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Abstract: The N-oxide functional group has been exploited for synthetic strategies and drug de-
sign, and it has been utilized in imaging agents. Herein, we present rare examples of neutral
heteroleptic cyclometallated Ir(III) compounds that contain an uncoordinated N-oxide functional
group. These species, along with others described within, were verified by NMR, EA, HRMS, and
single-crystal X-ray analysis. N-oxide-containing Ir(III) species were prepared selectively in high
yields > 66% from chloro-bridged Ir(III) dimers with Acipimox, a picolinate-type ligand containing the
N-oxide functional group. Non-N-oxide analogs were synthesized in a similar fashion (yields > 77%).
Electrochemical comparison (cyclic voltammetry) indicates that the presence of an N-oxide func-
tional group anodically shifts the reduction potential, suggesting that the N-oxide is acting as an
electron-withdrawing group in these species. Crystallographic studies were pursued to examine
the coordination behavior of these N-oxides compared to their non-oxidized congeners. The Ir(III)
complexes with Acipimox indeed leave the N-oxide uncoordinated and exposed on the complexes.
The uncoordinated N-oxide group is influential in directing the packing structures of these complexes
directly through C-H···O and O···π interactions at the N-oxide. The crystallographic characterization
of cationic Ir(III) compounds with uncoordinated nitrogen atoms is also presented. The C-H···N
interactions between these complexes form a variety of dimers, finite chains, and continuous chains.
Future work will focus on functionalizing the cationic Ir(III) species into their corresponding N-oxide
derivatives and rigorously characterizing how the N-oxide functional group impacts the optical
properties of transition metal compounds in both cationic and neutral complexes.

Keywords: cyclometallated iridium species; N-oxide transition metal complex; heteroleptic iridium
complexes; coordination chemistry; crystal structure

1. Introduction

N-oxide-containing compounds have been exploited for various applications, includ-
ing synthetic intermediates [1], drug molecules [2], and imaging agents [3–5]. The N-oxide
functional group can be cleaved in a hypoxic environment. This has been utilized in the
design of various prodrugs and imaging agents that change form in tumor cells, where
the concentration of oxygen is low [2,4–7]. For instance, an N-oxide on the chemothera-
peutic Tirapazamine (Figure 1) is cleaved under hypoxic conditions to generate reactive
radical species [6]. Regarding imaging agents, Knox et al. have shown that BODIPY dyes
containing cleavable N-oxides can be exploited for ratiometric imaging [4,5].
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radical species [6]. Regarding imaging agents, Knox et al. have shown that BODIPY dyes 
containing cleavable N-oxides can be exploited for ratiometric imaging [4,5]. 

 
Figure 1. Biologically relevant N-oxide-containing compounds: (a) Tirapazamine is utilized as a 
chemotherapeutic [6]; (b) BODIPY dyes are utilized in ratiometric imaging [4,5]; (c) synthetic 
scheme for neutral Ir(III) compounds and abbreviations used within. 

Recently, transition metal compounds have gained the attention of the scientific com-
munity as imaging agents due to their typically large Stokes shift, long fluorescent life-
times, and tunable luminescence [8–10]. To develop other imaging agents, mainly to mon-
itor hypoxia, we envisioned a strategy that parallels the work of Knox et al. [4,5] using 
transition metal compounds that contain N-oxide functional groups instead of BODIPY 
dyes. Of interest are cyclometallated Ir(III) systems because of their ability to detect hy-
poxia in animals [11]. However, cyclometallated Ir(III) complexes containing external N-
oxide groups on heterocyclic ligands have not been extensively structurally characterized, 
with one reported example describing a TEMPO radical [12]. More commonly, Ir(III) com-
plexes involving a heterocyclic N-oxide ligand coordinate via the oxygen atom of the N-
oxide group [13–19]. The tendency to coordinate the oxygen atom of a heterocyclic N-
oxide group is generally favored in most transition metal complexes [20–23], largely due 
to the hardness of the N-oxide as a donor. Strategies for orienting the oxygen atom of the 
N-oxide group externally on a metal complex (that is, not coordinated to the metal) may 
include utilizing ligands with favorable coordination sites away from the N-oxide or oxi-
dizing the exposed external nitrogen atom of a coordinated ligand [24–32]. For the former, 
ligands such as 5-methypyrazine-2-carboxylate (5 mpca) and its corresponding N-oxide 
(Acipimox, 5 mpcaO, Figure 1) may be promising [33]. For the latter, crystallographically 
characterizing those complexes where nitrogen atoms are external to the complex and 
available for oxidation is an appropriate first step.  

Herein, we report rare examples of structurally characterized cyclometallated Ir(III) 
species that have an N-oxide functional group that is not involved in coordination to the 
metal center. Ultimately, our group desires to exploit these compounds as imaging agents. 
In this initial report, we focus on the structural characterization of these derivatives and 
other Ir(III) compounds that can serve as precursors for other unbound N-oxide-contain-
ing transition metal species. Although a number of these other Ir(III) complexes having 

Figure 1. Biologically relevant N-oxide-containing compounds: (a) Tirapazamine is utilized as a
chemotherapeutic [6]; (b) BODIPY dyes are utilized in ratiometric imaging [4,5]; (c) synthetic scheme
for neutral Ir(III) compounds and abbreviations used within.

Recently, transition metal compounds have gained the attention of the scientific com-
munity as imaging agents due to their typically large Stokes shift, long fluorescent lifetimes,
and tunable luminescence [8–10]. To develop other imaging agents, mainly to monitor
hypoxia, we envisioned a strategy that parallels the work of Knox et al. [4,5] using tran-
sition metal compounds that contain N-oxide functional groups instead of BODIPY dyes.
Of interest are cyclometallated Ir(III) systems because of their ability to detect hypoxia
in animals [11]. However, cyclometallated Ir(III) complexes containing external N-oxide
groups on heterocyclic ligands have not been extensively structurally characterized, with
one reported example describing a TEMPO radical [12]. More commonly, Ir(III) complexes
involving a heterocyclic N-oxide ligand coordinate via the oxygen atom of the N-oxide
group [13–19]. The tendency to coordinate the oxygen atom of a heterocyclic N-oxide group
is generally favored in most transition metal complexes [20–23], largely due to the hardness
of the N-oxide as a donor. Strategies for orienting the oxygen atom of the N-oxide group
externally on a metal complex (that is, not coordinated to the metal) may include utilizing
ligands with favorable coordination sites away from the N-oxide or oxidizing the exposed
external nitrogen atom of a coordinated ligand [24–32]. For the former, ligands such as
5-methypyrazine-2-carboxylate (5 mpca) and its corresponding N-oxide (Acipimox, 5 mp-
caO, Figure 1) may be promising [33]. For the latter, crystallographically characterizing
those complexes where nitrogen atoms are external to the complex and available for oxida-
tion is an appropriate first step.

