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Abstract: Two new coordination compounds comprising Mn(II) and Cu(II) viz. [Mn(bz)2(Hdmpz)2

(H2O)] (1) and [Cu(crot)2(Hdmpz)2] (2) (where, bz = benzoate; crot = crotonate; Hdmpz = 3, 5-
dimethyl pyrazole) were synthesized and characterized. The characterization involved a single
crystal X-ray diffraction technique, FT-IR spectroscopy, electronic spectroscopy, TGA, and elemental
analyses. Compounds 1 and 2 crystallize as mononuclear entities of Hdmpz with penta-coordinated
Mn(II) and hexa-coordinated Cu(II), respectively. These complexes exhibit distorted trigonal bipyra-
midal and distorted octahedral geometries, respectively. A crystal structure analysis of compound
1 elucidates the existence of C–H· · ·π and π-stacking interactions alongside O–H· · ·O, N–H· · ·O,
and C–H· · ·O H-bonding interactions contributing to the stabilization of the compound’s layered
assembly. Similarly, in compound 2, the crystal structure stability is attributed to the presence of
hydrogen bonding in conjugation with π-stacking interactions. We conducted theoretical investiga-
tions to analyze π· · ·π, H-bonding, and antiparallel CH···π non-covalent interactions observed in
compounds 1 and 2. DFT calculations were performed to find out the strength of these interactions
energetically. Moreover, QTAIM and non-covalent interaction (NCI) plot index theoretical tools were
employed to characterize them and evaluate the contribution of the H-bonds.

Keywords: mononuclear coordination compound; aromatic π-stacking; DFT; QTAIM; NCI

1. Introduction

In recent years, there has been notable vigor in the advancement of mixed ligand
metal–organic frameworks and supramolecular architectures, owing to their expansive
potential utility across magnetic devices, non-linear optics, biology, sorption, sensors, elec-
trical conductivity, and catalysis [1–7]. Yet, the synthesis and fabrication of single crystals
with desired architectures and envisioned functionalities continue to pose significant chal-
lenges. This is largely attributed to the intricate self-assembly processes, which are highly
contingent upon various experimental variables including the coordination environment
of the central metal ion, the specific nature of the ligands utilized, the reaction condition,
the metal-to-ligand ratio, and environmental factors [8–12]. Effective integration of these
synthetic parameters is paramount in realizing a desired supramolecular architecture with
significant potential [13].

The discernment of non-covalent interactions is fundamental in crafting self-assembled
architectures. These interactions lay the groundwork for achieving precise recognition,
transport, and regulatory capabilities with remarkable specificity [14–16]. The profound
alternations in the properties of self-assembled molecules arise from the nuanced interplay
of non-covalent interactions, including aromatic π-stacking, C–H···π interactions, and a
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diverse array of hydrogen bonding interactions. These non-covalent interactions dictate
the directionality and collective potency, serving as a driving force for the organization
of molecules into intriguing self-assembled structures [17–22]. In addition, non-covalent
interactions are of profound importance in molecular biology and involve drug–receptor
interactions, protein folding, etc. [23–25]. To date, there have been considerable efforts to
explore and quantify the array of non-covalent interactions observed in self-assembled
architectures [26,27].

The focus of chemists has now shifted towards N and O donor ligands, produc-
ingsubstantial interest in molecular biology. These ligands serve as key constituents in
crafting self-assembled architectures, offering multifaceted utility across a broad array
of applications [28,29]. Transition metal coordination complexes involving aliphatic and
aromatic carboxylates offer diverse and captivating structural networks, as they possess
the capability to connect through monodentate symmetric and asymmetric chelating and
bidentate and monodentate bridging coordination modes, adding to their intricate na-
ture [30,31].The aromatic benzoate group, when utilized as a substituent, acts as a complex
targeting moiety facilitating the delivery of the metal compound to bacterial cells within the
body [32]. Similarly, metal crotonate complexes also display different biological activities
like DNA binding, radical scavenging activities, etc. [33]. In a similar way, pyrazole ligand
complexes, with their diverse structural configurations, exhibit significant efficacy and
versatility across various fields, including medicine, catalysis, separations, bio-mimetic
chemistry, optics, magnetism, and luminescence [34–37]. Pyrazole complexes, exhibit-
ing diverse pharmacological activities including antifungal [38,39], antibacterial [40], and
anticancer properties, have been identified as pivotal contributors in the development
of innovative drugs [41–44]. Furthermore, there is growing interest in the coordination
chemistry of transition metal-based drugs, driven by their potential applications in cancer
treatment [45–47]. Transition metals like manganese are integral to numerous vital biolog-
ical processes, encompassing electron transfer, catalysis, and structural functions. They
are prevalent in the active sites of numerous proteins and enzymes, playing pivotal roles
in facilitating their activities [48]. Moreover, Mn(II) complexes demonstrate compelling
electrochemical, biological, and magnetic properties [49,50]. The innate transition elemental
characteristics of the Cu(II) ion amplify its coordination propensities towards aromatic
and aliphatic ligands, thus accentuating its notable flexibility [51]. N- and O-donor ligand
copper complexes with crystal structures are reported in the literature [52,53]. On the basis
of ligand binding sites, some Cu(II) complexes possess numerous biological activities, such
as antibacterial, fungicidal, pesticidal, and even tracer activities [54,55].

