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Abstract: BaMnO3 (BM) and Ba0.9A0.1MnO3 (BM-A) (A = Ce, La or Mg) perovskite-type mixed oxides
were synthesized by the aqueous sol–gel method; thoroughly characterized by ICP-OES, XRD, H2-
TPR, BET, and O2-TPD; and tested as catalysts for CO oxidation under simulated automobile exhaust
conditions. The characterization results indicate that the main effects of the partial substitution of
Ba with A-metal in BM perovskite are the maintenance of the hexagonal structure of the perovskite
and the increase in reducibility and oxygen mobility. All samples catalyze the CO to CO2 oxidation
reaction in the different reactant mixtures employed, showing the best performance for the mixture
with the lowest CO/O2 ratio and in the presence of a dopant in the BM perovskite formulation.
BM-La is the most active catalyst for improving CO oxidation, as it is the most reducible, and because
is able to evolve oxygen at intermediate temperatures.

Keywords: perovskite-type mixed oxides; sol–gel synthesis; CO oxidation; simulated automobile
exhaust; Ce; La; Mg; Mn

1. Introduction

The reduction in the harmful emissions of CO from several sources, particularly from
automobile exhaust [1–3], is mandatory to adhere to the European Climate Legislation [4],
according to which the European Union (EU) will be climate neutral by 2050. Usually,
noble metal-based catalysts are employed for CO oxidation as they present higher catalytic
activity than transition metals [5]. Specifically, Pt, Pd, Ag, Ru, Ir, and Rh noble metals
have been used as active components of the Three-Way Catalysts (TWCs) [6–10]. As using
noble metal-based catalysts for CO oxidation is limited by its prohibitive cost [11,12], the
challenge is the design of efficient (i.e., with high activity and with long-term stability)
noble-metal free catalysts (or with very low content) that adhere to the present and future
legislation for automotive emissions [13]. Thus, developing a new generation of catalysts
for CO oxidation in automobile exhaust conditions is imperative [14]. So, to achieve this
purpose, the first step is to reduce the amount of noble metals in the catalytic formulations
by using supported catalysts, in which the role of support (in the case of catalytically
active supports) is not only the stabilization of the metallic particles by minimizing or
avoiding their sintering [15], but also providing additional active sites for the reaction. In
fact, current TWCs are based on noble metals supported on ceria, presenting highlighted
catalytic properties due to their high Oxygen Storage Capacity (OSC), which allows a rapid
release of oxygen based on the redox properties of the Ce(IV)/Ce(III) pair [16,17]. Thus,
the next step would consist in the design of noble metal-free catalysts with a catalytic
performance close to those shown by noble metal formulations.
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In line with this, in recent decades, perovskite-type mixed oxides (general composition
ABO3) have been used as catalysts for different processes [18–24] and have also been
promising catalysts for removal of the pollutants emitted by Gasoline Direct Injection (GDI)
engines [18,19]. Their popularity arises from the easy fitting of their physical and chemical
properties, which enables the creation of specific and tailored active sites for the selected
reaction [25,26]. This flexibility is crucial to optimize the catalytic performance for a wide
spectrum of reactions [22]. The incorporation of metals with different oxidation states by
the partial substitution of A and/or B cations leads to structural defects, such as anionic or
cationic vacancies, or modifications in the oxidation state of the B metal (usually a transition
metal) [12,18,24,27], that could significantly enhance the catalytic activity [28]. According
to previous results [14,22,29], manganese-based perovskites are promising catalysts for CO
oxidation reactions, as this metal presents atomic orbitals with the appropriate symmetry
and energy levels for CO and O2 activation. Thus, for Mn(III), the electronic configuration
presents three electrons in the t2g orbitals and one in the eg orbitals, which allows effective
interaction with CO molecules. So, the partially empty eg orbital accepts the CO lone
electron pair, and the back-donation of a t2g electron to the antibonding π* orbital of the
CO molecule occurs as a pivotal step in CO activation. On the other hand, Mn(IV) presents
three electrons in the t2g orbitals, and the interaction with CO and O2 is intricately tied to
the strength of the Mn-O bond and, as the Mn-O bond strength diminishes, the catalytic
activity for CO oxidation notably increases [30,31].