Herein, we report rare examples of structurally characterized cyclometallated Ir(III)
species that have an N-oxide functional group that is not involved in coordination to the
metal center. Ultimately, our group desires to exploit these compounds as imaging agents.
In this initial report, we focus on the structural characterization of these derivatives and
other Ir(III) compounds that can serve as precursors for other unbound N-oxide-containing
transition metal species. Although a number of these other Ir(III) complexes having non-
oxidized external nitrogen atoms have been reported in the synthetic literature, they have
heretofore not been studied crystallographically. Electrochemical data are also presented
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to demonstrate that the presence of an N-oxide functional group can be used to tune the
electronic properties of a transition metal center.

2. Materials and Methods
2.1. General Methods

UV-Vis: The reported molar extinction coefficients were obtained through the same
method for complexes 1–4. An Agilent Cary 60 UV-Vis spectrometer equipped with a
xenon lamp was utilized for data collection. Sample solutions were prepared by weighing
~5 mg of each complex and creating a stock solution using MeOH (100 mL). Aliquots
from this stock solution were used to prepare 90–10% concentrations, yielding a total of
10 solutions. A background was obtained using MeOH in a 1 cm quartz cuvette. Sample
collection was performed at a 24,000 nm/min scan rate within a 300 to 700 nm window.
The absorption maxima at each peak were plotted against a concentration curve to obtain
molar extinction coefficients.

Cyclic voltammograms: Data were recorded using a BASi εpsilon electrochemical
workstation and a BASi cell stand. Conditions for data collection: [Ir]~1 mM in CH2Cl2
(0.1 M TBAPF6, where TBA = tetrabutylammonium), glassy carbon working electrode, and
Ag/Ag+ reference electrode. The x-axis reports voltages vs. ferrocene (FcH) as determined
by running a voltammogram of FcH before and after data collection.

NMR spectra: 1H NMR, 19F NMR, and 31P NMR spectra were recorded on a JEOL ECX
400 MHz spectrometer. 1H NMR resonances were referenced against tetramethylsilane
using residual proton signals. Standards were run for 19F NMR (fluorobenzene) and 31P
NMR (triphenylphosphine) prior to data acquisition: fluorobenzene (−113 ppm, CDCl3,
and d-DMSO) and triphenylphosphine (−6 ppm, d-DMSO). All NMR spectra were acquired
at room temperature (solutions of the complex in CDCl3 for 1–4, and in DMSO-d6 for 6).

HRMS: Mass spectra were obtained with an Agilent accurate-mass 6520B Q-TOF mass
spectrometer operating in positive-ion mode with a 3500 V capillary voltage and 120 V
fragmentor voltage. The dual-spray electrospray ionization (ESI) source operated with a
nebulizer pressure of 40 psi and 340 ◦C N2 drying gas flowing at 12 L/min. The instrument
was calibrated with the Agilent ESI-L tuning mix. During measurements, a reference solu-
tion containing ammonium trifluoroacetate, purine ([M + H]+ 121.0509) and hexakis (1H,
1H, 3H-tetrafluoropropoxy)phosphazine (HP-0921, C18H18F24N3O6P3) ([M + H]+ 922.0098)
was continuously introduced into the ESI source to allow for internal mass calibration.
Samples were introduced into the mass spectrometer, without chromatographic separation,
in a mobile phase consisting of 0.1% formic acid in methanol at a flow rate of 0.300 mL/min.
Mass spectra were analyzed using MassHunter Qualitative Analysis Software (B.06 and
B.08, Agilent, Santa Clara, CA, USA).

2.2. Synthesis

All solvents and reagents were used as received. [(ppy)2Ir(µ-Cl)]2 (where Hppy = 2-
phenylpyridine) and [(dfppy)2Ir(µ-Cl)]2 (where Hdfppy = 2-(2′-4′-difluorophenyl)pyridine)
were prepared according to previously reported methods [34].

General procedure 1 (GP1) for the preparation of Ir(CˆN)2(NˆO) derivatives (where
CˆN = ppy or dfppy and NˆO = a picolinic acid derivate) was as follows: For [(CˆN)2Ir(µ-
Cl)]2, 3 equivalents of the appropriate NˆO ligand, and 6 equivalents of K2CO3 were added
in an oven-dried pressure tube with acetone (~20 mL). After sparging the mixture with
N2, the pressure tube was sealed, and the reaction mixture was heated to 60 ◦C overnight,
(~15 h). After cooling, the solvent was removed from the mixture, and the product was
purified using a SiO2 column and eluted with 5% MeOH/95% CH2Cl2. (Note: the column
was typically packed with CH2Cl2 and CH2Cl2 could be initially used as an eluant to
remove the excess ligand.) Fractions containing the product (as indicated by luminescent
spots on the TLC) were dried in vacuo, resulting in a yellowish powder. The resulting
solid was sonicated with hexanes (~10 mL), collected using vacuum filtration, and washed
with hexanes.



Crystals 2024, 14, 281 4 of 18

Compound 1, GP1: [(dfppy)2Ir(µ-Cl)]2 (0.2004 g, 0.165 mmol), 5-methylpyrazine-2-
carboxylic acid 4-oxide, Acipimox (0.0761 g, 0.494 mmol), K2CO3 (0.1363 g, 0.986 mmol),
and acetone (23 mL) yielded 0.1588 g, 0.219 mmol, 66%. 1H NMR (400 MHz, CDCl3)
δ 8.81 (s, 1H), 8.66 (ddd, J = 5.8, 1.7, 0.8 Hz, 1H), 8.27 (dddd, J = 10.4, 9.2, 2.2, 1.1 Hz,
2H), 7.85–7.76 (m, 2H), 7.64 (ddd, J = 5.8, 1.7, 0.8 Hz, 1H), 7.53–7.49 (m, 1H), 7.24 (ddd,
J = 7.3, 5.8, 1.4 Hz, 1H), 7.06 (ddd, J = 7.4, 5.8, 1.4 Hz, 1H), 6.47 (ddd, J = 12.3, 9.1, 2.4 Hz,
1H), 6.40 (ddd, J = 12.5, 9.1, 2.4 Hz, 1H), 5.78 (dd, J = 8.5, 2.4 Hz, 1H), 5.49 (dd, J = 8.7,
2.4 Hz, 1H), 2.34 (s, 3H). 19F NMR (376 MHz, CDCl3) δ −106 (dd, J = 9.35, 19.38 Hz,
1F), −107 (dd, J = 9.30, 19.47 Hz, 1F), −109 (t, J = 11.57 Hz, 1F), −110 (t, J = 11.91 Hz,
1F). UV-Vis λmax (ε M−1cm−1): 318 nm (16071), 375 (6451.8). HRMS (found, calculated):
[C28H17F4IrN4O3 + H]+ (727.0951, 727.0940), [C28H17F4IrN4O3 + Na]+ (749.0763, 749.0759).
Elemental analysis (found, calculated) for C28H17F4IrN4O3·1/2 H2O, C (45.99, 45.78),
H (2.60, 2.47), N (7.23, 7.63). Crystals were grown using vapor–vapor diffusion using
THF/acetone as the dissolving solvent and pentane as the precipitating solvent.