With an aim to explore the cooperation of non-covalent interactions in supramolecular
architectures, two novel Mn(II) and Cu(II) coordination compounds viz. [Mn(bz)2(Hdmpz)2
(H2O)] (1) and [Cu(crot)2(Hdmpz)2] (2) were synthesized and meticulously character-
ized utilizing a single crystal X-ray diffraction technique, FT-IR, electronic spectroscopy,
TGA, and elemental analysis to explore the interplay of non-covalent interactions within
supramolecular architectures. The crystal structure analysis of compound 1 revealed the
presence of C–H· · ·π and π-stacking interactions along with O–H· · ·O, N–H· · ·O, and
C–H· · ·O H-bonding, contributing to the stability of its layered assembly. In compound
2, aromatic π-stacking interactions, C–H· · ·O and N–H· · ·O hydrogen bonds along with
non-covalent C–H· · ·C interactions were identified as key stabilizing forces in its crystal
structure. We conducted theoretical studies to examine the π-stacking, H-bonds, and C–
H···π interactions present in compounds 1 and 2. These interactions were analyzed utilizing
the quantum theory of atoms-in-molecules (QTAIM) and the non-covalent interaction (NCI)
plot index computational tools.

2. Materials and Methods

All the chemicals, viz. manganese (II) chloride tetrahydrate, copper(II) chloride di-
hydrate, benzoic acid, 3,5-dimethyl pyrazole, and crotonic acid, used for synthesis were
obtained from commercial sources and were used as received. Elemental analyses (C, H,
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N) were performed with the Perkin Elmer 2400 series II CHN analyzer. Infrared spectra
(4000–500 cm−1) were recorded with a Bruker Alpha (II) Infrared spectrophotometer on
samples of compound 1 and 2 prepared as KBr pellets. A Shimadzu UV-2600 spectropho-
tometer was used to record the electronic spectra of the compounds. BaSO4 powder was
used as a reference (100% reflectance) to record the solid-state spectra. Magnetic moments
of the compounds were measured at room temperature (300K) using the Evans method
with Sherwood Mark 1 Magnetic Susceptibility balance. For understanding the thermal
stability of our compounds, thermogravimetric analysis was conducted under a dinitro-
gen atmosphere using a Mettler Toledo TGA/DSC1 STARe system at a heating rate of
10 ◦C min−1.

2.1. Synthesis
2.1.1. Synthesis of [Mn(bz)2(Hdmpz)2(H2O)] (1)

An aqueous solution (5 mL) of Hdmpz (0.192 g, 2 mmol) was poured slowly after two
hours into a deionized water solution (10 mL) containing MnCl2·4H2O (0.197 g, 1 mmol)
and the sodium salt of benzoic acid (0.288 g, 2 mmol) and it was kept stirring for another
hour (Scheme 1). The resulting yellow solution was left undisturbed, and yellow block-
shaped single crystals were obtained after a few days by slow evaporation in aqueous
medium (2–4 ◦C). Yield: 0.465 g (92.26%). Anal. calcd. for C24H28MnN4O5 C, 56.81%;
H, 5.56%; N, 11.04%; Found: C, 55.90%; H, 5.47%; N, 10.99%. FT-IR (KBr pellet, cm−1):
3439 (br), 3130 (w), 2837 (m), 1593 (s), 1429 (m), 1389 (s), 1280 (m), 1145 (m), 1108 (w),
975 (w), 772 (m), 715 (m), 655 (s) (s, strong; m, medium; w, weak; br, broad; sh, shoulder).
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2.1.2. Synthesis of [Cu(crot)2(Hdmpz)2] (2)

Compound 2 was obtained by applying similar procedures as those used for com-
pound 1, but with CuCl2·2H2O (0.170 g, 1 mmol) and the sodium salt of crotonic acid
(0.210 g, 2 mmol) instead of MnCl2·4H2O and the sodium salt of benzoic acid (Scheme 1).
The resulting blue solution was kept undisturbed, and blue block-shaped single crystals
were obtained by slow solvent evaporation in a refrigerator (below 4 ◦C). Yield: 0.386 g
(90.82%). Anal. calcd. for C18H26CuN4O4: C, 50.75%; H, 6.15%; N, 13.15%; Found:
C,50.67%; H, 6.09%; N, 13.09%. IR (KBr pellet, cm−1): 3439 (br), 3132 (sh), 2845 (m), 1593
(s), 1430 (m), 1414 (s), 1288 (m), 1150 (m), 1115 (w), 1045 (m), 944 (w), 849 (m), 740 (m), 670
(m), 498 (w) (s, strong; m, medium; w, weak; br, broad; sh, shoulder).

