
Citation: Imai, M.; Kubota, T.;

Miyazawa, A.; Aoki, M.; Mori, H.;

Komaki, Y.; Yoshino, K. Al2O3 Thin

Layer Formed inside Porous

Membrane Using Spray Synthesis

Method and Its Application. Crystals

2024, 14, 195. https://doi.org/

10.3390/cryst14020195

Academic Editor: Vladislav

V. Kharton

Received: 30 December 2023

Revised: 12 February 2024

Accepted: 15 February 2024

Published: 17 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Al2O3 Thin Layer Formed inside Porous Membrane Using Spray
Synthesis Method and Its Application
Masato Imai 1,*, Tadahiko Kubota 2, Atsushi Miyazawa 3, Masahiro Aoki 4, Haruna Mori 4, Yuta Komaki 5

and Kenji Yoshino 1,*

1 The Electronical and Electronic Engineering Program, Faculty of Engineering, University of Miyazaki,
1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan

2 Yokohama Battery Science Corporation, 3-21-11 Nakazawa, Asahi, Yokohama 241-0814, Japan
3 Tosoh Corporation, 2743-1, Hayakawa, Ayase 252-1123, Japan
4 Tosoh Finechem Corporation, 4555 Kaisei, Shunan 746-0006, Japan
5 Engineering Post Graduate Course Engineering Specialty, Faculty of Engineering, University of Miyazaki,

1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
* Correspondence: m_imai@cc.miyazaki-u.a.jp (M.I.); t0b114u@cc.miyazaki-u.ac.jp (K.Y.)

Abstract: Aluminum oxide (Al2O3) films have been investigated for use in various applications,
and numerous deposition techniques have been reported. The spray synthesis method has the
advantage of forming a thin layer of crystal at low temperatures using the appropriate precursors. A
precursor prepared by diluting Methylaluminoxane with N-methyl pyrrolidone was sprayed onto a
porous membrane while varying conditions such as the substrate temperature, feeding speed, and
spray amount. The solution penetrated the film during spray application, and the ultra-thin layers
deposited on the side wall of the internal pores were observed using a cross-sectional transmission
electron microscope (XTEM). The lattice image obtained using the TEM and the composition analysis
conducted using a scanning TEM and an energy-dispersive X-ray spectroscope suggest that this thin
layer is a layer of Al2O3. The formation of Al2O3 occurred at lower temperatures than in previous
reports. This is a major advantage for applications with low-melting-point materials. The most
suitable spraying conditions were determined based on the state of deposition on the surface and
inside the membrane. These conditions were applied to a three-layer separator for lithium-ion
batteries and their effect on thermal stability was investigated. Through heating experiments and
XRD analysis, it was confirmed that the shrinkage and melting of the separator are suppressed by
spraying. This process can be expected to have wide applications in low-melting-point materials
such as polyolefin.

Keywords: aluminum oxide; spray synthesis method; methylaluminoxane; porous membrane;
lithium-ion battery

1. Introduction

Aluminum oxide (Al2O3) films have been investigated for use in various applications,
such as in semiconductor devices, organic light-emitting diodes, solar cells, lithium-ion
batteries (LIBs), solid oxide fuel cells (SOFCs), and nuclear technology [1–8]. Numerous
deposition techniques have been used to fabricate Al2O3 thin layers for each application,
such as atomic layer deposition (ALD) [9], pulsed laser deposition (PLD) [10], magnetron
sputtering [11], the sol–gel method [12], and spray synthesis [13,14].

ALD is a chemical self-limited deposition technique that uses two chemical precursors
in most cases. The substrate is placed at a given temperature and pressure so that the
material can be deposited layer by layer on the surface of the substrate in the chamber.
ALD is a key process in fabricating semiconductor devices and is one of the tools used
for synthesizing nanomaterials. PLD is a physical vapor deposition technique where a
high-power pulsed laser beam is focused inside a vacuum chamber to strike the target of the
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material that is to be deposited. This material is vaporized from the target, which deposits
it as a thin film on a substrate in an ultra-high vacuum. The application of this technique
spans the fields of optical devices, electronic materials, sensors and actuators, biomaterials,
and organic polymers. Magnetron sputtering is a technique in which the target material
is bombarded with high-energy ions to eject atoms from the target, which then deposit
onto a substrate to form a thin film. This technique is widely used in the semiconductor
industry. The sol–gel method produces solid materials from small molecules. The process
involves the conversion of monomers into a sol, which acts as the precursor for a gel
of either discrete particles or network polymers. The sol–gel process is used to produce
ceramic nanoparticles.