Compound 2, GP1: [(dfppy)2Ir(µ-Cl)]2 (0.2025 g, 0.167 mmol), 5-methyl-2-pyrazinecarboxylic
acid (0.0694 g, 0.502 mmol), K2CO3 (0.1372 g, 0.992 mmol), and acetone (30 mL) yielded
0.1824 g, 0.257 mmol, 77%. 1H NMR (400 MHz, CDCl3) δ 9.37 (d, J = 1.3 Hz, 1H), 8.70 (ddd,
J = 5.7, 1.6, 0.8 Hz, 1H), 8.31 (dt, J = 8.1, 1.9 Hz, 1H), 8.29–8.24 (m, 1H), 7.82 (ddt, J = 6.7,
5.8, 2.1 Hz, 2H), 7.55 (dd, J = 1.3, 0.6 Hz, 1H), 7.41 (ddd, J = 5.8, 1.6, 0.8 Hz, 1H), 7.23 (ddd,
J = 7.3, 5.8, 1.4 Hz, 1H), 7.02 (ddd, J = 7.3, 5.8, 1.4 Hz, 1H), 6.51 (ddd, J = 12.4, 9.2, 2.4 Hz,
1H), 6.42 (ddd, J = 12.5, 9.2, 2.4 Hz, 1H), 5.81 (dd, J = 8.5, 2.4 Hz, 1H), 5.49 (dd, J = 8.7,
2.4 Hz, 1H), 2.58 (s, 3H). 19F NMR (376 MHz, CDCl3) δ −106 (dd, J = 10.00, 18.88 Hz, 1F),
−107 (dd, J = 10.07, 19.28 Hz, 1F), −109 (t, J = 11.70 Hz, 1F), −110 (t, J = 11.70 Hz, 1F).
UV-Vis λmax (ε M−1cm−1): 313 nm (13741), 371 nm (5154.4). HRMS (found, calculated):
[C28H17F4IrN4O2 + H]+ (711.0999, 711.0991), [C28H17F4IrN4O2 + Na]+ (733.0817, 733.0810).
Elemental analysis (found, calculated) for C28H17F4IrN4O2·1/2 H2O, C (46.76, 46.79),
H (2.48, 2.52), N (7.71, 7.80). Crystals were grown using vapor–vapor diffusion using
CH2Cl2/acetone as the dissolving solvent and pentane as the precipitating solvent.

Compound 3, GP1: [(ppy)2Ir(µ-Cl)]2 (0.5012 g, 0.467 mmol), 5-methylpyrazine-2-
carboxylic acid 4-oxide, Acipimox (0.2163 g, 1.403 mmol), K2CO3 (0.3887 g, 2.812 mmol),
and acetone (42 mL) yielded 0.4285 g, 0.655 mmol, 70%. 1H NMR (400 MHz, CDCl3) δ 8.85
(s, 1H), 8.73 (ddd, J = 5.8, 1.6, 0.8 Hz, 1H), 7.89 (ddt, J = 12.2, 8.1, 1.2 Hz, 2H), 7.80–7.74
(m, 2H), 7.66–7.57 (m, 3H), 7.49 (t, J = 0.7 Hz, 1H), 7.20 (ddd, J = 7.3, 5.8, 1.4 Hz, 1H), 7.03
(ddd, J = 7.3, 5.8, 1.4 Hz, 1H), 6.95 (td, J = 7.5, 1.2 Hz, 1H), 6.88 (td, J = 7.5, 1.2 Hz, 1H), 6.82
(td, J = 7.4, 1.4 Hz, 1H), 6.76 (td, J = 7.4, 1.4 Hz, 1H), 6.38 (dd, J = 7.7, 1.2 Hz, 1H), 6.12 (dd,
J = 7.7, 1.2 Hz, 1H), 2.31 (s, 3H). UV-Vis λmax (ε M−1cm−1): 348 nm (11569), 396 (6311.4),
448 nm (2877.5). HRMS (found, calculated): [C28H21IrN4O3 + H]+ (655.1323, 655.1317),
[C28H21IrN4O3 + Na]+ (677.1141, 677.1136). Elemental analysis (found, calculated) for
C28H21IrN4O3·4/3 H2O, C (49.59, 49.62), H (3.39, 3.52), N (8.11, 8.27). Crystals were grown
using vapor–vapor diffusion using CH2Cl2 as the dissolving solvent and pentane as the
precipitating solvent.

Compound 4, GP1: [(ppy)2Ir(µ-Cl)]2 (0.5001 g, 0.467 mmol), 5-methyl-2-pyrazinecarboxylic
acid (0.1936 g, 1.402 mmol), K2CO3 (0.3870 g, 2.800 mmol), and acetone (40 mL) yielded
0.5193 g, 0.814 mmol, 87%. 1H NMR (400 MHz, CDCl3) δ 9.35 (d, J = 1.3 Hz, 1H), 8.73 (ddd,
J = 5.8, 1.6, 0.8 Hz, 1H), 7.90 (dt, J = 8.2, 1.2 Hz, 1H), 7.86 (dt, J = 8.2, 1.2 Hz, 1H), 7.78–7.71
(m, 2H), 7.62 (dd, J = 7.7, 1.4 Hz, 1H), 7.59 (dd, J = 7.8, 1.4 Hz, 1H), 7.54 (dd, J = 1.3, 0.6 Hz,
1H), 7.46 (ddd, J = 5.8, 1.6, 0.7 Hz, 1H), 7.17 (ddd, J = 7.3, 5.8, 1.4 Hz, 1H), 7.01–6.91 (m,
2H), 6.87 (td, J = 7.5, 1.2 Hz, 1H), 6.82 (td, J = 7.4, 1.4 Hz, 1H), 6.76 (td, J = 7.4, 1.4 Hz, 1H),
6.39 (dd, J = 7.6, 1.2 Hz, 1H), 6.12 (dd, J = 7.6, 1.2 Hz, 1H), 2.50 (s, 3H). UV-Vis λmax (ε
M−1cm−1): 346 nm (9509.8), 393 nm (5335.3), 429 nm (3843.2). HRMS (found, calculated):
[C28H21IrN4O2 + H]+ (639.1379, 639.1368), [C28H21IrN4O2 + Na]+ (661.1187, 661.1187).
Elemental analysis (found, calculated) for C28H21IrN4O2·3/2 H2O, C (50.66, 50.59), H (3.48,
3.64), N (8.32, 8.43). Crystals were grown using vapor–vapor diffusion using CH2Cl2 as the
dissolving solvent and hexanes as the precipitating solvent.
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Compound 5 was prepared according to a procedure reported in the literature (similar
to GP1) and 1H NMR data matched previously reported data for this compound; see
Ref. [35]. Crystals were grown using vapor–vapor diffusion using CH2Cl2 as the dissolving
solvent and hexanes as the precipitating solvent.