2.2. Crystallographic Data Collection and Refinement

Initial crystal evaluation and data collection were performed at 100K using graphite
mono-chromatized Cu/Kα radiation, λ = 1.54178 Å with a Bruker APEX-II CCD diffrac-
tometer.Multiscan absorption correction in addition to the scaling and merging of the
various datasets for the wavelength were carried out using SADABS [56]. The crystal
structures were solved using a direct method and refined by full-matrix least-squares
procedures, based on F2 with all measured reflections, with SHELXL-2018/3 [57] using the
WinGX [58] software. All non-hydrogen atoms were refined anisotropically. The hydrogen
atoms except those attached to the O-atoms of water molecules were introduced their
idealized positions and refined in the isotropic approximation. The hydrogen atoms of the
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coordinated water molecules were fixed at the nominal X-ray distances from the O atoms to
obtain the hydrogen bonding patterns in the crystal structures. Diamond 3.2 [59] software
was used to generate the structural drawings for this publication. Crystallographic data of
compounds 1 and 2 are tabulated in Table 1.

Table 1. Crystallographic data and structure refinement details for compounds 1 and 2.

Crystal Parameters 1 2

Empirical formula C24H28MnN4O5 C18H26CuN4O4
Formula weight 507.44 425.97
Temperature (K) 100.0 100.0
Wavelength (Å) 1.54178 1.54178
Crystal system Orthorhombic Orthorhombic

Space group Pbcn Pbcn
a/Å 19.2401(1) 15.6899(5)
b/Å 12.1579(7) 10.7161(3)
c/Å 10.1312(6) 11.3062(4)
α ◦ 90 90
β ◦ 90 90
γ ◦ 90 90

Volume (Å3) 2369.9(2) 1900.96(1)
Z 4 4

Calculated density (g/cm3) 1.422 1.488
Absorption coefficient (mm−1) 4.893 1.897

F(000) 1060 892
Crystal size (mm3) 0.35 × 0.21 × 0.18 0.31 × 0.22 × 0.12

θ range for data collection (◦) 10.76 to 136.33 1.604 to 23.973

Index ranges
−23 ≤ h ≤ 23,
−14 ≤ k ≤ 14,
−11 ≤ l ≤ 12

−18 ≤ h ≤ 18,
−12 ≤ k ≤ 12,
−13 ≤ l ≤ 13

Reflections collected 19,422 28,974
Unique data (Rint) 2972 1721

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data/restraints/parameters 2136/1/161 1721/0/126
Goodness-of-fit on F2 1.086 1.143

Final Rindices[I > 2σ (I)] R1/wR2 R1 = 0.0414, wR2 = ‘0.1110 R1 = 0.0475, wR2 = 0.1395
Rindices (all data) R1/wR2 R1 = 0.0434, wR2 = 0.1133 R1 = 0.0482, wR2 = 0.1402

Largest diff. peak and hole (e.Å−3) 0.45/−0.49 0.37/−0.63

CCDC 2,261,049 and 2,261,050 contain the supplementary crystallographic data for
compounds 1 and 2, respectively. These data can be obtained free of charge at http://
www.ccdc.cam.ac.uk or from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: depo-sit@ccdc.cam.ac.uk.

2.3. Computational Methods

Single point calculations were performed using the Gaussian-16 software suite [60],
employing the PBE0 [61]-D3 [62]/def2-TZVP [63] level of theory. Crystallographic coordi-
nates were utilized to assess the interactions within the compounds, with a specific focus
on the non-covalent interactions prevalent in their solid state. To analyze these interactions,
Bader’s “Atoms in Molecules” (QTAIM) theory [64] and the non-covalent interaction (NCI)
plot [65,66] technique were applied, using the AIMAll software [67]. The hydrogen bond
energies were determined based on the formula proposed by Espinosa et al. (E = ½Vr) [68].