In a previous study [32], a series of Ba0.9A0.1MnO3 (A = Ca, Ce, La, Mg, Sr) perovskite-
type mixed oxides was synthesized, characterized, and tested for soot oxidation under
simulated GDI exhaust conditions, and the results revealed that the samples presented a
higher selectivity to CO2 than a BaMnO3 raw sample; thus, it seems that they could be
effective as catalysts for CO oxidation. Consequently, this paper analyzes the catalytic
activity of Ba0.9A0.1MnO3 (A = Ce, La, Mg) perovskite-type mixed oxides, prepared by the
sol–gel method, for CO oxidation in different conditions simulating different compositions
of the automobile exhaust. The objective is to determine the effect of the partial substitution
of Ba cation (by Ce, La, or Mg) on the catalytic performance for CO oxidation.

2. Materials and Methods
2.1. Synthesis of Catalysts

Ba0.9A0.1MnO3 series (A = Ce, La, Mg, denoted as BM-A) was prepared by the sol–
gel method adapted for being used in an aqueous medium [33]. The metal precursors
employed are as follows: barium acetate (Ba(CH3COO)2, 99.0% purity, Sigma-Aldrich,
St. Louis, MO, USA), lanthanum(III) nitrate hydrate (La(NO3)3*H2O, 99.0% purity, Sigma-
Aldrich), magnesium nitrate hexahydrate (Mg(NO3)2·6H2O, 99.0% purity, Sigma-Aldrich),
cerium(III) nitrate hexahydrate (Ce(NO3)3·6H2O, 99.0% purity, Sigma-Aldrich), and man-
ganese(II) nitrate tetrahydrate (Mn(NO3)2·4H2O, 99.0% purity, Sigma-Aldrich). To prepare
the BaMnO3 sample, ethylenediaminetetraacetic acid (EDTA, 98.5% purity, Sigma-Aldrich)
and citric acid (C6H8O7, 98.5% purity, Sigma-Aldrich) were employed as chelating agents
(with 2 EDTA/Ba and citric acid/Ba molar ratios) to prevent the precipitation of metal
precursors. To prepare the samples, a 40 mL solution of citric acid and the appropriate
amount of metal precursors was heated until 60 ◦C and, after that, the gel was obtained
by thermally stirring this solution at 65 ◦C for five hours. In the case of the BaMnO3
reference sample, EDTA was incorporated into the solution before the metal precursors,
and, finally, citric acid was included. A 30 wt% ammonia solution (from Panreac, Castellar
del Vallès, Spain) was used to keep the pH at 8.5 throughout all the steps of the procedure.
Subsequently, the gel was dried at 90 ◦C for 48 h and, finally, the powder was then calcined
at 850 ◦C for 6 h.

2.2. Characterization

The techniques used for the characterization of samples were as follows:
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I. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), to determine
the elemental composition. To obtain the solution needed for the analysis, a mixture
of 5 mL of aqua regia and 10 mL of distilled water was used to dissolve 10 mg of
catalyst. The analysis was performed in a PerkinElmer device, the Optimal 4300 DV
(Waltham, MA, USA).

II. N2 adsorption at −196 ◦C, carried out in an Autosorb-6B device from Quanta chrome
(Anton Paar Austria GmbH, Graz, Austria), to obtain the specific surface area. Before
the N2 adsorption tests, the solids were degassed at 250 ◦C for 4 h.

III. X-Ray Diffraction (XRD) to identify the crystalline structure. The X-ray patterns were
recorded with a Bruker D8-Advance device (Billerica, MA, USA), employing Cu Kα

radiation at a step rate of 0.4◦/min between 20◦ and 80◦ 2θ angles.
IV. Temperature-Programmed Reduction with H2 (H2-TPR), to test the reducibility. These

tests were developed in a Pulse Chemisorb 2705 (from Micromeritics, Norcross, GA,
USA) provided with a Thermal Conductivity Detector (TCD) for determining the
change in the thermal conductivity of the gaseous mixture, which is exclusively due to
the decrease in the H2 amount (by its consumption during the reduction of samples),
as the effect due to the water vapor (generated as oxidation product) has been avoided
by its condensation before the entrance to the TCD. To develop the tests, 30 mg of a
sample was heated at 10 ◦C/min from 25 ◦C to 1000 ◦C in a 5% H2/Ar environment
(40 mL/min). Copper (II) oxide (CuO, 99.9% purity, Sigma-Aldrich) was employed as
reference to quantify the amount of H2 consumed.