General procedure 2 (GP2) for the preparation of [Ir(CˆN)2(NˆN)]PF6 compounds
(where CˆN = ppy or dfppy and NˆN = a 2,2′-bipyridine derivative) was adapted from meth-
ods previously reported in the literature; see Ref. [36]. [(CˆN)2Ir(µ-Cl)]2 and 2.2 equivalents
of the appropriate NˆN ligand were added to a dry flask with ethylene glycol (~10 mL).
The heterogeneous mixture was heated to 150 ◦C under N2 for 16–24 h. After cooling to
room temperature, a saturated, aqueous solution of NH4PF6 (10 mL) was added to the
resulting solution to precipitate the product. The precipitate was collected using vacuum
filtration and washed with H2O (3 × 15 mL) and Et2O (3 × 15 mL), and the collected solid
was dried in vacuo.

Compound 6, GP2: [(dfppy)2Ir(µ-Cl)]2 (0.2432 g, 0.200 mmol), 2,2’-bipyrazine (0.0696 g,
0.440 mmol), and ethylene glycol (10 mL) yielded 0.3267 g, 0.373 mmol, 93%. 1H NMR
(400 MHz, DMSO-d6) δ 10.26 (s, 2H), 8.91 (d, J = 3.1 Hz, 2H), 8.29 (d, J = 8.5 Hz, 2H), 8.06 (t,
J = 8.0 Hz, 2H), 7.98 (d, J = 3.1 Hz, 2H), 7.82 (d, J = 5.8 Hz, 2H), 7.22 (t, J = 6.8 Hz, 2H),
7.02 (ddd, J = 12.2, 9.4, 2.4 Hz, 2H), 5.56 (dd, J = 8.4, 2.4 Hz, 2H). 19F NMR (376 MHz, DMSO-
d6) δ −70 (d, J = 710.75 Hz, PF6

−), −106 (dd, J = 10.05, 19.19 Hz, 2F), −108 (t, J = 11.36 Hz,
2F). 31P NMR (162 MHz, DMSO-d6) δ −144 ppm (sept, J = 710.86 Hz, PF6

−). HRMS (found,
calculated): [C30H18F4IrN6]+ (731.1162, 731.1154). Elemental analysis (found, calculated)
for C30H20F10IrN6OP·H2O, C (40.67, 40.32), H (1.97, 2.26), N (9.21, 9.40). Crystals were
grown using vapor–vapor diffusion using CH2Cl2 as the dissolving solvent and Et2O as
the precipitating solvent (plate-like crystals of 6·DCM) or layering a solution of compound
6 in CH2Cl2 with Et2O (tabular crystals of 6·0.5(DCM),0.5(Et2O)).

Compound 7, GP2:1H NMR data matched previously reported data for this com-
pound [37]. Crystals were grown by layering a solution of compound 7 in CH2Cl2 with
acetone followed by Et2O.

Compound 8, GP2:1H NMR data matched previously reported data for this com-
pound [38]. Crystals were grown using vapor–vapor diffusion using CH2Cl2 as the dissolv-
ing solvent and Et2O as the precipitating solvent.

2.3. Single-Crystal X-ray Diffraction

Single-crystal X-ray diffraction data were collected at 100 K using a Bruker D8 Venture
diffractometer. The data were collected using phi and omega scans (0.50◦ oscillations)
with a Mo Kα (λ = 0.71073 Å) microfocus source and Photon 2 detector. Data were pro-
cessed (SAINT) and corrected for absorption using the multi-scan approach (SADABS),
both within the Apex3 suite [39]. The structures were solved by intrinsic phasing and
subsequently refined by full-matrix least squares on F2 using the SHELXTL (2016/6) soft-
ware package [40]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms
attached to carbon atoms were refined in calculated positions using the appropriate riding
models. Most of the complexes studied were found to crystallize as solvates: 1 with dis-
ordered THF, 2 with disordered CH2Cl2 and H2O, 3 with CH2Cl2, 4 with CH2Cl2, 6 with
CH2Cl2 or disordered CH2Cl2 and disordered Et2O, and 7 with CH2Cl2. Typical similarity
restraints were employed to best model disordered solvent molecules having low site
occupancy factors. Complete refinement details are summarized in Tables 1 and 2. CCDC
2335789-2335797 contain the supplementary crystallographic data for this paper and can be
obtained from the Cambridge Crystallographic Data Centre.
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Table 1. Crystallographic data for complexes 1–4.

1·
1.25(THF)

2·
0.5(DCM),0.5(H2O)

3·
2(DCM)

4·
2(DCM)

Formula C33H27F4IrN4O4.25 C28.5H19ClF4IrN4O2.5 C30H25Cl4IrN4O3 C30H25Cl4IrN4O2
F. W. (g/mol) 815.78 761.13 823.54 807.54

Temperature (K) 100 100 100 100
Crystal system triclinic monoclinic monoclinic monoclinic

Space group P-1 P21/c P21 P21

a (Å) 12.0056 (9) 20.1167 (11) 9.3656 (5) 9.3682 (6)
b (Å) 13.9227 (10) 16.8038 (10) 16.9853 (8) 16.9395 (10)
c (Å) 21.5251 (15) 17.1342 (9) 9.5139 (5) 9.4088 (5)
α (◦) 84.548 (3) 90 90 90
β (◦) 81.768 (3) 107.127 (2) 91.2046 (18) 91.347 (2)
γ (◦) 87.722 (3) 90 90 90

Volume (Å3) 3543.5 (4) 5535.1 (5) 1513.11 (13) 1492.69 (15)
Z 4 8 2 2

D(calcd) (g/cm3) 1.529 1.827 1.808 1.797
µ, mm−1 3.829 4.984 4.804 4.866

F(000) 1600 2944 804 788
Cryst. Size (mm) 0.12 × 0.17 × 0.26 0.12 × 0.15 × 0.23 0.05 × 0.15 × 0.18 0.16 × 0.21 × 0.22

θ range,◦ 2.23 to 30.09 2.22 to 30.08 2.14 to 29.62 2.18 to 30.06
Reflns. collected 248152 137437 32766 33335

Indep. reflns. 20781 16232 8406 8622
R(int) 0.0388 0.0589 0.0374 0.0370

No. of parameters 904 794 381 372
No. of restraints 224 92 1 1

R indices (I > 2σ(I)) R1 = 0.0362
wR2 = 0.1153

R1 = 0.0364
wR2 = 0.0778

R1 = 0.0204
wR2 = 0.0439

R1 = 0.0164
wR2 = 0.0376

R indices
(all data)

R1 = 0.0409
wR2 = 0.1205

R1 = 0.0504
wR2 = 0.0872

R1 = 0.0236
wR2 = 0.0463

R1 = 0.0175
wR2 = 0.0396

S 1.109 1.111 1.038 0.946
Abs. struct. param. (Flack) - - 0.009(3) 0.015(3)

Largest diff. peak/hole (eÅ−3) 2.623, −1.480 2.151, −2.036 1.495, −1.157 0.769, −0.699
CCDC dep. no. 2335789 2335790 2335791 2335792

Table 2. Crystallographic data for complexes 5–8.