3. Results and Discussion
3.1. Syntheses and General Aspects

[Mn(bz)2(Hdmpz)2(H2O)] (1) was synthesized by reacting one equivalent of
MnCl2·4H2O with two equivalents of sodium salt of benzoic acid and two equivalents

http://www.ccdc.cam.ac.uk
http://www.ccdc.cam.ac.uk
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of Hdmpz at ambient temperature. In parallel, [Cu(crot)2(Hdmpz)2] (2) was prepared by
reacting one equivalent of CuCl2·2H2O, two equivalents of the sodium salt of crotonic
acid and two equivalents of Hdmpz at room temperature in de-ionized water medium.
Both 1 and 2 are soluble in water and in common organic media. Compounds 1 and 2
display room temperature (298 K) µeff values of 5.89 and 1.82 BM, respectively, to indicate
the presence of five and one unpaired electron(s) in the Mn(II) and Cu(II) centers of the
distorted trigonal bipyramidal and distorted octahedral coordination spheres [69,70].

3.2. Crystal Structure Analysis

Figure 1 depicts the molecular structure of 1. Compound 1 grows in an orthorhombic
crystal system with a Pbcn space group. Selected bond lengths and bond angles are
summarized in Table 2.
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Figure 1. Molecular structure of [Mn(bz)2(Hdmpz)2(H2O)] (1).

Table 2. Selected bond lengths (Å) and bond angles (◦) around the Mn(II) centers in 1 and 2,
respectively.

Bond Lengths of 1 (Å) Bond Angles of 1 (◦)

Mn1–O2 2.0854(1) O2–Mn1–O2´ 106.18(8)

Mn1–O2´ 2.0854(1) O2–Mn1–O1 126.91(4)

Mn1–O1 2.132(2) O2´–Mn1–O1 126.91(4)

Mn1–N1 2.3173(2) O2–Mn1–N1´ 92.39(5)

Mn1–N1´ 2.3173(2) O2–Mn1–N1 91.72(6)

O1–Mn1–N1 86.57(4)

O1–Mn1–N1´ 86.57(4)

O2´–Mn1–N1´ 91.72(6)

O2´–Mn1–N1 92.40(5)

N1–Mn1–N1´ 173.15(8)

Bond Lengths of 2 (Å) Bond Angles of 2 (◦)

Cu1–N1 1.989(3) N1–Cu1–N1 ´93.24(1)

Cu1–N1´ 1.989(3) N1–Cu1–O1 165.45(9)

Cu1–O1´ 2.002(2) N1–Cu1–O1´ 91.47(9)

Cu1–O1 2.002(2) N1´–Cu1–O1 91.47(9)

Cu1–O2 2.492(2) N1´–Cu1–O1´ 165.45(9)

Cu1–O2´ 2.492(2) O1–Cu1–O1´ 87.34(1)
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In the compound, the Mn(II) metal center is penta-coordinated to two monodentate bz
moieties, two monodentate Hdmpz, and one water molecule. The coordination geometry
around the Mn1 center in the compound is slightly distorted trigonal bipyramidal as
evident from the trigonality index value (τ) of 0.77 [71], where the axial sites are occupied
by N1 and N1’ atoms from Hdmpz moieties while the equatorial sites are occupied by
O1, O2, and O2´ from coordinated water and bz moieties, respectively. The bond lengths
between the Mn1 and the nitrogen atoms of Hdmpz (N1 and N1´) are found to be 2.32(2)
Å; however, that between the Mn1 and oxygen atoms of bz moieties (O2 and O2´) is 2.08(1)
Å. The bond length between the Mn1 center and the oxygen atom (O1) of the coordinated
water molecule was found to be 2.13Å. Crystal structure analysis reveals that hydrogen
atoms (H1A and H1B) of the coordinated water molecule have a site occupancy factor of 0.5.
The average Mn–O and Mn–N bond distances are almost consistent with the previously
reported Mn(II) complexes [72,73].

The neighboring monomeric units of compound 1 are linked via non-covalent C–
H· · ·π and π-stacking interactions to constitute the 1D supramolecular chain along the
crystallographic c direction (Figure S1). The –CH moiety (–C4H4) of the bz moiety is
involved in C–H· · ·π interactions with the π-system of the aromatic ring of Hdmpz having
a centroid (C9, C10, C11, N1, and N2)···H4 distance of 2.70 Å. The angle between H4, the
centroid of the pyrazole ring, and the aromatic plane is 159.1◦, which indicates the strong
nature of the interaction [74].

Aromatic π-stacking interactions are found to be present between the aromatic rings
of bz moieties from the closest monomeric units with a centroid(C2-C7)–centroid(C2´-C7´)
separation of 3.62 Å. The corresponding slipped angle (the angle between the ring normal
and the vector joining the two ring centroids) is 21.5◦ [75]. Further analysis reveals that
neighboring 1D chains, shown in Figure S1, interconnect via C–H· · ·π and non-covalent
C–H· · ·C interactions to form a layered assembly along the crystallographic ac plane
(Figure 2).
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non-covalent C–H· · ·C interactions along the crystallographic ac plane.