The spray synthesis technique consists of three main stages: the composition of the
precursor solution, aerosol generation and transport, and the synthesis process. Each of
these steps is tailored to the final chemical and physical properties of the target material, and
the materials and processes selected at each stage affect the subsequent stages [15,16]. The
solvent in the precursor solution is selected by considering the solubility of the precursor
compound and its physical properties such as density, evaporation rate, and viscosity. The
physical properties of the final material formed, such as morphology and crystallinity,
are established by the aerosol droplet size distribution. The average droplet diameter is
estimated by the liquid surface tension, the mass flow rate of liquid and gas, the density of
gas, the diameter of the spraying solution inlet orifice, and gas velocity according to the
aerosol formation mechanism [17]. The material synthesis process is determined by several
parameters such as substrate temperature, droplet size, and their flow speed at the reactive
zone [15].

The spray synthesis technique has an industrial advantage because it is a low-cost
process that does not require vacuum equipment, and the material can be formed over a
wide area. There are many reports of films being deposited on various substrates using
this method [18–21]. It is also reported that thin layers of crystals can be formed at low
temperatures by using appropriate precursors such as diethylzinc-based solution and
Methylaluminoxane solution [22–24]. This advantage leads to potential applications for
low-melting-point materials such as polyolefins.

LIBs with high power density and excellent cycle life are increasingly used for elec-
tronic vehicles, power tools, and portable electronic devices in the power-source market,
but urgently require a higher energy density [25–28]. As energy density increases, improv-
ing the safety of LIBs has become an urgent issue [29,30]. The separator in an LIB, which
maintains the physical isolation between electrodes, as well as an electrolyte container to
provide Li+ ion transport channels during cycling, is a critical part for improving battery
performance such as cycle life, energy density, power density, and safety [31–33]. Many
proposals have been made to improve thermal stability, coating various inorganic particles
on the separator surface using a simple bar process or a dip process [34–37].

In this study, a porous membrane was sprayed using a previously reported precur-
sor [24], and the effects of the spray conditions on the deposition state, such as substrate
temperature, feeding speed, and spray amount, were investigated. Thin layers were
observed as sprayed inside the membrane, suggesting a layer of Al2O3. Then, we in-
vestigated the effects of spray application on resistance and thermal stability using a
commercially available three-layer separator. After spray application, the separator did
not show increased resistance, and shrinkage and melting were suppressed, resulting in an
improvement in thermal stability.

2. Materials and Methods

The precursor prepared by diluting Methylaluminoxane (MAO) with N-methylpyrr-
olidone (NMP) to an Al concentration of 1 wt% was used for spray application. MAO
is a mixture of organoaluminium compounds expressed by the approximate formula (Al
(CH3) O)n [38]. NMP is frequently used in LIB manufacturing as a solvent for cleaning
electrodes [39].
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Two types of porous membranes were used as substrates for spray application. A
monolayer membrane (Celgard 2400, thickness = 25 µm) composed of a polypropylene (PP)
matrix with pores was used to investigate the relationship between the spray conditions
and the deposition state on the surface and inside. The effects of spray application on
resistance and thermal stability were investigated using a three-layer porous membrane
(Celgard 2320, thickness = 20 µm) consisting of a PP outer layer and a polyethylene (PE)
inner layer. The substrate for the spray application was a film cut into 20 mm squares and
fixed on glass. Depositions were performed by varying the substrate temperature from
room temperature to 100 ◦C, the supply amount from 0.5 to 4 mL, and the supply rate from
10 to 60 mL/h, while making N2 gas flow in atmospheric pressure.