5 6·
(DCM)

6·
0.5(DCM), 0.5(Et2O)

7·
(DCM) 8

Formula C27H15F4IrN4O2 C31H20Cl2F10IrN6P C32.5H24ClF10IrN6O0.5P C37H32Cl2F10IrN6P C30H22F6IrN6P
F. W. (g/mol) 695.63 960.60 955.20 1044.75 803.70

Temperature (K) 100 100 100 100 100
Crystal system triclinic monoclinic triclinic triclinic orthorhombic

Space group P-1 P21/c P-1 P-1 Pbca
a (Å) 8.8150 (6) 9.6985 (8) 13.8002 (6) 8.6227 (9) 10.8324 (4)
b (Å) 12.0339 (10) 24.7164 (18) 14.3504 (6) 13.5061 (13) 16.0987 (6)
c (Å) 22.3146 (17) 13.7261 (9) 17.3147 (8) 16.6738 (15) 31.5748 (10)
α (◦) 87.528 (3) 90 72.193 (2) 104.272 (3) 90
β (◦) 79.542 (3) 93.775 (3) 89.145 (2) 94.651 (4) 90
γ (◦) 89.854 (3) 90 89.584 (2) 90.132 (4) 90

Volume (Å3) 2325.6 (3) 3283.2 (4) 3264.3 (3) 1875.2 (3) 5506.3 (3)
Z 4 4 4 2 8

D(calcd) (g/cm3) 1.987 1.943 1.944 1.850 1.939
µ, mm−1 5.808 4.370 4.316 3.834 4.983

F(000) 1336 1856 1856 1024 3120
Cryst. Size (mm) 0.08 × 0.08 × 0.12 0.03 × 0.11 × 0.17 0.06 × 0.12 × 0.20 0.08 × 0.26 × 0.28 0.06 × 0.12 × 0.14

θ range,◦ 2.35 to 26.50 2.10 to 25.50 2.10 to 25.50 2.24 to 27.94 2.36 to 26.00
Reflns. collected 81813 56722 68954 63741 53413

Indep. reflns. 9631 6099 12132 8981 5404
R(int) 0.0475 0.0468 0.0374 0.0401 0.0576

No. of parameters 685 460 982 518 397
No. of restraints 0 0 139 0 0

R indices (I > 2σ(I)) R1 = 0.0214
wR2 = 0.0419

R1 = 0.0409
wR2 = 0.0865

R1 = 0.0404
wR2 = 0.0839

R1 = 0.0242
wR2 = 0.0561

R1 = 0.0319
wR2 = 0.0599

R indices
(all data)

R1 = 0.0283
wR2 = 0.0464

R1 = 0.0498
wR2 = 0.0935

R1 = 0.0513
wR2 = 0.0944

R1 = 0.0274
wR2 = 0.0587

R1 = 0.0478
wR2 = 0.0707

S 1.191 1.067 1.100 1.123 1.219
Largest diff. peak/hole

(eÅ−3)
1.215, −0.938 1.811, −1.148 2.044, −1.501 1.534, −1.109 2.742, −1.650

CCDC dep. no. 2335793 2335794 2335795 2335796 2335797

3. Results and Discussion
3.1. Synthesis of Iridium(III) N-oxide Complexes

To generate N-oxide derivates in which the N-oxide is not coordinated to the metal
center, chlorobridged-Ir(III) dimers, [(dfppy)2Ir(µ-Cl)]2, and [(ppy)2Ir(µ-Cl)]2 were heated
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in the presence of 5-methylpyrazine-2-carboxylic acid 4-oxide (Acipimox) and K2CO3 using
acetone as a solvent (Scheme 1), generating compound 1 and 3. The same strategy was uti-
lized to develop the non-N-oxide analogs, exploiting 5-methyl-2-pyrazinecarboxylic acid as
the NˆO chelating ligand, generating compounds 2 and 4 (Scheme 1). This strategy resulted
in no observable N-oxide metal coordination and the formation of one major product. The
purity of all of these newly synthesized compounds was verified by elemental analysis,
and their composition was supported by HRMS (Supporting Information, Figures S1–S5).
Xing et al. also utilized the Acipimox ligand to generate Co(II) and Zn(II) coordination
compounds and only observed one major species, where the selective coordination of the
Acipimox ligand is due to the chelation effect imposed by the nitrogen and carboxylate
formed in situ [33].
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Scheme 1. Generation of neutral heteroleptic Ir(III) compounds containing N-oxides (1 and 3) and
their non-N-oxide congeners (2 and 4). R = F or H and L = 5-methyl-2-pyrazinecarboxylic acid,
Acipimox, or 2-pyrazinecarboxylic acid (for compound 5).

Prior to exploiting N-oxide-containing ligands to append this functional group to
Ir(III) compounds, we initially attempted to form the N-oxide by derivatizing synthesized
Ir(III) species with uncoordinated nitrogen atoms. We envisioned oxidizing these nitrogen
atoms with common oxidants often utilized to form N-oxides (e.g., mCPBA) [41]. Initial
attempts have been unsuccessful; however, we are continuing to screen other oxidants for
this strategy. Many of these species, such as compound 5 (Scheme 1) and compounds 6–8
(Scheme 2), have been previously synthesized but not characterized crystallographically.

The procedures to generate cationic Ir(III) compounds of the form [Ir(CˆN)2(NˆN)]PF6
(where CˆN = ppy or dfppy and NˆN = a 2,2′-bipyridine derivative) exploited the cleavage
of chlorobridged-Ir(III) dimers with neutral bidentate ligands (Scheme 2). For instance,
heating [(dfppy)2Ir(µ-Cl)]2 and 2,2′-bipyrazine in ethylene glycol followed by the precipita-
tion of the corresponding PF6

− salt using NH4PF6 (sat. aq.) afforded the heteroleptic Ir(III)
compound, 6, which was verified by NMR, HRMS, and EA. Cationic compounds 7 and
8 have been previously reported in the literature, and we utilized 1H-NMR spectroscopy
to initially verify product formation, which was later supported by full crystallographic
characterization. Future efforts will focus on functionalizing the uncoordinated nitrogen
atoms in these species to N-oxides (vide infra).
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Scheme 2. Generation of cationic heteroleptic Ir(III) compounds for crystallographic characterization
and to serve as precursors to N-oxides (R = F or H and L = 2,2′-bipyrazine or 4,4′di(dimethylamino)-
2,2′-bipyridine).

1H-NMR spectra of compounds 1–8 contained many key features that are worth
describing (Supporting Information, Figures S6–S10). In the previously reported cationic
Ir(III) complexes (6–8), the innate symmetry of these molecules afforded nine (compound
6), ten (compound 7), and eleven (compound 8) 1H-resonances. The presence of the
2-2′-bipyazine afforded many deshielded 1H-resonances (~8 ppm) in compounds 6 and
8. For compound 7, the four equivalent homotopic methyl groups on the -NMe2 groups
served as a key feature at ~3 ppm. Likewise, in compounds 1–4, where all of the bidentate
ligands surrounding the metal became inequivalent due to the asymmetry imposed by the
NˆO chelating ligands, the methyl groups served as a valuable spectroscopic handle. In
compounds 1–4, the methyl group on the 2-pyrazinecarboxylic acid portion of the molecule
provided distinct resonances at 2.34 ppm (compound 1), 2.58 ppm (compound 2), 2.31 ppm
(compound 3), and 2.50 ppm (compound 4). Even prior to structural validation from X-ray
data, this indicated that only one major product had been synthesized in each case.