Extended analysis discloses the formation of one more layered architecture of the
compound which is stabilized by non-covalent C–H· · ·C; C–H· · ·π; C–H· · ·O, O–H· · ·O,
and N–H· · ·O hydrogen bonding and aromatic π-stacking interactions along the crystal-
lographic bc plane (Figure 3a). Non-covalent C–H· · ·C interactions are present between
the –CH moieties (–C6H6 and –C7H7) and C5 (from bz) and C8 (from Hdmpz) atoms from
two adjacent monomeric units, having C6–H6· · ·C8 and C7–H7· · ·C5 distances of 2.94
and 3.11 Å, respectively [C6(sp2)–H6· · ·C8(sp3); C6· · ·C8 = 3.60Å; C7(sp2)–H7· · ·C5(sp2);
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C7· · ·C5 = 3.79Å]. The –CH moiety (–C12H12A) of Hdmpz is utilized in C–H· · ·π interac-
tions with the π-system of the aromatic ring of another Hdmpz moiety from a neighboring
monomeric unit having a centroid (C9-C11, N1, N2)· · ·H12A distance of 3.04 Å. The an-
gle between H12A, the centroid of the Hdmpz moiety, and the aromatic plane is 150.2◦,
which evidences the high strength of the interaction [76–78]. C–H· · ·O hydrogen bonding
interactions are observed between the –C12H12A moiety of Hdmpz and the uncoordinated
carboxyl atom (O3) of bz from two neighboring units having a C12–H12A· · ·O3 distance
of 2.95 Å.
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The O3 atom of bz moieties is also involved in N–H· · ·O hydrogen bonding interac-
tions with –N2H2 fragments from Hdmpz moieties of adjacent monomeric units having
a N2–H2· · ·O3 distance of 2.10 Å. Moreover, the O3 atom of bz is also engaged in O–
H· · ·O hydrogen bonding interactions, where the coordinated water molecules have a
O1–H1A· · ·O3 distance of 1.86 Å. A self-assembled dimer (Figure 3b), taken from the
layered architecture along this plane, has been theoretically studied (vide infra).

Figure 4 depicts the molecular structure of compound 2. Compound 2 crystallizes in
an orthorhombic crystal system with a Pbcn space group. Selected bond lengths and bond
angles are summarized in Table 2. In compound 2, the Cu1 metal center is hexa-coordinated



Crystals 2024, 14, 318 8 of 19

to two bidentate crot moieties and two monodentate Hdmpz moieties. The coordination
geometry around the metal center is a slightly distorted octahedron where the axial sites
are occupied by O1´ and N1´ atoms from crot and Hdmpz moieties, respectively, while the
equatorial sites are occupied by O1, O2, O2´ from crot, and N1 from Hdmpz, respectively.
The average Cu–O and Cu–N bond distances are in agreement with the earlier-reported
Cu(II) complexes [79,80].
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Figure 4. Molecular structure of [Cu(Crot)2(Hdmpz)2] (2).

The neighboring monomeric units of compound 2 connect together via non-covalent
C–H· · ·C interactions to give rise to the 1D supramolecular chain of the compound
(Figure S2). C–H· · ·C interactions are present between the –CH (–C9H9C and –C2H2B)
and the carbon atoms (C2 and C9) of crot moieties having C9–H9C· · ·C2and C2–H2B· · ·C9
distances of 2.88 and 3.05 Å, respectively [C9(sp3)–H9C· · ·C2(sp3); C2(sp3)–H2B· · ·C9(sp3);
C9· · ·C2 = 3.78 Å].

Moreover, two neighboring 1D chains of the compound are linked by non-covalent
C–H· · ·C interactions, which results in the 2D layered assembly of the compound (Figure 5).
C–H· · ·C interaction is displayed by the –CH moiety (–C3H3) of Hdmpz and the C7 atom
of crot with a C3–H3· · ·C7 distance of 3.63 Å [C3(sp2)–H3· · ·C7(sp2); C3· · ·C7 = 3.86 Å].
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Figure 6a depicts another supramolecular 1D chain of compound 2 stabilized by
N–H· · ·O hydrogen bonding and aromatic π-stacking interactions. N–H· · ·O hydrogen
bonding interaction is present between the –N2H2 moiety of Hdmpz and O2 atom of crot
from two different monomeric units having a N2–H2· · ·O2 distance of 1.90 Å. Aromatic
π-stacking interactions are found between the π systems of Hdmpz and crot moieties
from adjacent monomeric units of the compound with a centroid (C1, C3, C4, N1, N2)–
centroid(C7-C8) distance and corresponding slipped angle of 3.92 Å and 19.1◦, respectively.
A self-assembled dimer (Figure 6b), retrieved from the 1D self-assembly along the crystallo-
graphic c axis, has been theoretically studied (vide infra).
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These 1D supramolecular chains are interconnected via supramolecular C–H· · ·C
interactions and C–H· · ·O hydrogen bonding to form a 2D assembly along the crystallo-
graphic bc plane (Figure 7). C–H· · ·C interactions are present between the –C9H9C, –C7H7
fragments, and C2, C7, and C9 atoms of crot moieties from adjacent monomeric units
with C9–H9C· · ·C7,C7–H7· · ·C9 and C9–H9C· · ·C2 separations of 3.93, 3.97, and 2.88 Å,
respectively [C9(sp3); C7(sp2); C2(sp3); C9· · ·C7 = 3.76 Å; C9· · ·C2 = 3.78 Å]. Moreover,
C–H· · ·O is found to be located between the –C9H9A fragment and O1 atom of adjacent
crot moieties having a C9–H9A· · ·O1 distance of 3.07 Å (Table 3).
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Table 3. Selected hydrogen bond distances (Å) and angles (◦) for 1 and 2.

