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Abstract: Near-stoichiometric lithium tantalate (NSLT) wafers with different Li contents were pre-
pared by vapour transfer equilibrium (VTE) method and fabricated into surface acoustic wave filters.
The temperature coefficient of frequency, insertion loss, and bandwidth of the surface acoustic wave
filters were tested using a special chip test bench and a network analyzer. The results show that the
temperature coefficient of frequency shows a trend of first decreasing and then increasing with the in-
crease in Li content, and the temperature stability of the surface acoustic wave filters is best when the
Li content is 49.75%. It is also found that the surface acoustic wave filter fabricated from NSLT wafers
has 21.18% lower temperature coefficient of frequency, 7.3% lower insertion loss, and 2.8% lower
bandwidth than those fabricated from congruent lithium tantalate wafers. Therefore, NSLT crys-
tals are more suitable for applications in acoustic devices, providing a new idea for performance
enhancement of 5G communication devices.

Keywords: lithium tantalate; surface acoustic wave; filter

1. Introduction

Lithium tantalate (LiTaO3, LT) crystals are well known for their low acoustic loss, high-
voltage electrical coupling coefficient, and excellent electro-optic properties [1–4]. Therefore,
this material is widely used in the fabrication of surface acoustic wave (SAW) filters. In
recent years, 5G technology has gradually matured, and 5G communication devices have
also been preliminarily introduced. With the improvement in 5G communication device
functions, such devices face more and more clutter [5]; it has been shown that small
duplexers based on LT structure have longer lives [6–8], so the miniaturization of the device
and the optimization of its performance is also imminent.

Currently, the best way to reduce the size of the SAW filter is wafer-level packaging
technology; of course, to realize the application, it is necessary to reduce the temperature
coefficient of frequency (TCF). A large TCF can cause frequency shift when the device is too
hot [5], which can seriously affect the performance of communication equipment. There
are two main methods to reduce the TCF. One is to improve the technology of making
SAW filters, for example, by making bulk acoustic wave filters based on multilayer film
technology, which produces bulk acoustic wave filters with a very small TCF; however, the
cost is very expensive [9–11]. The second is to reduce the thermal expansion coefficient
of the substrate material. The main method is to use wafer bonding technology or to find
new materials that are more suitable for making SAW filters [12–16]. In wafer bonding
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technology, a material with negative TCF is bonded to a material with positive TCF. For
example, bonding a LT wafer with a negative TCF to a Si wafer will drastically reduce the
TCF of SAW filters. However, wafer bonding needs to be carried out under high vacuum
and requires the use of a wafer bonding machine, which is still expensive although its cost
has been reduced slightly compared to the multilayer film technology, and the bonding
power is lower [17,18]. Courjon et al. [19] bonded a Y42◦ LT wafer to a (100) Si wafer by
Au/Au bonding technology and prepared leaky surface acoustic wave (LSAW) resonators.
The absolute value of the TCF can be lower than 10 ppm/K. However, the process of
bonding solid non-homogeneous materials is complex and can cause irreversible damage
to the wafers. In 2020, Tanaka et al. [20] made acoustic wave devices using ultrathin
LT wafers (0.4 µm), which showed a significant improvement in performance, but their
mechanical fragility problem led to low yield in experiments and the need for careful
handling. Yet, ultrathin LT acoustic wave devices will play an important role in the 5G
and post-5G era. Kadota et al. [21] confined shear horizontal waves in a thin LT structure
made of a quartz substrate and fabricated hetero acoustic layer SAW resonators yielded
a positive TCF with an impedance ratio of up to 84 dB and spurious-free characteristics.
In 2022, Chen et al. [22] prepared wafer-level LT on quartz substrates using ion-cutting
technology, and the TCF of the SAW resonator prepared by them reached −25.21 ppm/◦C.
Better TCF characteristics can be achieved by optimizing the cutting angle and thickness of
quartz, but the lack of high-quality quartz substrates is one of the reasons limiting their
large-scale fabrication of SAW filters.

The commonly used LT crystals in the market are congruent LT (CLT) crystals with
Li:Ta = 48.75:51.15. The Czochralski method is the most commonly used method for
growing LT crystals [23,24]. As the Li/Ta ratio in CLT crystals continues to increase and
gradually approaches the stoichiometric ratio (1:1), many of their properties are improved
to varying degrees. NSLT crystals are a new material with better performance. According
to our research on NSLT wafers, NSLT wafers with Li content of 49.63–49.75% have fewer
defects and better physical properties [25,26]. Therefore, the performance of SAW filters
based on NSLT wafers may be even better. The methods for growing NSLT crystals
are the double-crucible Czochralski method [27], K2O cosolvent method [28] and VTE
method [29], etc. The VTE method has the advantages of simple preparation and high-
quality NSLT wafers compared with other methods. In the VTE method, the CLT wafers
are placed in Li-rich LT polycrystalline materials, and under high temperature conditions,
Li is transferred from the powder to the wafers by vapor transport and solid state diffusion
to make NSLT wafers.