V. Temperature-Programmed Desorption of O2 (O2-TPD) experiments, to estimate the
O2 evolved from the samples. These studies were conducted using a Thermal Gravi-
metric Mass Spectrometry system (TG-MS, Q-600-TA, and Thermostar from Balzers
Instruments (Pfeiffer Vacuum GmbH, Germany and Balzers, Liechtenstein), and 16 mg
of sample heated at 10 ◦C/min from room temperature to 950 ◦C in a 100 mL/min
He gas flow. All samples underwent a 1 h preheating process at 150 ◦C to remove
moisture before testing. For the quantification of evolved H2O, CO, O2, and CO2, the
18, 28, 32, and 44 m/z signals were analyzed. A CuO reference sample (CuO, 99.9%
purity, Sigma-Aldrich) was employed to calculate the amount of generated oxygen.

2.3. Activity Tests

For the CO oxidation tests, three reactant mixtures were employed: (i) 1% CO + 1% O2
in He, as an approximation to the CO concentration in the actual Three-Way Catalyst (TWC)
working conditions, (ii) 1% CO + 10% O2 in He, for analyzing the effect of using a higher
oxygen concentration compared to (i), and (iii) 0.1% CO + 10% O2 in He, for simulating the
oxidation of a very low CO percentage, which simulates the conditions found in a Diesel
Oxidation Catalytic Converter (DOC), or the exhaust of oxy-fuel combustion engines (excess
of O2 and very low amount of CO) [34]. The CO oxidation experiments were performed
in a U-shaped quartz reactor filled with a mixture of 50 mg of catalyst and 100 mg of
SiC (used for avoiding the overpressure inside the reactor). Two types of experiments
were developed using a gas flow of 100 mL/min: (i) Temperature-Programmed Reaction
conditions (CO-TPR) from room temperature to 500 ◦C and using a 10 ◦C/min heating rate,
and ii) isothermal reactions at 300 ◦C during 3 h, using the 1% CO + 1% O2 reactant mixture.
To clean the surface of samples, the catalyst-SiC mixture was pre-heated for 1 h at 500 ◦C
in a 5% O2/He gas mixture. An Agilent 8860 Gas Chromatograph (Agilent Technologies
Spain, Madrid, Spain), equipped with a Thermal Conductivity Detector and two packed
columns (Porapack-Q and MolSieve-13X (Agilent Technologies Spain, Madrid, Spain)), was
used for the reaction products quantification.

The CO conversion was determined using Equation (1):

CO conversion (%) =
(COin −COout)

COin
·100 (1)
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where COin is the inlet molar flow rate of CO, and COout is the outlet molar flow rate of
CO which has not been oxidized to CO2.

3. Results and Discussion
3.1. Characterization

Nomenclature and the most relevant characterization information, including the A
(Ce, La or Mg) metal content (obtained by ICP-OES), the BET surface area (calculated from
N2 adsorption data), and some XRD data of the tested samples, are listed in Table 1. The
Williamson-Hall method [35] was used to estimate the average crystallite size, and the cell
parameters of the hexagonal perovskite phase (a = b 6= c) were determined by using the
main XRD peak. The doping of BaMnO3 with Ce, La, or Mg leads to an increase in the
specific surface area but, as expected for perovskite-type mixed oxides, very low values
were obtained for all samples due to the almost undeveloped porosity. According to K.
Akinlolu et al. [36], the very low porosity development is a consequence of the calcination
temperature (850 ◦C) used in the synthesis. The ICP-OES data showed that the sol–gel
process allowed the addition of the required percentage of dopants (Ce, La, or Mg).

Table 1. Nomenclature and characterization data.

Nomenclature Molecular
Formula

BET
Surface Area

(m2/g)
A (wt%) Intensity

(a.u) a

Average
Crystal Size

(nm)

Cell Parameters (Å) b

a c

BM BaMnO3 3 - 1154 46 5.7 4.9

BM-Ce Ba0.9Ce0.1MnO3 10 1.3 1913 22 5.5 5.0

BM-La Ba0.9La0.1MnO3 7 1.1 1562 28 5.7 4.8

BM-Mg Ba0.9Mg0.1MnO3 7 4.2 2382 28 5.7 4.8
a Corresponding to the main XRD hexagonal perovskite peak, b Calculated using the main XRD hexagonal
perovskite peak.