D–H· · ·A d(D–H) d(D· · ·A) d(H· · ·A) <(DHA)

1

C12–H12A· · ·O3 0.98 3.64 2.95 128.6

N2–H2· · ·O3 0.88 2.91 2.10 153.7

O1–H1A· · ·O3 0.87 2.70 1.86 164.1

2

N2–H2· · ·O2 0.88 2.74 1.90 157.2

C9–H9A· · ·O1 0.98 3.57 3.07 113.2

3.3. Spectral Studies
3.3.1. FT-IR Spectroscopy

The FT-IR spectra of compounds 1 and 2 (KBr phase) were performed in the region of
4000–500 cm−1 (Figure S3). The comparatively broad absorption peak in compound 1 at
around 3440 cm−1 can be due to the O–H stretching vibrations of the coordinated water
molecule present in the compound [81,82]. Absorption bands due to ρr (H2O) (715 cm−1)
and ρw (H2O) (655 cm−1) support the presence of coordinated water molecules in the
compound [81,82]. For compound 1, strong absorption bands appear at 1593 and 1389 cm−1

for the asymmetric and symmetric stretching vibrations of the carboxylate groups of bz
moiety, respectively [83]. The difference between the asymmetric and symmetric stretching
vibrations (∆v = 204 cm−1) of the carboxyl groups of bz moieties of 1 reflect show the
carboxylate moieties are connected to the metal center in a monodentate fashion [84].
Similarly, for compound 2, strong absorption bands appear at 1593 and 1414 cm−1 for
the asymmetric and symmetric stretching vibrations of the carboxylate groups of the crot
moiety, respectively [83]. The difference between the asymmetric and symmetric stretching
vibrations (∆v = 179 cm−1) of the carboxyl groups of crot moieties of 2 indicates bidentate
coordination of the carboxylate moieties to the metal center [85]. Deprotonation of the
carboxyl groups upon coordination with the metal center can be identified by the absence
of any sharp band at 1710 cm−1 for both compounds 1 and 2 [86–88]. Moreover, for both
the compounds, bands at around 3130 cm−1 can be associated with the ν(N–H) vibrations
of a coordinated Hdmpz ligand [89,90]. The ν(C–H) vibrations of the coordinated Hdmpz
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are observed in the region of 2970–2770 cm−1 for both the compounds [91]. The peaks at
1429, 1280, and 1145 cm−1 in 1 can be ascribed to the C–N, N–N, and C = N stretching
vibrations of Hdmpz rings, respectively; however, these peaks are obtained at 1430, 1288,
and 1150 cm−1 in the spectrum of compound 2 [92].

3.3.2. Electronic Spectroscopy

The electronic spectra of the compounds were performed in both solid and aqueous
phases and are considered for recording the electronic spectra of 1 and 2
(Figures S4 and S5). The solid state UV-Vis-NIR spectrum of compound 1 shows no
absorption bands in the visible region because of all the doubly forbidden electronic tran-
sitions from the ground state 6A1g of the Mn(II) center (d5 system) [93]. The peaks for
the π→π* absorption of the benzoate and Hdmpz ligands are obtained at the expected
positions [94,95].

The solid state UV-Vis-NIR spectrum of compound 2 (Figure S5) showcases peaks at
228 and 273 nm corresponding to the π→π* transitions of the aromatic ligand [96]. The
spectrum (Figure S5a) shows a broad absorption band at 741 nm resulting from the usual
2Eg→2T2g transition for Cu(II) complexes [97]. In the UV-Vis spectra (Figure S5b) of the
compound, the absorption peaks for n→π* and 2Eg→2T2g transitions are obtained at the
expected positions [97].

The similarity of absorption bands in both solid and solution phases in the spectra
indicates no structural deformity of the compounds in the solution phase [98].

