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Abstract: We report the growth of single crystals and X-ray diffraction characterization of the quasi-
one-dimensional spin chain compound, Li2CuO2. The single crystals were grown using the high-
temperature solution growth technique. The resulting blade-shaped crystals exhibit a shiny black
color, with dimensions reaching several millimeters along the crystallographic b-axis. The as-grown
crystals were characterized using powder X-ray diffraction and Laue back reflection. The I-centered
orthorhombic, Immm, structure was confirmed. Crystal structure parameters were determined to
be a = 3.6744 Å, b = 2.8600 Å, and c = 9.4257 Å from Rietveld analysis. Our work helps to remove
obstacles to the synthesis and study of a model cuprate system, Li2CuO2, facilitating the use of
experimental probes that require sizable crystals.
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1. Introduction

Intense research focus in low-dimensional materials centers around one-dimensional
(1D) spin chains (e.g., Sr2CuO3, CuGeO3, SrCuO2) and spin ladders (e.g., Sr14Cu24O41,
SrCu2O3 ) [1–3], owing to a myriad of unusual low-temperature properties governed by
quantum effects. Refs. [2–4] These properties include various types of magnetic ground
states for half-integer [5–7] and integer spin systems (e.g., the Haldane chain) [8,9], as well as
the separation of spin (spinon) and charge (holon) degrees of freedom in Sr2CuO3 [10–13],
spin-Peierls transitions in CeCuGe3 [14], etc. These phenomena are entirely governed by
quantum-mechanical behavior and lack three-dimensional analogs. As observed, com-
pounds containing, S = 1/2, Cu2+, ions offer an excellent experimental platform for
realizing such networks [1–3,5–7,10–14] because of the enhanced quantum fluctuations
resulting from Cu2+ ions and reduced dimensionality.

Recently, there has been considerable interest in the quasi 1D compound, Li2CuO2.
Refs. [15–22] Li2CuO2 crystallizes into an orthorhombic structure (Immm, space group
#71) with a = 3.6544 Å, b = 2.8602 Å, and c = 9.3774 Å at ambient pressure. Refs. [23,24]
As depicted in Figure 1a, the most notable characteristic of Li2CuO2 is the formation of
quasi-one-dimensional linear chains composed of CuO2 along the b-axis, separated by Li-O
groups along the c-axis. Refs. [24,25] Due to the simple CuO4 square planar coordination
along the b-axis (see Figure 1b), these spin chains run parallel to each other with a Cu-O-Cu
bond angle of approximately 94◦. Refs. [24,26] The copper atoms within these structural
chains exhibit ferromagnetic (FM) coupling, resulting in ferromagnetic alignment along the
b-axis, which are antiferromagnetically (AFM) coupled between the neighboring chains in
the c-axis. Refs. [17,24,26] The remarkable interplay between one and three-dimensional
magnetic interactions distinguishes Li2CuO2 from other related compounds, as evidenced
by, for instance, the presence of long-range AFM order observed below TN ≈ 9 K with a
Curie-Weiss temperature, Θcw = −42 K, ref. [24] a field-induced weak ferromagnetic com-
ponent below T2 > 2.6 K, refs. [27,28] and relatively large magnetic moments of O2− ions in
Li2CuO2 of about 0.2 µB (largest for any low-dimensional cuprate system), and Zhang-Rice
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type excitations. Refs. [29,30] Despite the tremendous theoretical [15,19,20,27] and experi-
mental studies, refs. [15,17,24,26,27] the precise nature of the magnetic interactions in this
charge transfer insulator [31–33] has remained a topic of contentious debate.

Figure 1. (a) Schematics of a unit cell of Li2CuO2. The magnetic moments within the CuO2 planes
along b-axis are FM ordered, whereas neighboring planes are coupled AFM along the c-axis. Red full
circles are the oxygen atoms, green color circles are the Cu atoms and the blue circles are the Li atoms.
Solid bicolor lines are the nearest neighbor Cu-O and Li-O bonds. (b) Schematics of a two unit cell of
Li2CuO2 in the bc plane.

