coatings by simply adjusting the concentration of the
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economical saccharin and current density during the electrodeposition process. This
promising pathway highlights the potential of electrodeposition from aqueous solutions
for high-quality HEA systems. Future research can focus on further optimizing process
parameters and incorporating reinforcing agents into the electrolyte system to achieve even
better overall performance.

5. Conclusions

In this study, we explored the influence of additives and current densities on the
compositions, surface morphologies, microstructures, and corrosion behavior of the elec-
trodeposited NiFeCoCu alloy coatings. The primary findings are summarized as follows:

1. The study demonstrates the crucial role of saccharin in achieving a smooth and
lustrous surface for NiFeCoCu coatings, while also alleviating the internal stress and
enhancing their corrosion resistances.

2. Notably, electrodeposition performed at a current density ranging from 20 to 40 mA/cm2

yielded a homogeneous and compact coating with favorable anticorrosion properties.
3. The FCCN-1g T-20mA coatings deposited using a current density of 20 mA/cm2

display a near-equimolar composition and the best anti-corrosion property with an
icorr of 0.34 µA/cm2 in a simulated seawater solution.

4. The present research presents a cost-effective and viable industrial approach for
fabricating HEA coatings, holding remarkable potential for advancing innovation in
the field of electrodeposited HEA coatings.
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