3.4. Thermogravimetric Analysis

Thermogravimetric analysis for compounds 1 and 2 was performed in between 30
and 800 ◦C with heating at arate of 10 ◦C/min under a N2 atmosphere (Figure S6). In
1, the temperature range of 120–140 ◦C contributes to the weight loss of coordinated
water molecules (obs. = 5.1%; calcd. = 3.54%) [99,100]. In the temperature range of
141–260 ◦C, there is a decomposition of two benzoate moieties and one Hdmpz molecule
(obs. = 65.52%; calcd. = 66.61%) [101–103]. For compound 2, between 120–170 ◦C, one
coordinated crot undergoes thermal decomposition with an observed weight loss of 18.40%
(calcd. = 19.95%) [104]. One coordinated Hdmpz and another coordinated crot are lost in
171–290 ◦C having a weight loss of 40.5% (calcd. 42.45%) [103,104]. Finally, the loss of the
remaining coordinated Hdmpz in the temperature range of 291–370 ◦C is observed with a
weight loss of 24.4% (calcd. = 22.5%) [105].

3.5. Theoretical Studies

This section presents a theoretical investigation into the non-covalent interactions
observed within the solid state of both compounds and their significant influence on X-ray
structural properties. This analysis encompasses an examination of weak non-covalent
interactions, including π-stacking and C-H···π interactions, as depicted in Figures 3 and 7.
Furthermore, this study delves into hydrogenbonding interactions, which play a pivotal
role in the formation of distinctive 1D supramolecular assemblies in both compounds,
detailed in Figure 8. A comparative analysis of the energetic attributes of C-H···O, N-H···O,
and O-H···O hydrogenbonding interactions is also conducted to enrich our understanding
of their structural significance.

We calculated the molecular electrostatic potential (MEP) surfaces for compounds 1
and 2 to identify their most electrophilic and nucleophilic regions. The MEP surfaces,
illustrated in Figure 9, reveal that for compound 1, the MEP maximum is found at the
Hatoms of the water molecule bound to the compound, with a value of 65.9 kcal/mol,
closely followed by the -NH group (61.5 kcal/mol) of the Hdmpz ligand. These large and
positive MEP values are attributed to the increased acidity of the OH2 and -NH protons
when coordinated to the Mn(II) metal center, suggesting that the water molecule acts as
a more effective H-bond donor compared to the pyrazole ring. The MEP’s lowest value
occurs at the uncoordinated Oatom of the benzoate ligand. Positive MEP values are seen at
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the Hatoms of methyl groups (approximately 18.8 kcal/mol), while negative values are
associated with the benzoate and pyrazole π-systems (−23.8 kcal/mol and −8.2 kcal/mol,
respectively). In contrast, for compound 2, the highest MEP value is at the -NH group
(51.5 kcal/mol) of the Hdmpz ligand, with the lowest at the Oatom of the crotonate ligand
(−53.3 kcal/mol). The π-system of the double bond exhibits a significantly negative MEP,
whereas the MEP at the Hatom of the methyl group is positive (18.9 kcal/mol) and slightly
positive at the pyrazole ligand’s π-system (6.3 kcal/mol), in sharp contrast to compound 1.
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in kcal/mol.

In our study, we further investigated two dimeric configurations of compound 1,
as shown in Figure 10, to examine both hydrogen bonds (H-bonds) and π-interactions
significant in the solid state, as referenced in Figures 3a and S1. Employing a combination
of Quantum Theory of Atoms in Molecules (QTAIM) and Non-Covalent Interaction (NCI)



Crystals 2024, 14, 318 13 of 19

plot analyses allowed us to visually illustrate these interactions in real space. The NCI
plot analysis uses color-coded reduceddensity gradient (RDG) isosurfaces to indicate the
strength of interactions, with green and blue denoting weaker and stronger attractive forces,
respectively.
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Figure 10a presents the QTAIM/NCI plot analysis of a H-bonded dimer, extracted
from the assembly depicted in Figures 3a and S1. It demonstrates that the uncoordinated
Oatom of one monomer’s benzoate ring forms three Hbonds with the adjacent monomer,
stabilizing each dimer with a total of six H-bonds. These bonds are visualized through
bond critical points (BCPs, marked as pink spheres), bond paths (depicted as dashed
lines), and RDG disk-shaped isosurfaces. The RDG isosurfaces’ color coding—dark blue
for O–H···O, light blue for N–H···O, and green for C–H···O interactions—indicates their
respective strengths as strong, moderately strong, and weak. This aligns with the molec-
ular electrostatic potential (MEP) surface analysis, confirming O–H···O H-bonds as the
strongest. The QTAIM data at the BCPs provide an estimation of each H-bond’s contribu-
tion, with O–H···O H-bonds contributing the most (−14.2 kcal/mol), followed by N–H···O
(−7.5 kcal/mol), and C–H···O (−1.3 kcal/mol). The cumulative H-bond contribution is
−23.0 kcal/mol, closely matching the total binding energy of −25.1 kcal/mol, with the dis-
crepancy largely due to C–H···π interactions with the pyrazole, assessed at −2.1 kcal/mol
by the QTAIM/NCI plot analysis.Conversely, Figure 10b illustrates a significant green RDG
isosurface between the π-clouds of the coordinated benzoate rings, indicating π-stacking
interactions. These interactions are supported by two BCPs and bond paths connecting
the carbon atoms of both aromatic rings, suggesting a moderately strong binding energy
(−8.5 kcal/mol). The QTAIM/NCI plot analysis also reveals two symmetrically equivalent
C–H···π interactions, evidenced by their BCPs, bond paths, and green RDG isosurfaces,
contributing −1.8 kcal/mol. This suggests the dominance of π-stacking interactions in this
dimer configuration.