The XRD patterns of the BM and BM-A samples are featured in Figure 1. All samples
present the hexagonal ABO3 perovskite structure as the main crystal phase, since the
detected signals correspond to the XRD pattern of BaMnO3 perovskite (hexagonal 2H-
BaMnO3, PDF number: 026-0168, designated by the International Centre of Diffraction
Data, (ICDD)) [37]. In addition, based on the literature [38], this structure is composed of
chains of face-sharing MnO6 units rather than corner-sharing MnO6 units. The substitution
of Ba cation with Ce, La, or Mg cations does not significantly modify the diffraction pattern
observed for the raw perovskite, because the position of the main diffraction peak of
the pervoskite is not appreciably modified (see Figure 1b), and only Ba3Mn2O8, MnO2
and CeO2 (PDF numbers: 073-0997 024-0735, and 043-1002043-1002, respectively) have
been identified as segregated minority phases. However, the data in Table 1 reveal (i) an
increase in the intensity of the main diffraction peak of hexagonal perovskite which is more
pronounced for BM-Mg, probably due to the higher content in Mg respect to Ce or La;
(ii) an increase in the crystallinity, which seems being related to the decrease in the average
crystal size for BM-A samples; and, finally, (iii) a slight deformation of the structure, as a
and c cell parameters slightly decrease, being this modification more significant also for
BM-Ce perovskite. The decrease in the cell parameters is a consequence of the different
ionic radii of Ba(II) and A cations (included in Table 2). Note that Ce(IV) and Ce(III) present
the lowest ionic radii among the A cations located in Ba(II) sites in the perovskite lattice
(so Ce and La). Mg(II) presents an ionic radius even lower than Ce(III)/Ce(IV), but it was
previously concluded [39] that this cation is located in the B position of the perovskite
lattice since its radius is more similar to that of Mn(III) and Mn(IV) than to the Ba(II) cation.
So, it seems that the partial substitution of Mn (by Mg(II)) in the B position of the perovskite
lattice affects more to the intensity of the main diffraction peak of the hexagonal perovskite
structure than the partial substitution of Ba (by Ce(III)/Ce(IV) or La(III)) in the A position.
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main diffraction peak of the hexagonal 2H-BaMnO3 phase.

Table 2. Ionic radii of cations according to Goldschmidt correction [31,36,37,40].

Metals Ba(II) Mg(II) La(III) Ce(IV) Ce(III) Mn(IV) Mn(III)