3.2. Structural Comparison of Iridium(III) N-oxide Complexes with Comparable Iridium(III)
Complexes with Non-oxidized Ligands, 1–4

In all four complexes, iridium is a six-coordinate metal center, coordinating two
atoms from each ligand and accumulating to the [Ir(C2N3O)] coordination (Figure 2). The
bidentate coordination of the 5mpcaO and 5mpca ligands in all four complexes occurs
through one of the carboxylate oxygen atoms and its nearest nitrogen atom, leaving the
N-oxide (in 1 and 3) or its corresponding bare nitrogen atom (in 2 and 4) exposed. Each of
the ligands is monoanionic, stabilizing the Ir(III) oxidation state. In 1 and 2, the asymmetric
units consist of two unique Ir(III) complexes as well as disordered THF and CH2Cl2
molecules, respectively. In 3 and 4, the asymmetric units contain only one unique Ir(III)
complex and two well-ordered CH2Cl2 molecules.

The six-coordinate Ir(III) in each complex is a distorted octahedron (Table 3). The
angular distortion is similar for all of the octahedra, with complex 1 exhibiting the extremes
of the trans-angles for the series, ranging from 169.52(14)◦ to 175.83(13)◦. The complexes
also all show a significant trans-effect in the Ir-O and Ir-N bond lengths for the 5mpcaO
and 5mpca ligands, whose oxygen and nitrogen atoms occur opposite the coordinated
carbon atoms of the difluorophenylpyridine (dfppy) and phenylpyridine (ppy) ligands.
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The trans-effects of similar magnitudes are observed in other iridium complexes of dfppy
and ppy [42–44]. The N-O distances in 1 and 3 are similar to those of the Co(II) and Zn(II)
complexes with 5mpcaO, [Co(5mpcaO)2(H2O)2]·2H2O and [Zn(5mpcaO)2(H2O)2]·2H2O,
respectively, which are to our knowledge the only other metal complexes of 5mpcaO to
be characterized crystallographically [33]. These distances are on the shorter end of the
N-O bond lengths surveyed in the literature for molecular N-oxide crystals [45], indicating
some contribution of the N+=O resonance form in the Ir(III)-complexed ligand (Supporting
Information, Figure S11). Complexes such as 2 and 4 involving the non-oxidized 5mpca
ligand are somewhat more common in the structural literature, including one iridium
complex of 5mpca and two 3,5-bis(trifluoromethyl)phenyl ligands [46]. A similar trans-
influence to that found in 2 and 4 affecting the Ir-O and Ir-N bond lengths is observed in
that structure.
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Figure 2. Crystal structure of complexes 1–4, shown as 50% probability ellipsoids. Iridium atoms
are dark blue, carbon atoms are gray, nitrogen atoms are purple, oxygen atoms are red, and fluorine
atoms are lime green. Hydrogen atoms and solvent molecules are omitted for clarity. For complexes
1 and 2, where two similar but crystallographically unique complexes occur in the asymmetric unit,
only one complex is shown as a representative example.

Table 3. Selected interatomic distances (Å) and angles (◦) in 1–4.

Bond 1 2 3 4

Ir-O 2.151 (3)
2.156 (3)

2.150 (3)
2.155 (3) 2.177 (2) 2.1699 (18)

Ir-N 2.141 (3)
2.126 (4)

2.114 (4)
2.131 (4) 2.138 (3) 2.136 (3)

Ir-Ndfppy/ppy

2.039 (3)
2.043 (3)
2.040 (4)
2.045 (4)

2.021 (3)
2.052 (3)
2.045 (4)
2.045 (4)

2.040 (3)
2.052 (4)

2.036 (3)
2.048 (3)

Ir-Cdfppy/ppy
(trans O)

1.993 (4)
1.987 (5)

1.991 (4)
1.996 (4) 1.995 (4) 1.994 (3)

Ir-Cdfppy/ppy
(trans N)

2.001 (4)
2.003 (5)

2.002 (4)
1.999 (4) 1.999 (4) 2.002 (3)

N-O 1.283 (5)
1.279 (8) - 1.283 (5) -

O-Ir-C
(trans)

175.83 (13)
175.17 (16)

172.18 (14)
174.21 (14) 172.6 (2) 172.89 (16)

N-Ir-C
(trans)

169.52 (14)
170.8 (2)

172.54 (14)
175.37 (16) 171.52 (15) 171.32 (12)

N-Ir-N
(trans)

174.92 (13)
172.29 (16)

172.85 (15)
174.90 (14) 173.45 (13) 172.40 (11)

The exposure of the N-oxide or its corresponding bare nitrogen atom on the outside
of the complex is influential in establishing the intermolecular interactions and packing
patterns that are observed in 1–4. In 1, the N-oxide oxygen atoms maintain short O···π
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contacts between symmetry-equivalent complexes to form dimers, which then associate
through C-H···O interactions with the N-oxide oxygen atoms of the second unique com-
plex (Figure 3). An offset π···π stacking interaction further stabilizes the central dimer.
The resulting clusters then assemble into a three-dimensional network via additional
C-H···Ocarboxylate interactions. The space between the complexes in 1 is occupied by disor-
dered THF molecules (Supporting Information, Figure S12). In 2, the bare nitrogen atom
of the 5mpca ligand of one of the unique complexes acts as an acceptor for a C-H···N
interaction originating from the second unique complex (Figure 3), with the interaction
connecting neighboring complexes along [1 0 -1]. The bare nitrogen atom of this second
complex, however, does not maintain any short intermolecular contact with neighboring
complexes. Additional C-H···Ocarboxylate, C-H···F, and π···π interactions further extend the
packing structure to three dimensions, where voids are occupied by water molecules and
disordered CH2Cl2 molecules (Supporting Information, Figure S13). The water molecules
facilitate hydrogen bonding interactions that bridge the uncoordinated carboxylate oxygen
atoms of neighboring complexes along the a-axis.
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Figure 3. Intermolecular interactions involving the N-oxide and bare nitrogen atoms of complexes
1 and 2. C-H···O and C-H···N interactions are shown as dashed blue lines, while O···π and π···π
interactions are shown as dashed magenta lines to the nearest carbon atom. Iridium atoms are dark
blue, carbon atoms are gray, nitrogen atoms are purple, oxygen atoms are red, fluorine atoms are
lime green, and hydrogen atoms are white.