LT crystals with piezoelectric effects can achieve electroacoustic and acoustic–electric
conversion. By designing the width of the interdigital transducer, the reserved wavelength
can be determined, thereby achieving the filtering of clutter [30,31]. The propagation
characteristics of SAW are mainly determined by the following parameters: acoustic
velocity, electromechanical coupling coefficient (K2) of the piezoelectric substrate, TCF, and
quality factor [32,33]. To improve the performance of SAW filters, it is mainly necessary to
increase the acoustic velocity and K2 and reduce the TCF. Both the acoustic velocity and
the TCF are related to the defect density of the SAW filter substrate material. Therefore,
improving the performance of the SAW filter substrate material can effectively improve
SAW filter performance. SAW filters fabricated based on Y36◦ CLT wafers have a lower
TCF (typically −32 ppm/◦C) [34], but their surface acoustic velocity is smaller and their
K2 is lower, resulting in lower acoustic–electric conversion efficiency. On the other hand,
SAW filters based on Y42◦ CLT wafers have higher TCF (typically −42 ppm/◦C) [35], but
their surface sound velocity is higher and their K2 is larger [1]. Two types of tangential
wafer each have unique application advantages, so six types of SAW filters are fabricated
in this paper, three of which are based on Y36◦ NSLT crystals with different Li contents,
one of which is based on Y42◦ NSLT crystals, and two of which are based on CLT crystals,
in their respective tangential control groups. We studied their parameters such as TCF,
insertion loss, and bandwidth, and it is demonstrated that the SAW filters based on NSLT
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wafers are superior to the SAW filters based on CLT wafers. The development of this work
is beneficial for improving the performance of SAW filters, reducing costs, and improving
the performance of SAW filters for 5G communication equipment applications.

2. Experiment
2.1. Sample Preparation

CLT crystals of Y36◦ and Y42◦ were grown by the Czochralski method. The Czochral-
ski method was used to grow CLT crystals at a Czochralski rate of 0.3 mm/hr at 20 r/min
with a melt fraction of 48.75 mol% Li2O. Y36◦ NSLT wafers with different Li contents
were prepared by the VTE method. Li2CO3 (99.99%, Jiangxi Dongpeng New Materials
Co., Ltd., Jiangxi, China) and Ta2O5 (99.99%, Ningxia Jinbaikang Science and Technology
Co., Ltd., Ningxia, China) were mixed uniformly in a certain ratio, and LT polycrystalline
materials with different Li contents were made by high-temperature sintering to be used
as the diffusion materials. The CLT wafer and the diffusion material were alternately put
into a ceramic crucible, heated to above 1200 ◦C in a high-temperature furnace, and held
for 50 h to complete the process of Li-ion diffusion into the wafer, and made into NSLT
wafer. The Curie temperature was measured, and the Li content was determined to be
49.34%, 49.75%, and 49.91%, respectively, by the equation of Curie temperature versus Li
content [25]. Y42◦ NSLT crystals with 49.8% Li content were also prepared. The crystal
orientation and Li content of the prepared wafers are shown in Table 1.

Table 1. Crystal orientation and Li content of wafers.

Crystal Orientation Crystal Li Concent. (%)

Y36◦

CLT 48.75

NSLT
49.34
49.75
49.91

Y42◦
CLT 48.75

NSLT 49.8

2.2. Surface Acoustic Wave Filter Fabrication

The prepared NSLT wafers were thinned to 0.50 mm, and the NSLT wafers were
polarized using the liquid electrode method [36] to change their multi-domain structure
into a single-domain structure, which in turn enhanced the SAW speed of sound and
piezoelectric constant of the NSLT wafers. The aluminum film was evaporated on the
surface of the NSLT wafer using the evaporation method [37], and the thickness of the
coated aluminum film was 100 nm. The photoresist was coated on the surface of the NSLT
wafer, and the thickness of the photoresist was 800 nm, and it was baked at a temperature
of 110 ◦C for 3 min to fix the photoresist. The wafers were exposed under ultraviolet light,
developed in the exposed area, and the wafers were immersed in acetone to remove the
excess aluminum film.