Ionic radii
(pm) 146.4 65.0 107.3 90.6 105.2 53.0 65.0

The H2-TPR experiments inform about [41,42]: (i) the redox properties, (ii) the mobility
of oxygen through the surface and the bulk, and (iii) the stability of samples in a reducing
atmosphere. During the H2-TPR tests, H2 is able to reduce high-valence metallic ions
(usually those located in the B site of perovskite-type mixed oxides [43,44]) to low-valence
metallic ions or metallic atoms, and surface and lattice oxygen ions can also participate in
this reduction reaction [45]. The H2-TPR profile for MnO2 (presented in Figure 2a, used
as reference and prepared using the same manganese precursor and identical calcination
conditions than BM and BM-A perovskites) shows two overlapping peaks at around
400 and 500 ◦C, which, according to literature data [46], correspond to the reduction of
manganese in two steps; firstly MnO2/Mn2O3 to Mn3O4 and, subsequently, Mn3O4 to
MnO. Usually [32,38,47,48], a multiple-step reduction was observed for the manganese-
based samples, showing (i) an intense peak centered between 400–600 ◦C, corresponding
to the Mn(IV) and Mn(III) reduction to Mn(II); (ii) a small peak from 700 ◦C to 800 ◦C due
to the oxygen species reduction; and (iii) a third peak with a maximum between 900 ◦C
and 1000 ◦C, corresponding to the Mn(III) to Mn(II) reduction in the bulk. In fact, in
the H2-TPR profiles of BM, BM-Ce, BM-La, and BM- Mg displayed in Figure 2a, these
three H2 consumption peaks are detected. The first sharp peak centered between 400 and
600 ◦C corresponds to both the Mn(IV) to Mn(III) reduction, and Mn(III) reduction to Mn
(II) [38,49]. The second one, located at intermediate temperatures (between 700 ◦C and
800 ◦C), is a poorly defined peak attributed to the reduction in oxygen species and, finally,
the peak detected at the highest temperatures (between 900 ◦C and 1000 ◦C) is assigned to
the reduction of bulk Mn(III) to Mn(II). Note that the maximum of the peak corresponding
to the reduction in the Mn(IV) species in the perovskite samples is shifted towards higher
temperatures respect to the observed for MnO2 reference sample [46,50]. This observation
could be considered as evidence of the high interaction of Mn species with the other ions
present in the perovskite lattice, that hinders the redox process. Moreover, regarding the
BM-A samples, only the presence of La(III) and Mg(II) seems to modify the temperature
corresponding to the maximum of the sharpest reduction peak, which is 499 ◦C for BM-
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Mg and 468 ◦C for BM-La, versus 515 ◦C for BM, so, BM-La is the sample requiring the
lowest temperature for reduction among the BM-A series. For BM-Mg, the decrease in the
temperature could be due to an improved oxygen mobility due to the lower amount of
Ba(II) in A sites (as Mg(II) is partially replacing Mn(IV)/Mn(III) in B site). For BM-La, the
lower reduction temperature is the consequence of improved oxygen mobility due to the
loss of oxygen from MnO6 octahedra caused by the increase in the amount of Mn(III) that
takes place to compensate the higher positive charge of La(III) respective to Ba(II). The
area under the H2 consumption profiles between 450 ◦C and 600 ◦C was used to determine
the experimental hydrogen consumption per gram of the sample, and these values are
compared in Figure 2b with the nominal hydrogen consumption calculated considering
either Mn(IV) or Mn(III) as the unique manganese oxidation state. Regarding these results,
Mn(IV) and Mn(III) oxidation states coexist in bulk for BM-Mg, BM-Ce, and BM-La, with
Mn(IV) being the main oxidation state in the bulk of BM. These data seem to confirm that,
for BM-Ce and BM-La, a higher amount of Mn(III) exists on the bulk of the perovskite in
order to compensate the higher positive charge of Ce(IV) and La(III) with respect to Ba(II).

Crystals 2024, 14, 191 7 of 15 
 

 

temperatures respect to the observed for MnO2 reference sample [46,50]. This observation 
could be considered as evidence of the high interaction of Mn species with the other ions 
present in the perovskite lattice, that hinders the redox process. Moreover, regarding the 
BM-A samples, only the presence of La(III) and Mg(II) seems to modify the temperature 
corresponding to the maximum of the sharpest reduction peak, which is 499 °C for BM-
Mg and 468 °C for BM-La, versus 515 °C for BM, so, BM-La is the sample requiring the 
lowest temperature for reduction among the BM-A series. For BM-Mg, the decrease in the 
temperature could be due to an improved oxygen mobility due to the lower amount of 
Ba(II) in A sites (as Mg(II) is partially replacing Mn(IV)/Mn(III) in B site). For BM-La, the 
lower reduction temperature is the consequence of improved oxygen mobility due to the 
loss of oxygen from MnO6 octahedra caused by the increase in the amount of Mn(III) that 
takes place to compensate the higher positive charge of La(III) respective to Ba(II). The 
area under the H2 consumption profiles between 450 °C and 600 °C was used to determine 
the experimental hydrogen consumption per gram of the sample, and these values are 
compared in Figure 2b with the nominal hydrogen consumption calculated considering 
either Mn(IV) or Mn(III) as the unique manganese oxidation state. Regarding these results, 
Mn(IV) and Mn(III) oxidation states coexist in bulk for BM-Mg, BM-Ce, and BM-La, with 
Mn(IV) being the main oxidation state in the bulk of BM. These data seem to confirm that, 
for BM-Ce and BM-La, a higher amount of Mn(III) exists on the bulk of the perovskite in 
order to compensate the higher positive charge of Ce(IV) and La(III) with respect to Ba(II). 