The surface morphology of each sample was observed before and after spraying using
a confocal laser scanning microscope (CLSM, VK-X100, KEYENCE, Higashi Yodogawa,
Japan). The inside of the film was observed using a transmission electron microscope
(TEM, JEM-2010 MX, JEOL, Akishima, Japan) after cutting and slicing the sample using
an ultra-microtome (MT-7000N, Asaka, Japan) after solidifying with resin. TEM samples
were prepared for observation in two directions, parallel and perpendicular to the surface
of the film. A scanning transmittance electron microscope (STEM, JEM-2010 MX, JEOL,
Akishima, Japan) and an energy-dispersive X-ray spectroscope (EDX, JED-2300T, JEOL,
Akishima, Japan) were used for elemental analysis of the deposited layer. The effect of spray
application on the ionic conductivity determined by the ions passing through the film was
investigated using electrochemical impedance spectroscopy (EIS). The measurements were
conducted for the sample sandwiched between electrodes with a diameter of 10 mm using
a potentiostat (SP-200, Bioscientific Instrument, Vaucanson, France) within the frequency
range 0.1–7 MHz at an amplitude of 10 mV. An electrolyte solution contained 1 M of LiClO4
in equal volumes of propylene carbonate and diethyl carbonate. EIS is a powerful technique
for the characterization of electrochemical systems [40,41]. The films were annealed at 70,
90, 110, 130, and 150 ◦C for 60 min to investigate the effect of spray application on thermal
stability. The film was sandwiched between glasses with a load of 150 g to prevent warping.
Structural changes in the film due to annealing were characterized via X-ray diffraction
(XRD, MiniFlex600-C HR, Rigaku, Akishima, Japan) using CuKα radiation.

3. Results and Discussion
3.1. Spray Condition and Deposition State

The evolution of aerosol droplets approaching the hot substrate is shown schematically
for cases of different initial droplet sizes. At low temperatures or with a large initial
droplet size, the solvent within the droplet was not completely vaporized and the liquid
droplet vaporized upon contact with the substrate, leaving a ring-shaped dry precipitate
on the substrate. At intermediate temperatures or with a medium droplet size, the solvent
was vaporized, and a dry precipitate (an amorphous precursor salt) hit the substrate
surface where a pyrolysis reaction took place. At high temperature or with a small droplet
size, the vaporized precipitates underwent a chemical reaction in the vapor phase before
they reached the substrate surface [15]. In this experiment, large initial droplets and low
temperature were used, and the liquid droplets that reached the surface of the membrane
penetrated into the pores.

When the MAO/NMP solution was sprayed onto the porous membranes, the forma-
tion of deposit layers on the surface and inside was sensitively dependent on the application
conditions. We previously reported that the inner deposited layer contributes to improving
the thermal stability of a film [24]. On the other hand, surface deposits block the pores
and are brittle and flaky in nature. We investigated the relationship between the spray
conditions and the deposition state.

3.1.1. Surface Deposition

Typical CLSM images of film surfaces sprayed under various conditions are shown in
Figure 1. For the film sprayed under the reference conditions shown in Figure 1a, traces of
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small droplets were visible, but there were no large deposit areas and most of the membrane
surface was exposed. On the other hand, when the spray application was performed at low
substrate temperature (25 ◦C), the entire surface was covered with deposits, as shown in
(b). As the substrate temperature increased, a higher density of small droplet traces was
observed. High feeding speed (30 mL/h) resulted in the formation of large lumpy deposits
on the surface, as shown in (c). From the viewpoint of process time, 10 mL/h was suitable.
As the spray amount increased, rounded deposits appeared and covered the entire surface,
as shown in (d). We selected 1 mL as the spray amount because smaller amounts were
ineffective.
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Figure 1. Typical CLSM images of film surfaces obtained after spraying under various conditions.
(a) Reference condition, (b) substrate temperature: 25 ◦C, (c) feeding speed: 30 mL/h, (d) spray
amount: 4 mL.

3.1.2. Internal Deposition

Figure 2 shows XTEM images and the elemental mapping obtained with EDX analysis
near the surface of the samples shown in Figure 1a,b. The locations of the XTEM image
and elemental mapping were different. In the sample sprayed at a substrate temperature of
50 ◦C, no layer was deposited on the surface and a black contrast can be observed inside
in the XTEM image. Al and O were detected inside the film in the elemental mapping as
shown in (a). The black contrast seen in XTEM was formed by Al and O, meaning that the
solution penetrated inside. On the other hand, in the sample coated at room temperature
(25 ◦C), a deposited layer was formed on the surface, but Al and O did not penetrate the
interior, as seen in (b). The deposited layer peeled off from the surface, as shown in the
elemental mapping.

These results were determined by the balance between the penetration of the MAO
solution into the membrane, retention on the surface, and solvent (NMP) evaporation.
The decrease in temperature slowed down penetration into the interior, and the solution
remained on the surface and thick deposits were formed, as shown in Figures 1b and 2b.
The droplet size increased with an increase in the feeding speed, and the solution coalesced
at the surface and penetrated the interior simultaneously. Then, lumpy deposits were
formed, as seen in Figure 1c. When the amount of spray was large, the pores were blocked
by the solution, causing the solution to accumulate on the surface due to penetration being
prevented, and resulting in the formation of rounded deposits, as seen in Figure 1d. In all
cases, the surface deposits showed poor adhesion to the membrane and were not suitable
for coating. After comprehensive consideration, we decided on the conditions shown in
Figure 1 as the reference process.
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sprayed at each temperature. (a) Film sprayed in reference condition; (b) film sprayed at 25 ◦C.