SAW filters were fabricated using NSLT crystals as the substrate material, an aluminum
film was coated on the substrate, and the performance of the SAW filters was characterized.
In this experiment, we made a single-port oscillator filter, and the fabrication process
is shown in Figure 1, using 120 interdigital pairs and 20 electrodes on each side as the
reflective end. The acoustic aperture was set to 40 λ, the interdigital and electrode distance
was 1.2 µm, and the metal duty cycle was 0.5.
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temperature controled box (Hangzhou Zhuochi Instrument Co. Ltd., Hangzhou, China), 
and a network analyzer (8712ET, Agilent, California, America). The test system is shown 
in Figure 3. The filter was placed on the chip test bench, and then, it was put into the 
temperature-controlled box, which was set in the range of 30 to 110 °C. Every 10 °C, the 
temperature was kept warm for half an hour, the center frequency displayed on the net-
work analyzer was recorded, and the TCF was calculated from the frequency. 
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Figure 3. Acoustic Performance Test System (a) network analyzer, (b) temperature controled box. 

Figure 1. Steps for making SAW filters.

The fabrication of the chip was completed by the Ningxia SAW Technology Company
Limited (Ningxia, China) after a series of processes such as coating, photolithography, and
other processes to complete the fabrication of the SAW filter. A specific diagram is shown
in Figure 2.
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Figure 2. Photolithography (3 inches) and SAW filters (5 × 5 mm, high degree <1.5 mm).

2.3. Acoustic Performance Testing

The frequency, insertion loss, and bandwidth of the output of each SAW filter were
tested at different temperatures and specific frequencies using a special chip test bench, a
temperature controled box (Hangzhou Zhuochi Instrument Co. Ltd., Hangzhou, China),
and a network analyzer (8712ET, Agilent, California, America). The test system is shown
in Figure 3. The filter was placed on the chip test bench, and then, it was put into the
temperature-controlled box, which was set in the range of 30 to 110 ◦C. Every 10 ◦C, the
temperature was kept warm for half an hour, the center frequency displayed on the network
analyzer was recorded, and the TCF was calculated from the frequency.
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3. Results and Discussion
3.1. Temperature Coefficient of Frequency

Temperature changes will cause hermal expansion of the NSLT substrate of the SAW
filter. The thermal expansion of the wafer leads to changes in the surface acoustic velocity of
the substrate, which in turn affects the center frequency of the SAW filter and the efficiency
in filtering out spurious waves [26]. For many precision communication devices, such as
mobile phones and electronic computers, the excellent performance of these devices can
only be ensured by completely filtering out the SAW in other frequency bands and retaining
the waves in the desired frequency bands. With the development of communication
equipment, the number of SAW filters in communication equipment is increasing, resulting
in smaller and smaller spacing between different filtering frequency bands. Therefore,
a smaller TCF helps to improve the performance of communication equipment.

In this paper, the TCF of the packaged SAW filter is tested. The calculation formula for
TCF is shown in (1) [38]:

TCF ≈ 1
f0

d f
dT

, (1)

where f 0 is the center frequency at room temperature.
Table 2 shows the TCF of SAW filters based on Y36◦ NSLT wafers with different

Li contents as substrates. According to Table 2, the TCF of SAW filters based on CLT
crystals is −34.85 ppm/◦C, which is higher than that of SAW filters based on NSLT crystals.
The relationship between Li content and TCF is shown in Figure 4. It can be seen from
Figure 4 that the TCF of the fabricated SAW filter shows a tendency of decreasing and then
increasing as the Li content of the wafers increases and reaches the optimum at a Li content
of 49.75%.

Table 2. TCF of SAW filters.

Li Content in
Y36◦ Wafers (%) CLT (48.75) NSLT (49.34) NSLT (49.75) NSLT (49.91)

TCF of SAW
filters (ppm/◦C) −34.85 −32.93 −25.68 −27.5
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In this paper, SAW filters based on Y42◦ CLT and NSLT wafers were also fabricated.
Table 3 shows the TCF of SAW filters based on Y42◦ CLT and NSLT wafers. The center
frequency of the input acoustic wave is 220 MHz. The output frequency of the other end of
the SAW filter was tested using a network analyzer, and the test results are shown in Table 3
and Figure 5. The equations for the fitted curves in Figure 5 are (a) y = 216.97663 − 0.00912x
and (b) y = 218.96308 − 0.00819x, respectively. The TCF of two SAW filters was calculated
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based on the above equation. The TCF of the SAW filter based on the Y42◦ CLT wafer was
−41.45 ppm/◦C, which is very close to the theoretical value of −42 ppm/◦C. The TCF of
the SAW filter based on the Y42◦ NSLT wafer was −37.23 ppm/◦C, which is 10.18% lower
than that based on Y42◦ CLT wafer. The TCF of the SAW filter has been greatly reduced.