     
Figure 2. (a) H2-TPR profiles and (b) H2 consumption (mL/g of catalyst). 

To determine the lability of the oxygen species present in the bulk of BM and BM-A 
samples, O2-TPD experiments were developed. According to the literature [51], three 
desorption peaks are typically detected for perovskites during an O2-TPD test: (i) the 
oxygen adsorbed on the surface (α-O2) is released at temperatures below 350 °C; (ii) the 
desorption peak between 500 and 700 °C is attributed to the oxygen that comes from the 
adsorbed on the surface lattice defects (α’-O2); and (iii) the peak observed at temperatures 
higher than 700 °C is related to the desorption of lattice oxygen (β-O2). As shown in Figure 
3, BM-Ce and BM-Mg samples mainly evolve oxygen from the perovskite lattice, which is 
promoted by the redox reactions involving the Mn(IV)/Mn(III) pair, and also, for BM-Ce, 
the Ce(IV)/Ce(III) pair. However, for BM-La, the oxygen desorbed mainly comes from that 
which is adsorbed on the surface lattice defects, while BM raw perovskite does not show 
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To determine the lability of the oxygen species present in the bulk of BM and BM-A
samples, O2-TPD experiments were developed. According to the literature [51], three
desorption peaks are typically detected for perovskites during an O2-TPD test: (i) the
oxygen adsorbed on the surface (α-O2) is released at temperatures below 350 ◦C; (ii) the
desorption peak between 500 and 700 ◦C is attributed to the oxygen that comes from the
adsorbed on the surface lattice defects (α’-O2); and (iii) the peak observed at temperatures
higher than 700 ◦C is related to the desorption of lattice oxygen (β-O2). As shown in
Figure 3, BM-Ce and BM-Mg samples mainly evolve oxygen from the perovskite lattice,
which is promoted by the redox reactions involving the Mn(IV)/Mn(III) pair, and also,
for BM-Ce, the Ce(IV)/Ce(III) pair. However, for BM-La, the oxygen desorbed mainly
comes from that which is adsorbed on the surface lattice defects, while BM raw perovskite
does not show a clear desorption peak. The total amount of O2 (as µmol/g of sample),
calculated from the area under the O2 profiles (and using a CuO sample as a reference for
quantification) is 114 for BM-Ce, 68 for BM-Mg, 61 for BM-La, and 23 for BM. So, these data
indicate that the partial substitution of Ba cation (by Ce, La, or Mg) increases the amount
of oxygen evolved by perovskite and, hence, the oxygen mobility is enhanced. Note that
BM-Ce evolves the highest amount of oxygen (as β-O2), due to the contribution of the
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Ce(IV)/Ce(III) redox pair, and that BM-La generates oxygen at the lowest temperature as
it comes from the adsorbed in the surface oxygen lattice vacancies (α’-O2) [51]. As it was
described above, for BM-La, the loss of oxygen from MnO6 octahedra (so, the creation of
lattice oxygen vacancies) is favored due to the presence of a higher amount of Mn(III) to
compensate for the higher positive charge of La(III) versus Ba(II). Thus, BM-La seems to be
the most unique BM-A sample, being able to release oxygen at T < 500 ◦C, which is in the
range of interest for CO oxidation reaction.
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3.2. Catalytic Activity

The CO conversion profiles (CO-TPR) are shown in Figure 4, and the T50% (◦C) data
(which is the temperature to achieve the 50% of CO conversion) are featured in Table 3.
For comparative purposes, the profile corresponding to a commercial platinum-based
catalyst (1% Pt/Al2O3, Pt-Al from Sigma Aldrich), used as a reference, has also been
included. The CO conversion profiles and the T50% data reveal that all the tested samples
catalyze the CO oxidation reaction in the three reactant mixtures employed, as the gas
phase reaction does not take place under 500 ◦C in the absence of a catalyst (uncatalyzed
profile in Figure 4). These results could be expected, as it is well-known that Mn-based
samples are effective catalysts for CO oxidation [52]. However, all samples present a lower
capacity for increasing the percentage of CO conversion than the Pt-Al reference catalyst.
Additionally, after the partial substitution of Ba cation, an increase in the CO conversion
is observed for BM-A samples, as the CO-TPR profiles appear at lower temperatures and
the T50% values are lower than for the BM raw perovskite. So, the partial substitution of
Ba cation seems to be an effective strategy to improve the catalytic performance for CO
oxidation of BM perovskite. As could be expected (because it is the most reducible sample),
BM-La seems to be the most active sample, presenting the closest performance to that of
the Pt-Al reference.