It is noteworthy that most studies have focused on polycrystalline, Li2CuO2.
Refs. [23,24,27,34,35] Bulk characterizations were done on single crystals grown by the
floating-zone (FZ) technique. Refs. [16,18,26,28,30,33,36] These single crystals were grown
under partial oxygen pressure and exhibited some oxygen vacancies. This oxygen par-
tial pressure can strongly influence the Lithium self-diffusion, leading to the formation
of Li2CuO2−δ, where δ = 0 − 0.3, within their structure. Refs. [16,18] Consequently,
the magnetic susceptibility, χ(T), data at low temperatures for these single crystals of
Li2CuO2 exhibit a slightly more pronounced Curie-like increase, which varies between
samples, suggesting possible sample contamination related to surface sensitivity to mois-
ture. Refs. [16–18] This variation may stem from differences in the thickness of inclusions
of the second phase or micro-cracks at cleaved planes. Ref. [18] Given that advanced FZ
techniques are not widely available in most scientific laboratories, we were inspired to
investigate the synthesis of Li2CuO2 using the more accessible high-temperature solution
growth technique, also known as the flux method.

Here, we present a successful single crystal growth of Li2CuO2. We utilized a conven-
tional flux method and synthesized blade-shaped single crystals which are shiny black in
color and air-sensitive [18], with dimensions reaching up to several millimeters along the
crystallographic b-axis. We demonstrate the high quality of our single crystals through X-
ray diffraction characterization. To the best of our knowledge, we present the first instance
of Li2CuO2 crystal growth via flux growth.

2. Materials and Methods

Single crystals of Li2CuO2 were grown using Li2CO3 flux. The precisely weighed
starting materials, Li2CO3 (99.999%, Alfa Aesar, Haverhill, MA, USA), and CuO (99.995%,
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Alfa Aesar), were homogeneously mixed in a 4:1 ratio. This mixture was carefully trans-
ferred into an alumina crucible, covered with a lid, and gradually heated to 900 ◦C over
5 h, and held at 900 ◦C for 72 h (3 days) in air. Finally, the furnace was slowly cooled to
room temperature for over 30 h. We obtained blade-shaped shiny single crystals (shown in
Figure 2) with typical dimensions of 3 × 0.3 × 0.1 mm3.

Figure 2. (a) As-grown single crystals of Li2CuO2 in the flux matrix. (b,c) Single crystals pulverized
from the flux matrix of Li2CuO2 from two different batches on a millimeter-sized grid.

We studied the crystal structure and the purity of the single crystal Li2CuO2 using pow-
der X-ray diffraction (PXRD). The PXRD patterns were measured on pulverized Li2CuO2
single crystals at room temperature using a Proto AXRD Benchtop powder diffractometer.
We utilized Cu-Kα X-ray radiation, and the structure was quantitatively analyzed by the
Rietveld method using the GSAS program package [37].

We identified the crystallinity and crystallographic orientations of our single crystals
using a Proto Laue-COS system, utilizing the Laue back reflection method. We used the
Cu X-ray tube for X-ray generation with 40 kV and 30 mA. Due to the small width of the
blade, we used a 0.8 mm pinhole aperture. We mount the single crystal with one of the
flat surfaces perpendicular to the incident X-rays and the long blade direction vertically.
Approximately 16 scans were performed over an extended duration (8 min) and averaged
for clear diffraction patterns. The Laue patterns were analyzed by the Cologne Laue
Indexation Program (CLIP) [38].

3. Results and Discussions
3.1. Single Crystal Growth

Figure 2a displays optical images of as-grown single crystals in the flux matrix as well
as two separate batches of pulverized Li2CuO2 single crystals on a millimeter-sized grid (see
Figure 2b,c). This demonstrates that our synthesis conditions are highly reproducible. In the
flux matrix, we obtained black, shiny blade-shaped single crystals with dimensions typically
ranging from 2–3 mm in length, 0.3 mm in width, and 0.1 mm in thickness, with the longest
dimension aligned along the crystallographic b-axis (see Laue X-ray diffraction below).

3.2. Structural Characterizations

To determine the crystal structure of the as-grown Li2CuO2 single crystals, we con-
ducted single crystal diffraction and PXRD measurements in the Bragg-Brentano geometry
at room temperature. Figure 3a displays the single crystal diffraction pattern. We observed
peaks corresponding to the (1, 0, 1) and (2, 0, 2) planes at approximately 2θ values of 25.96◦

and 53.48◦, respectively. Earlier studies done on the single crystalline samples (using FZ
technique) by Chung et al. [22] showed the resulting crystalline boules were faceted and
exhibited a tendency to cleave along (1, 0, 1) planes similar to our single crystals [33]. It
is consistent with an orthorhombic structure within the Immm group in Ref. [24] and our
analysis below.
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Figure 3. (Color online) (a) Single crystal X-ray diffraction pattern of Li2CuO2. (b) Powder X-ray
diffraction pattern (black) of pulverized single-crystals of Li2CuO2. The solid (red) curves overlaying
the data represent the fit from Rietveld refinement. The blue and grey solid lines represent the
reference peaks of Li2CuO2 and Li2CO3, respectively. The * symbols show the impurity peaks of a
flux component, Li2CO3.