3.2. Characterization of Deposited Layer

The TEM image of the layer deposited on the surface deformed and became blurred
during observation. It can be considered a transition layer before a stable substance was
achieved. On the other hand, the image of the internal deposited layer did not change even
when observed at high magnification. Therefore, we investigated the internal deposited
layer in detail.

3.2.1. Elemental Analysis

Figure 3 shows a STEM image and the elemental mapping obtained by EDX analysis
for the plane parallel to the surface of the sample corresponding to Figure 1a. Many black
contrasts can be seen in the STEM image (a). These contrasts reflect the absorption of the
electron beam by Al and O shown in the distribution maps (b) and (c).
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elemental mapping of (b) Al atoms and (c) O atoms.

The atomic fractions obtained by the STEM/EDX analysis in Figure 3 are shown in
Table 1 by comparing the as-received films. Most of the detected elements were C, as it
was the main material of the membrane, but Al and O were detected, with atomic fractions
of 3.1% and 5.1%, respectively. The atomic ratio of Al atoms to O atoms calculated from
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this result was 0.38 to 0.62. A small amount of O was detected even in the as-received film.
These results show that the composition ratio was almost equal to that of Al2O3.

Table 1. Atomic fraction (%) obtained using STEM/EDX analysis for the films after spray application
and as received.

Element After Spray As Received

C 91.8 98.8
Al 3.1 0.0
O 5.1 1.2

3.2.2. High-Magnification TEM Image

A high-magnification TEM image for the black contrast area shown in Figure 3a and a
crystal structure model of Al2O3 created with a 3D visualization system (VESTA) [42] are
shown in Figure 4. The arrangement of Al atoms and O atoms for Al2O3 is projected along
the [1210] axis. Al2O3 has a hexagonal closed-pack structure, and the lattice constants are a:
4.7606 Å and c: 12.994 Å [43]. The interplanar spacing estimated from the lattice image is
2.1 Å and 2.2 Å, which is close to the Al atom arrangement of the crystal structure model.
The lattice image suggests that the deposited layer inside the film is Al2O3.

Crystals 2024, 14, x FOR PEER REVIEW 6 of 16 
 

 

this result was 0.38 to 0.62. A small amount of O was detected even in as-received film. 214 

These results show that the composition ratio is almost equal to that of Al2O3. 215 

 216 

Figure 3. STEM/EDX analysis of plane parallel to surface inside sample; (a) STEM image, elemental 217 
mapping of (b) Al atoms and (c) O atoms, respectively. 218 

Table 1. Atomic fraction (%) obtained using STEM/EDX analysis for the films after spray and as 219 
received. 220 

Element After spray As received 

C 91.8 98.8 

Al 

O 

 3.1 

 5.1 

 0.0 

 1.2 

 221 

3.2.2. High-magnification TEM image 222 

A high-magnification TEM image for the black contrast area shown in Figure 3 (a) 223 

and a crystal structure model of Al2O3 created with a 3D visualization system (VESTA) 224 

[42] are shown in Figure 4. The arrangement of Al atoms and O atoms for Al2O3 is pro- 225 

jected along the [1210] axis. Al2O3 has a hexagonal closed-pack structure, and the lattice 226 

constants are a: 4.7606 Å and c: 12.994 Å [43]. The interplanar spacing estimated from the 227 

lattice image is 2.1 Å and 2.2 Å, which is close to the Al atom arrangement of the crystal 228 

structure model. The lattice image suggests that the deposited layer inside the film is 229 

Al2O3. 230 

 231 

Figure 4. Lattice image taken by high-magnification TEM observation and a crystal structure model 232 
of Al2O3 created by VESTA. 233 

The ratio of Al atoms to O atoms obtained by STEM/EDX analysis was almost iden- 234 

tical to the composition ratio of Al2O3. It is suggested that the interplanar spacing of the 235 

lattice image is the atomic arrangement of the Al2O3 crystal. Al2O3 films deposited on var- 236 

ious substrates using the spray synthesis method have previously been reported [18-21]. 237 

Figure 4. Lattice image taken by high-magnification TEM observation and a crystal structure model
of Al2O3 created by VESTA.