Complexes 3 and 4 crystallized with an identical solvent content of two CH2Cl2
molecules per complex. Despite their similar compositions, space groups, and unit cell
parameters (the unit cell volume of 3 is only about 1.4% larger than that of the non-oxidized
4), subtle perturbations are observed in the packing structure exerted by the oxygen atom
in 3 compared to the bare nitrogen atom in 4. The N-oxide in 3 acts as a C-H···O acceptor
for two neighboring complexes and a Cl···O halogen bond acceptor (Cl···O = 2.963(6) Å,
normalized halogen bond length = 0.89) for one of the CH2Cl2 molecules (Figure 4). The
C-H···O interactions, in particular, extend the intermolecular motif into a two-dimensional
sheet parallel to (1 0 1). Additional C-H···Ocarboxylate and C-H···π interactions further ex-
tend the long-range structure to three dimensions, accommodating the additional CH2Cl2
molecules (Supporting Information, Figure S14). Complex 4 appears to adopt the opposite
relative chirality in space group P21, and there are subtle positional differences of neighboring
molecules compared to 3 that favor C-H···π interactions since the equivalent C-H···O inter-
actions to the N-oxide in 3 are no longer operable in 4 (Figure 4). An equivalent C-H···N
interaction to the bare nitrogen atom does not appear to be enabled. Likewise, the nearest
CH2Cl2 molecule is arranged toward a Cl···π interaction rather than Cl···N (even though
nitrogen is typically a good halogen bond acceptor) now that the Cl···O interaction is removed.
The packing is extended into three dimensions by the continuation of the numerous C-H···π
interactions as well as C-H···Ocarboxylate interactions, again accommodating the cocrystallized
CH2Cl2 molecules (Supporting Information, Figure S15).
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Figure 4. Selected intermolecular interactions in complexes 3 and 4. C-H···O, C-H···N, and Cl···O
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dashed magenta lines to the nearest carbon atom. Iridium atoms are dark blue, carbon atoms are gray,
nitrogen atoms are purple, oxygen atoms are red, chlorine atoms are green, and hydrogen atoms
are white.

3.3. Electronic Characterization of 1–4

To better understand the electronics of compounds 1–4, the cyclic voltammograms of
each species were obtained (Figure 5). Based on literature precedent, we assigned the features
at positive potentials to an IrIII/IrIV oxidation [47]. The potentials of these features depend on
what cyclometallating ligand was utilized. For instance, when the electron-deficient 2-(2′,4′-
difluorophenyl)pyridine is used as a cyclometallating ligand, the metal center’s oxidation
occurs at a more positive potential (e.g., compound 1) as compared to when phenylpyridine is
used as a cyclometallating ligand (e.g., compound 3). The reversible anodic features appearing
between −1.84 and −2.00 V were assigned to the reduction of the pyrazinecarboxylic acid
ligands based on literature precedent [48]. In compounds 1 and 3, the presence of an N-
oxide anodically shifts the reduction potential. For instance, in comparing compounds 1
and 2, the reversible reduction feature occurs at −1.84 and −1.99 V, respectively. Based on
electrochemical data, this suggests that the N-oxide is acting as an electron-withdrawing
group. This is of importance because although the oxygen is inductively withdrawing, it can
act as an electron-donating group based on resonance (Figure S11).
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3.4. Structural Characterization of Iridium(III) Complexes with Additional Exposed Nitrogen
Atoms 5–8

The Ir(III) complexes 5–8 adopt similar six-coordinate environments to those in 1–4
(Figure 6). Each is coordinated in a bidentate fashion by three ligands. The dfppy ligands of
5–7, the ppy ligands of 8, and the pyrazine carboxylic acid ligand of 5 are all monoanionic,
while the bipyrazine (bpz) ligands of 6 and 8 and the di(dimethylamino)-2,2’-bipyridine
ligand of 7 are neutral. In this way, the resulting complexes with Ir(III) are neutral in the
case of 5 and monocationic in the case of 6–8. Complexes 6–8 therefore crystallize as [PF6]−

salts. Furthermore, complex 6 was obtained as two different solvates having two slightly
different solvent contents that resulted in packing differences. All the complexes exhibit a
trans-lengthening effect for Ir-N (and Ir-O in the case of 5) bonds that are trans to the Ir-C
bonds to dfppy or ppy ligands (Table 4).
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Figure 6. Crystal structure of complexes 5–8, shown as 50% probability ellipsoids. Iridium atoms
are dark blue, carbon atoms are gray, nitrogen atoms are purple, oxygen atoms are red, and fluorine
atoms are lime green. Hydrogen atoms and solvent molecules are omitted for clarity. Two renderings
are given for complex 6, derived from the two different solvate crystal structures obtained for 6. For
complexes 5 and 6·0.5(DCM),0.5(Et2O), where two similar but crystallographically unique complexes
occur in the asymmetric unit, only one complex is shown as a representative example.

The pyrazine-2-carboxylate ligand of 5 is fairly common among mixed-ligand metal co-
ordination chemistry, including the full structural characterization of cyclometallated Ir(III)
complexes with 2-(3-phenylquinoxalin-2-yl)phenyl [49], 2-(1,3-benzoxazol-2-yl)phenyl [50],
9-(pyridine-2-yl)-9H-carbazol-1-yl [51], and 3,5-difluoro-2-(4-methylpyridin-2-yl)phenyl
ligands [52]. Complexes in 5 assemble in chains via cooperative C-H···O, C-H···N, C-H···π,
and π···π interactions involving two crystallographically unique complexes (Figure 7). At
the center of this chain is an offset π···π stacking interaction between the pyrazine regions
of symmetry-equivalent Ir2 complexes (plane-to-plane distance of 3.29 Å) similar to that
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observed in the bis(3,5-difluoro-2-(4-methylpyridin-2-yl)phenyl)-pyrazine-2-carboxylato)-
Ir(III) complex [52]. The exposed nitrogen atom of the pyrazine region of the second unique
complex, Ir1, forms the C-H···N interaction with the Ir2 complex. An offset π overlap
between dfppy ligands of neighboring Ir1 complexes is also prevalent. Additionally, com-
plementary C-H···O, C-H···F, and C-H···π interactions extend the long-range packing to
three dimensions (Supporting Information, Figure S16).

Table 4. Selected interatomic distances (Å) and angles (◦) in 5–8.

Bond 5 6
(DCM)

6
0.5(DCM),0.5(Et2O) 7 8

Ir-O 2.154 (2)
2.155 (2) - - - -

Ir-N 2.138 (3)
2.136 (3)

2.132 (5)
2.133 (5)

2.112 (5)
2.125 (5)
2.125 (5)
2.126 (5)

2.131 (2)
2.135 (2)

2.135 (4)
2.141 (4)

Ir-Ndfppy/ppy

2.023 (3)
2.047 (3)
2.030 (3)
2.041 (4)

2.046 (5)
2.047 (5)

2.054 (5)
2.057 (5)
2.048 (6)
2.053 (6)

2.034 (3)
2.037 (2)

2.052 (4)
2.052 (4)

Ir-Cdfppy/ppy

1.993 (3)
2.012 (3)
1.995 (3)
2.002 (4)

1.998 (7)
2.012 (7)

1.998 (7)
2.028 (6)
2.012 (6)
2.016 (6)

2.016 (3)
2.016 (3)

2.016 (6)
2.022 (5)

O-Ir-C
(trans)

174.81 (12)
173.78 (12) - - - -

N-Ir-C
(trans)

171.94 (11)
172.56 (12)

171.1 (2)
175.6 (2)

172.6 (2)
170.8 (2)
172.4 (2)
175.4 (2)

171.25 (10)
174.75 (10)

172.37 (17)
175.70 (19)