The PXRD pattern of the pulverized Li2CuO2 single crystals from the crystal batch in
Figure 2c are displayed in Figure 3b. We performed detailed structural refinement using the
structure model described in ref. [24]. The solid (red) curves overlaid on the data represent
the Rietveld refinement in Figure 3b. We found that the PXRD pattern predominantly
consists of the correct Li2CuO2 phase. We determined the lattice parameters of Li2CuO2 to
be a = 3.67442 Å, b = 2.86001 Å, c = 9.42566 Å with α = β = γ = 90◦, and we obtained the
goodness-of-fit parameters χ2 = 3.785 and Rwp = 0.584. Our Rietveld result is consistent
with the orthorhombic Immm. The atomic coordinates and other parameters considered
for the measurements, as well as detailed refined parameters for Li2CuO2, are presented
in Table 1. These values agree well with previously reported values [24,34] as shown in
Table 2. We found a small amount of impurity (less than 4%) in the PXRD pattern. It is
determined to be the flux component Li2CO3 (ICSD: 66941), appearing at 2θ = 21.1976◦ and
31.5◦, indicated by * (dark grey) in Figure 3b.

Table 1. Structural parameters obtained by refining X-ray powder diffraction for Li2CuO2 at room
temperature, shown in Figure 3b with a space group Immm (#71). The I-centered orthorhombic lattice
constants are a = 3.6744 Å, b = 2.8600 Å, c = 9.4257 Å, and α = β = γ = 90◦, with goodness of fit
parameters, χ2 = 3.785, and Rwp = 0.584.

Atom Wyck x y z Occ. B (Å)

Li 4j 0.5 0 0.18487 1 0.00032
Cu 2b 0 0.5 0.5 1 0.00032
O 4i 0 0 0.36189 1 0.00032
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Table 2. Comparison of the experimental and computed lattice constants, a, b, and c for Li2CuO2 in
the current study and literature data.

a (Å) b (Å) c (Å) Cu-O-Cu (◦) Cu-Cu (Å) Cu-O (Å) Reference

Experiment 3.6744 2.8600 9.4257 95.37 2.8600 1.9338 this work

Experiment 3.6615 2.8627 9.3925 93.96 2.8628 1.9577 Ref. [24]

Experiment 3.65 2.86 9.38 - - - Ref. [34]

Experiment 3.6614 2.8648 9.3969 91 1.987 Ref. [16]

Experiment:
Li2CuO1.71

3.6609 2.8638 9.3934 95.55 - - Ref. [16]

DFT, GGA + PBE 3.5779 2.8628 9.3926 - - 1.9162 Ref. [21]

3.3. Laue X-ray Diffraction

We examined the crystallinity of our crystal selected from the batch shown in Figure 2b,
using the Laue back reflection method across the as-grown crystal facet. The resulting Laue
image from a Li2CuO2 single crystal is shown in Figure 4a and simulated Laue patterns
together with the data are presented in Figure 4b. Our Laue pattern shows no visible
impurity phases or misaligned crystals, indicating a high quality of the single crystal.
We find that the surface perpendicular to the incident X-rays is (1, 0, 1) plane, and the
horizontal direction is the high symmetry direction to (1, 0, 0). We also find that the vertical
direction is to [0, 1, 0], which is along the long blade direction. Considering the proposed
quasi-one-dimensional chains in this compound, it is natural that the crystal extends along
the chain direction (the crystallographic b-axis).

Figure 4. (a) Laue diffraction pattern for Li2CuO2 single crystal along the (100) direction. (b) Laue
diffraction pattern with simulated diffraction pattern in green circles by using Cologne Laue Index-
ation Program (CLIP) software (version CLIP4 RC1). (100) and (101) directions are marked. The
vertical direction is (010) direction.

4. Conclusions

We present a comprehensive report on the single crystal growth using the flux method
and the structural characterization of Li2CuO2 single crystals. Through a detailed structural
refinement of the PXRD diffraction data, we determine that the material crystallizes in a
Immm (#71) space group, with orthorhombic symmetry, and assess the lattice parameters
of Li2CuO2. Our observations indicate that the as-grown samples of Li2CuO2 measure
several millimeters along the crystallographic b-axis. Further, Laue back reflection X-ray
measurements indicate the high quality of the single crystal. Our work helps to remove
obstacles to the synthesis and study of a model cuprate system, Li2CuO2, facilitating the
use of experimental probes that require sizable crystals.
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