However, the degree of improvement seems to depend on the sample and reaction
atmosphere:

(i) In 1% CO + 1% O2, BM-La is the best catalyst as it presents the highest lowering of
T50% (the most negative value of ∆T50%) respect to BM (see Table 3).
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(ii) In 1% CO + 10% O2, in the presence of an excess of oxygen in the reaction atmosphere
respect to (i), both BM-La and BM-Mg present a similar performance.

(iii) In 0.1% CO + 10% O2, which was the lowest CO/O2 ratio reactant mixture tested, the
three samples feature a more similar performance.

Table 3. T50% (◦C) for CO oxidation.

Catalyst
1% CO + 1% O2 1% CO + 10% O2 0.1% CO + 10% O2

T50% ∆T50% * T50% ∆T50% ** T50% ∆T50% ***

BM 400 --- 455 55 340 −115

BM-Ce 325 −75 373 48 230 −143

BM-La 290 −110 320 30 250 −70

BM-Mg 342 −58 340 2 175 −165

Pt-Al 265 --- 210 −55 130 −80
* Respect to T50% of BM. ** Respect to T50% in 1% CO + 1% O2. *** Respect to T50% in 1% CO + 10% O2.

Thus, it seems that BM-La is the best catalyst tested in almost all the gas mixture
compositions explored. Focusing the attention on the characterization data discussed in the
previous section, it has to be underlined that BM-La is the sample presenting the highest
reducibility (lower temperature for the maximum of the main reduction peak in H2-TPR
tests) and the only catalyst evolving oxygen at intermediate temperature (α’-O2). Thus, it
appears that these two properties are relevant for enhancing CO oxidation. In this sense,
P. Doggali et al. [21] also concluded that the partial substitution of A site improves the
catalytic activity of LaCoO3 as the La0.8Ba0.1CoO3 catalyst exhibits a superior catalytic
performance for both CO and particulate matter oxidation.
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The performance in the different reactant mixtures used has been compared in terms of
the T50% values collected in Table 3. Thus, it seems that if the oxygen percentage increases
from 1% to 10%, T50% is higher (so the samples are less active for catalysing the CO
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oxidation) for BM, BM-Ce, and BM-La, but the opposite is observed for Pt-Al reference
and, finally, it does not appreciably change for BM-Mg. The different response of BM-Mg
sample versus an increase in the O2 percentage (from 1% to 10%) is probably related to the
different location of Mg in the lattice, which is in the B cation position of ABO3 perovskite
(that is, partially replacing Mn) instead of replacing Ba cation in the A site. Additionally,
holding a 10% O2, the further lowering in the CO percentage from 1% to 0.1% provokes
a decrease in the T50% for all samples, indicating an improvement of the performance for
catalysing CO oxidation. On the other hand, note that the most intense decrease is detected
for BM-Mg and BM-Ce, presenting BM-La the lowest change. Thus, BM-La is not only
the most effective among BM-A samples in decreasing T50% respect to the raw perovskite
(BM), but it also presents the most stable performance versus fluctuations in O2 and CO
concentrations, being even more stable than the platinum-based catalyst. This fact would be
interesting for practical applications. Finally, comparing T50% data in the different reactant
mixtures, it is concluded that all samples, as well as the Pt-Al reference, are more effective
in catalyzing the CO oxidation in the 0.1% CO + 10% O2, as they present the lowest values
of T50%. In this sense, S. Zheng et al. [53] also concluded that LaMn0.4Fe0.6O3 (synthesized
using the rota-vapor citrate method) showed the highest CO oxidation activity in a 1% CO
and 20% O2, showing a T50% of 375 ◦C which is similar to the featured by BM-Ce sample in
1% CO + 10% O2 gas mixture.