The ratio of Al atoms to O atoms obtained by STEM/EDX analysis was almost identical
to the composition ratio of Al2O3. It is suggested that the interplanar spacing of the
lattice image is the atomic arrangement of the Al2O3 crystal. Al2O3 films deposited on
various substrates using the spray synthesis method have previously been reported [18–21].
However, the process was conducted at a substrate temperature over 300 ◦C in every
report. In contrast, this experiment suggests that the formation of the Al2O3 layer occurs
at substrate temperatures below 100 ◦C. The formation of Al2O3 shells using the layer-by-
layer MAO coating process has also been reported [44]. An Al2O3 layer may be formed
on the sidewalls of the pores due to the penetration of the solution from spray application.
The reaction mechanism of MAO is complex [45]. Further investigation into the formation
of Al2O3 from MAO is required.

3.3. Spray Application on Three-Layer Membrane

We applied an MAO/NMP solution to a three-layer membrane using the reference
conditions shown in the previous chapter. The membrane consisted of two outer PP layers
and an inner PE layer. The PP-based layer provides high-temperature melt integrity and
oxidation resistance, and the PE-based layer provides high-speed shutdown features. The
PP layer has uniaxial residual strain caused by the dry technique used to produce porous
membranes, and the PE layer prepared using the wet technique is uniform, or has biaxial
residual strain caused by the manufacturing process [46]. This film is stretched in one
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direction during the manufacturing process, thereby possessing a residual strain along the
machine direction (MD).

The inside of the sprayed membrane was analyzed using XTEM and STEM/EDX.
In order to check the effectiveness of spraying, we investigated resistance measurements
using EIS and thermal stability through heating experiments.

3.3.1. Internal Observation

The XTEM images and the EDX analysis obtained using STEM after cutting and slicing
the sprayed film in the depth direction are shown in Figure 5. The PP layers on both sides
and the PE layer in the middle can be observed in the upper overall image. A lot of black
contrast can be seen from the surface to a depth of several microns on the sprayed side, and
it is hardly visible on the back side. The black contrast reflects the absorption of the electron
beam by Al and O shown in the lower distribution maps. Al and O are present in the black
contrast area on the spray side, but they are almost at noise level in the middle and back
side. As described in the previous chapter, a deposited layer of Al2O3 was formed inside
the spray side.
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Figure 5. XTEM observation and the elemental mapping obtained by STEM/EDX for the sprayed
film. Upper: overall image of film cross-section; lower: elemental mapping of Al atoms and O atoms
(a) near sprayed surface, (b) at mid portion, and (c) near back side.

3.3.2. Effect of Spray Application on Thermal Stability

The working temperature is normally 90 ◦C or less, but we investigated a thermal
stability up to 150 ◦C assuming a case of abnormal conditions. Figure 6 shows photographs
of the film after annealing at each temperature for 60 min, comparing the as-received film
and after spraying. There were no changes in both films at temperatures below 90 ◦C.
The films shrank along the MD orientation at temperatures above 110 ◦C and did not
shrink vertically. This means that the shrinkage was caused by the residual strain above
the temperature at which the film softens. The thermal behavior of pristine PE separators
varies greatly depending on the report, with some cases showing significant shrinkage and
some cases showing almost no shrinkage [36,37]. This suggests that the thermal shrinkage
of the separator is greatly influenced by the manufacturing process. The residual strain of
this separator was a major factor in thermal shrinkage. The shrinkage rate was suppressed
after spraying compared to the as-received film. At temperatures above 130 ◦C, the melted
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part of the film became transparent, and the shrinkage rate increased significantly. The
films entirely melted at 150 ◦C.
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Figure 6. Photographs of film after heating for 60 min at each temperature. A comparison is made
between as-received film and after spray application. As the heating temperature increased, the
shrinkage and melt of the film progressed. Spray application slightly suppressed the shrinkage
of film.