Table 3. TCF.

Temperature (◦C) SAW Filter (CLT) SAW Filter (NSLT)

Center frequency (MHz)

30 216.697 218.709
40 216.604 218.638
50 216.513 218.563
60 216.42 218.476
70 216.338 218.389
80 216.247 218.310
90 216.155 218.223

100 216.073 218.140
110 215.975 218.061

Theoretical value (ppm/◦C) −42
Measured value (ppm/◦C) −41.45 −37.23
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3.2. Insertion Loss

Insertion loss refers to the change in output power caused by the use of SAW filters in
transmission systems, i.e., the output signal has a small attenuation relative to the input
signal. The calculation formula is shown in (2) [39]:

IL = −10log(P0/Pi), (2)

where IL is the insertion loss, P0 is the output power, and Pi is the input power. According
to the formula, the larger the insertion loss, the lower the energy transfer efficiency. For
SAW filters, the smaller the insertion loss, the better the device performance.

Table 4 shows the insertion loss of SAW filters based on CLT and NSLT wafers. It can
be seen from Table 4 that as the temperature increases, the insertion loss of the SAW filters
based on the two wafers will increase. At 30 ◦C, the insertion loss of the SAW filters based
on CLT and NSLT wafers is 2.24 dB and 2.27 dB, respectively; at 110 ◦C, the insertion loss of
the SAW filters based on CLT and NSLT wafers is 3.02 dB and 2.64 dB, respectively. At room
temperature, the insertion loss of the two SAW filters is similar, but as the temperature
increases, the insertion loss of the SAW filter based on CLT wafers increases more.
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Table 4. Insertion loss.

Temperature (◦C) SAW Filter (CLT) SAW Filter (NSLT)

Insertion loss (dB)

30 2.24 2.27
40 2.35 2.3
50 2.39 2.32
60 2.48 2.31
70 2.55 2.37
80 2.70 2.42
90 2.78 2.47

100 2.83 2.55
110 3.02 2.64

average value 2.59 2.40

In summary, the insertion loss of the SAW filter based on NSLT wafers is lower than
that of the SAW filter based on CLT wafers, and its input and output energy conversion
ratios are higher.

3.3. Bandwidth

Bandwidth refers to the width of the frequency band through which a signal can pass,
i.e., the difference between the highest frequency and the lowest frequency of the current
band [14]. High-generation communication devices such as those using 5G will have more
and more communication bands, and in addition to upgrading the communication bands,
another means is to reduce the bandwidth.

The bandwidth of the SAW filters was tested using a network analyzer, and its band-
width values are shown in Table 5. According to Table 5, the average bandwidth of the
SAW filter based on Y42◦ CLT crystal is 7.859 MHz, while the average bandwidth of the
SAW filter based on Y42◦ NSLT crystal is 7.635 MHz. That is to say, the average bandwidth
of the SAW filter based on Y42◦ NSLT crystal is 2.8% smaller than that of the SAW filter
based on Y42◦ CLT crystal.

Table 5. Bandwidth.

Temperature (◦C) Y42◦ CLT Y42◦ NSLT (49.80%)

SAW filters
bandwidth (MHz)

30 7.873 7.633
40 7.863 7.600
50 7.851 7.607
60 7.855 7.599
70 7.860 7.633
80 7.858 7.639
90 7.863 7.643

100 7.861 7.666
110 7.849 7.699

average value 7.859 7.635

4. Summary

In this paper, SAW filters were fabricated based on CLT and NSLT wafers. The TCF,
insertion loss and bandwidth of the SAW filters were tested, and the relationship between
Li content and TCF was analyzed. Through testing the TCF of Y36◦ NSLT wafers with
different Li contents, it was concluded that the TCF first decreases and then increases with
the increase in Li content, and the TCF of the SAW filter reaches the optimum when the Li
content inside the NSLT crystal is 49.75%. The TCF, average insertion loss, and average
bandwidth of the SAW filters fabricated based on the Y42◦ CLT wafer and the Y42◦ NSLT
wafer were also tested. Compared with the SAW filter based on CLT wafers, the TCF of the
SAW filter based on NSLT wafers was decreased by 21.18%, the insertion loss was decreased
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by 7.3%, and the bandwidth was decreased by 2.8%. In summary, the performance of SAW
filters based on NSLT wafers is superior to those based on CLT wafers.
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