To understand the catalytic performance shown by the tested samples, the mechanisms
proposed in the literature for CO oxidation reactions have been revised. It is well known
that these mechanisms are highly dependent not only on the reaction temperature, and on
the CO and O2 [54–56] percentages, but also on the type of catalysts and, for perovskite
type mixed oxides, two mechanisms are generally accepted [57]:

- the Langmuir-Hinshelwood (LH) mechanism, which involves the adsorption of CO
and O2 molecules, followed by their reaction to form OOCO intermediates [13]. This
step is considered the rate-limiting one of the oxidation processes.

- the Eley-Rideal (ER) mechanism, in which the activated (adsorbed) O2 molecules
combine directly with the CO molecules in the gas phase, being the activation of O2
the rate-limiting step.

Among these two proposed mechanisms, the LH mechanism has been suggested for
CO oxidation in the presence of oxygen vacancies, in which the preferential adsorption of
oxygen will take place to generate highly reactive oxygen species (such as O1-) [58,59].

Thus, to discuss the results obtained, it can be assumed that the LH mechanism is
working for perovskites and that the CO molecules adsorbed on the catalyst surface will
react with the adsorbed O2 and, subsequently, the CO2 generated will desorb. In this sense,
Royer et al. [60] suggested that, if a strong CO inhibition is detected, it means that the
two gases compete by the same adsorption sites. On the other hand, if a low CO reactant
mixture is used (i.e., 1% CO + 10% O2 or 0.1% CO + 10% O2), oxygen will be preferentially
chemisorbed on the surface oxygen vacancies as it is in excess and, subsequently, the CO
molecules will be also adsorbed on the remaining free active sites [52,61].

Taking in mind all these considerations, it seems that in BM and BM-A samples, CO
and O2 compete by the same active sites where these two molecules will be adsorbed to
react following the LH mechanism. As T50% increases if O2 concentration is increased from
1% to 10%, it means that O2 is initially adsorbed and, subsequently, CO is also adsorbed in
the free active sites. This sequence also explains that T50% decreases when CO percentage
is decreased from 1% to 0.1%, as a more effective activation of CO will take place because a
lower number of active sites is needed.

Finally, two cycles of isothermal reaction at 300 ◦C in 1% CO + 1% O2 gas mixture
have been developed to deeper analyze the catalytic performance, being the CO conversion
profiles shown in Figure 5. In general terms, the CO conversion percentages are similar
to those obtained during CO-TPR (shown in Figure 4a): BM-La (65%) > BM-Ce (52%) >
BM-Mg (35%) > BM (15%) and, almost stable profiles are shown for all samples. Thus, it
seems that, as concluded by other authors [62], the perovskites do not suffer an appreciable
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deactivation during 3 h of reaction time, so, a long lifetime is expected when they would be
used as catalysts for CO oxidation.
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Thus, in the presence of BM-A a higher percentage of CO conversion is achieved
than if BM is used, it is confirmed that the partial substitution of Ba cation by Ce, La, or
Mg allows the improvement of catalytic performance. It is also proven that BM-La is the
most active catalyst for CO oxidation, as it is the most easily reducible and because is the
only one evolving oxygen at intermediate temperatures, which seems to be effective for
CO oxidation.

4. Conclusions

From the above discussed characterization and conversion data, the main conclusions
obtained are as follows:

â Despite the partial substitution of Ba with Ce, La, or Mg, the mixed oxides maintain
the hexagonal BaMnO3 perovskite structure.

â The partial substitution of Ba by Ce, La, or Mg seems to enhance the mobility of
oxygen and the reducibility of the samples, BM-La being the most reducible sample
and the unique evolving oxygen at intermediate temperatures (α’-O2).

â All perovskites-type mixed oxides catalyze CO oxidation under the different reactant
mixtures tested, showing the lowest T50% values for the lowest CO/O2 ratio gas
mixture used (0.1% CO + 10% O2).

â The samples do not suffer an appreciable deactivation during reaction at 300 ◦C, so,
a long lifetime is expected when they would be used as catalysts for CO oxidation.
Additionally, since a higher percentage of CO conversion was achieved for BM-A
composition than for BM, it is confirmed that the partial substitution of Ba cation by Ce,
La, or Mg is effective to improve the catalytic performance of raw BM samples. BM-La
is the most effective catalyst as it is the most reducible and because it evolves α’-O2.
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