The XRD spectra of separators after annealing at each temperature for 60 min, com-
paring the sample as-received (solid line) and after spraying (dotted line), are shown in
Figure 7. The PP layer fabricated by the dry process and the PE layer fabricated by the wet
process are also shown for comparison. In the three-layer separator used in this study, peaks
due to the PP layer and PE layer were observed. A peak due to Al2O3 was not observed,
because the amount of internal deposition was too small. There was no significant change
in peak intensity at temperatures below 110 ◦C for both films before and after spraying.
At temperatures above 130 ◦C, the peak intensity of the PE layer decreased for both films
with and without spraying. At 150 ◦C, the peaks of both the PP and the PE layers almost
disappeared in the as-received film. This decrease in the peaks of each layer after annealing
indicates that each layer changed from crystalline to amorphous due to the melting of the
film seen in Figure 6. In contrast, the peaks of the PP layer remained in the sprayed film.
This indicates that the spray application suppressed the melting of the PP layer.
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3.3.3 Effect of spray applicaion on resistance 313 

) and
after spraying (· · · · · · · · · ). Peaks due to the PP layer and PE layer are observed. At 150 ◦C, the peaks
of both the PP and PE layers almost disappear in the film before spraying, while the peaks of the PP
layer remain after spraying.

3.3.3. Effect of Spray Application on Resistance

Figure 8 shows the Nyquist plots obtained with EIS, comparing samples before and
after spraying as examples. The negative imaginary impedance (−Im(Z)) is plotted versus
the real part of the impedance (Re(Z)). In a real electrochemical system, the pattern of
a Nyquist plot usually shows a semicircle in high-frequency areas and straight lines in
low-frequency areas, corresponding to the electrochemical processes controlled by charge
and mass transfer, respectively [47]. In this system, the resistance determined by the Li+
ion conductivity of the separator is obtained from the intersection of the curve and the
horizontal axis.
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Figure 8. Nyquist plots obtained with EIS for samples as-received and after spraying.

Figure 9 shows the relationship between the resistance of the separator obtained
from the Nyquist plot and annealing temperature. At temperatures below 110 ◦C, there
is no change in resistance, and no difference before and after spraying. The resistance
increases significantly at temperatures above 130 ◦C and the melting of films occurs, as
seen in Figure 6. This means that the pores in the separator are closed by melting and the
movement of ions is suppressed, i.e., shutdown occurs.
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increases significantly at temperatures above 130 ◦C due to melting of the PE layer.
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3.3.4. Model of Improved Thermal Stability

Figure 10 shows the effect of the spray application of an MAO/NMP solution on
thermal stability. In this study, a separator with a three-layer PP/PE/PP structure was
used. The melting points were 165 ◦C for PP and 115–135 ◦C for PE. The shape of the
separator was maintained until 90 ◦C but began to shrink due to residual strain with rising
temperature, as shown in Figure 6. At 130 ◦C near the melting point of PE, the PE layer
began to melt, as shown by the decrease in the XRD peaks. The PP layer melted at 150 ◦C,
making the entire film transparent and reducing the XRD peaks.
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Figure 10. Schematic images of three-layer separator shrinkage due to annealing. Al2O3 formed
inside the film suppresses shrinkage and delays dissolution at high temperatures.

In contrast, a deposited layer was formed on the pore-sidewall of the PP layer on
the spray side for the sprayed film, as seen in Figure 5. This deposit layer contributed to
improved strength, and the shrinkage rate reduced compared to the as-received separator
at temperatures over 110 ◦C. Particularly at 150 ◦C, the difference between the XRD peaks
of both films became significant, as seen in Figure 7. The peaks due to the PP layer were
greatly reduced for the as-received film, whereas they were hardly reduced for the sprayed
film. This suggests that the deposited layer slows down the progress of melting for the PP
layer, resulting in suppressed shrinkage.

4. Conclusions

Depositions were conducted on a monolayer porous membrane using the spray syn-
thesis method, varying conditions such as the substrate temperature, feeding speed, and
spray amount using an MAO/NMP solution. Ultra-thin layers were formed by the pene-
trated solution on the wall of the pores inside the membrane. The lattice image and atomic
fraction suggested that this thin layer was Al2O3. The formation of Al2O3 occurred at
lower temperatures than in previous reports. A reaction like the layer-by-layer method
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may occur while the solution is penetrating inside the membrane. The mechanism of Al2O3
formation from an MAO solution requires further investigation. The spray condition was
determined based on the finding that there was no deposited layer on the surface, and thin
layers were formed inside the membrane. It was confirmed that shrinkage and melting at
high temperatures can be suppressed for a three-layer separator sprayed in the conditions
through heating experiments and XRD analysis. The Al2O3 layer inside the membrane
contributes to improving the thermal stability of the film. The resistance of the separator
did not increase with spraying, indicating that the inner Al2O3 layer did not block pores
and did not affect ion conduction. This process can be expected to find wider applications
in low-melting-point materials such as polyolefin.
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