For compound 2, our DFT analysis is centered on a hydrogen-bonded (H-bonded)
dimer extracted from the one-dimensional (1D) infinite chain depicted in Figure 6a, high-
lighting its significance in the molecular packing of compound 2. The N-H···O hydrogen
bonds in this dimer are characterized through bond critical points (BCPs), bond paths, and
dark blue reduced density gradient (RDG) isosurfaces. These features affirm the robustness
of these interactions, as illustrated in Figure 11.
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The substantial strength of these interactions is further supported by the hydrogen
bond (H-bond) energy, recorded at −15.1 kcal/mol. As illustrated in Figure 11, a notable
RDG isosurface is visible between the π-acidic surface of the coordinated pyrazole ring and
the π-basic double bond of the crotonate. This observation is in concordance with the MEP
surface analysis. The interaction is additionally characterized by a BCP and a bond path
that links one carbon atom of the double bond to a carbon atom of the aromatic ring. The
overall binding energy of this dimer is evaluated as moderately strong, at −16.7 kcal/mol,
predominantly influenced by the H-bonds, as the contribution from the π···π interaction is
relatively minimal, amounting to −1.6 kcal/mol.

4. Conclusions

The synthesis of two new Mn(II) and Cu(II) coordination compounds, namely [Mn(bz)2
(Hdmpz)2(H2O)] (1) and [Cu(crot)2(Hdmpz)2] (2), was performed and characterized via
a single crystal X-ray diffraction technique, FT-IR, electronic spectroscopy, TGA, and ele-
mental analyses. Compound 1 is a penta-coordinated Mn(II) mononuclear compound, but
compound 2 crystallizes as a hexa-coordinated Cu(II) compound of Hdmpz. The crystal
structure analysis of compound 1 reveals the existence of C–H· · ·π (2.70 Å, −2.1 kcal/mol)
and π-stacking interactions (3.62 Å, −6.7 kcal/mol), which stabilizes the layered archi-
tecture of the compound along with the dominant O–H· · ·O (1.86 Å, −14.2 kcal/mol),
N–H· · ·O (2.10 Å, −7.5kcal/mol), and C–H· · ·O (2.95 Å, −1.3 kcal/mol) H-bonding in-
teractions. The presence of aromatic π-stacking (−1.6 kcal/mol), along with non-covalent
C–H· · ·O (3.07 Å) and N–H· · ·O (1.90 Å) hydrogen bonding interactions (−15.1 kcal/mol)
stabilizes the crystal structure of compound 2. Theoretical study has delved into the non-
covalent interactions in compounds 1 and 2, focusing on hydrogen bonds in solid-state
structures and π interactions (π···π and C–H···π). Molecular electrostatic potential (MEP)
surfaces show that the coordinated water molecule and –NH group of Hdmpz are the pri-
mary H-bond donors. QTAIM and NCI plot analyses highlighted the nature and strength
of these interactions. The results confirmed strong O–H···O and N–H···O hydrogen bonds
and much weaker C–H···O, π···π and C–H···π interactions. The synthesized compounds
may find potential applications in the field of biology, as anti-bacterial agents, anticancer
agents, etc. [106,107]. These compounds may also be potential candidates for homogenous
catalysis [108].
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cryst14040318/s1, Figure S1: 1D chain of compound 1 involving
intermolecular C–H· · ·π and π-stacking interactions along the crystallographic c axis; Figure S2:
1D supramolecular chain of compound 2 assisted by non-covalent C–H· · ·C interactions along the
crystallographic b axis; Figure S3: FT-IR spectra of compounds 1 and 2; Figure S4: (a) UV-Vis-NIR
spectrum of 1, (b) UV-Vis spectrum of 1; Figure S5: (a) UV-Vis-NIR spectrum of 2, (b) UV-Vis spectrum
of 2; Figure S6: Thermogravimetric curves of compounds 1 and 2.
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