N-Ir-N
(trans)

172.12 (11)
173.16 (12) 171.6 (2) 173.3 (2)

172.9 (2) 171.97 (10) 172.81 (16)
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ands of a neighboring complex (Figure 8). Numerous short C-H···F interactions to the 
[PF6]- anions, C-H···Cl interactions to the CH2Cl2 solvent molecules, and C-F···π contacts 
between neighboring complexes complete the three-dimensional packing network (Sup-
porting Information, Figure S17). In 6·0.5(DCM),0.5(Et2O), a similar dimeric coupling of 
complexes via C-H···N occurs between symmetry-equivalent Ir1 complexes (Figure 8). In 
this case, the second unique complex, Ir2, appends to these dimers via C-H···N, where the 
accepting nitrogen atom is the second external nitrogen atom on the bpz ligand of Ir1. In 
this way, both nitrogen atoms of the bpz ligand of Ir1 are involved in intermolecular short 

Figure 7. Intermolecular interactions involving the formation of chains in 5. C-H···O and C-H···N
interactions are shown as dashed blue lines, while C-H···π and π···π interactions are shown as
dashed magenta lines to the nearest carbon atom. Iridium atoms are dark blue, carbon atoms are
gray, nitrogen atoms are purple, oxygen atoms are red, fluorine atoms are lime green, and hydrogen
atoms are white.
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In 6·(DCM), complexes form dimers through C-H···N interactions involving one
of the dfppy ligands of one complex and one of the external nitrogen atoms of the bpz
ligands of a neighboring complex (Figure 8). Numerous short C-H···F interactions to the
[PF6]− anions, C-H···Cl interactions to the CH2Cl2 solvent molecules, and C-F···π con-
tacts between neighboring complexes complete the three-dimensional packing network
(Supporting Information, Figure S17). In 6·0.5(DCM),0.5(Et2O), a similar dimeric coupling
of complexes via C-H···N occurs between symmetry-equivalent Ir1 complexes (Figure 8).
In this case, the second unique complex, Ir2, appends to these dimers via C-H···N, where
the accepting nitrogen atom is the second external nitrogen atom on the bpz ligand of Ir1.
In this way, both nitrogen atoms of the bpz ligand of Ir1 are involved in intermolecular
short contacts, while neither of the nitrogen atoms of the bpz ligand of Ir2 feature short
contacts. The result is a finite four-complex chain. Numerous other short contacts (C-H···O,
C-H···F, C-H···Cl, and C-H···π) to neighboring finite chains, [PF6]− anions, and solvent
molecules extend the packing structure (Supporting Information, Figure S18). By compar-
ison, only one cyclometallated Ir(III) complex involving a bpz ligand has been reported
with full crystallographic characterization, that of (2,2′-bipyrazine)-bis(2-pyridin-2-yl)-4,6-
bis(trifluoromethyl)phenyl-iridium hexafluorophosphate [53]. Neighboring complexes in
that structure do not form C-H···N dimers but rather form continuous chains of C-H···N
interactions. That behavior is more similar to what is observed in 8, where C-H···N in-
teractions form chains along the a-axis (Figure 8). Neighboring chains are then related
primarily through C-H···π interactions or the [PF6]− anion via C-H···F contacts, facilitat-
ing the long-range packing (Supporting Information, Figure S20). We would note that
the differing solvent content in 6·(DCM) versus 6·0.5(DCM),0.5(Et2O) led to significant
packing differences and long-range interactions in these structures. This likely occurs since
the DCM and Et2O solvent molecules do not overlap with each other (as they might be if
6·(DCM) and 6·0.5(DCM),0.5(Et2O) were isostructural) but instead occupy unique sites
in the lattice. Et2O is disordered over two orientations in 6·0.5(DCM),0.5(Et2O), but these
orientations overlap with one another with a unity sum rather than disordered with DCM,
which is fully ordered in its own position. The 0.5(DCM) and 0.5(Et2O) solvent content thus
results from the occurrence of two unique Ir(III) complexes in the asymmetric unit, one
unique DCM molecule, and two half-occupied overlapping Et2O molecules. We postulate
that Et2O was able to be introduced in the crystals of 6·0.5(DCM),0.5(Et2O) because of the
locally higher Et2O concentrations present at the solvent interface in the solvent-layering
experiment compared to the vapor diffusion experiment that produced 6·(DCM).
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The crystal structures of four cyclometallated Ir(III) complexes involving the
4,4′di(dimethylamino)-2,2′-bipyridine ligand are reported in the literature, in complexes
having the additional 2-pyridin-2yl)thien-3-yl [54], 5-formyl-2-(pyridin-2-yl)phenyl [55], 3,5-
difluoro-2-(1H-pyrazol-1-yl)phenyl [56], or 3,5-difluoro-2-(2-methyl-2H-tetrazol-5-yl)phenyl
ligands [57]. Since the external nitrogen atoms of the 4,4′di(dimethylamino)-2,2′-bipyridine
ligand are occupied by methyl groups, the packing structure of 7 is generated through a
complex network of π ···π and C-H···π interactions (Figure 9). The voids between the bulky
complexes are occupied by CH2Cl2 molecules and [PF6]− anions, which facilitate additional
C-H···Cl and C-H···F interactions to further stabilize the structure (Supporting Information,
Figure S19).
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4. Conclusions

We synthesized and characterized two rare examples of cyclometallated Ir(III) com-
pounds containing the N-oxide functional group, where the N-oxide is not coordinated to
the metal center. Electrochemical analysis results indicate that the N-oxide functional group
acts as an electron-withdrawing group. Single-crystal X-ray diffraction analysis confirmed
the ligand coordination and the exposed N-oxide group. The N-oxides enabled significant
C-H···O and O···π interactions between neighboring complexes that distinguished the
packing structures from the non-oxidized congeners. Moreover, the X-ray analysis results
of several additional species, having exposed nitrogen atoms not coordinated to the Ir(III)
center, are reported. The single-crystal analysis of these species indicated the prevalence of
C-H···N interactions in combination with π···π and C-H···π interactions. A distinguishing
feature in some of these structures is the formation of C-H···N dimers or finite chains
versus infinite chains of C-H···N interactions. These species all contain uncoordinated
nitrogen atoms, and our group is working to develop synthetic methodologies to oxidize
these species to their corresponding N-oxide analogs using traditional methods commonly
utilized in organic synthesis (e.g., mCPBA) [41]. Although the N-oxide functional group
has been incorporated into various organic motifs and has shown utility in various applica-
tions [1–5], including imaging hypoxia in tumor cells [3–5], there are limited examples of
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N-oxide-containing transition metal compounds where the N-oxide is uncoordinated to
the metal center. By comparing two novel examples of transition metal N-oxides to their
non-N-oxide congeners, we were able to determine how this functional group impacts the
structural and electrochemical properties of heteroleptic Ir(III) species.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cryst14030281/s1, Figures S1–S6: HRMS spectra; Figures S7–S10: 1H-NMR
spectra; Figure S11: N-oxide resonance; Figures S12–S20: crystallographic packing diagrams.
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