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Abstract: The homoleptic cationic complex formed by reacting suitable manganese(II) salts with
2,2′-bipyridine-1,1′-dioxide (bipyO2) has been subjected to several studies in the past because of
its peculiar absorption and electrochemical features. Here, the first single-crystal X-ray structure
determination of a [Mn(bipyO2)3]2+ salt is reported, where the charge of the cation is balanced by
perchlorate anions. The hydrated salt [Mn(bipyO2)3](ClO4)2 crystallizes in the monoclinic system
(P21/n space group) and the asymmetric unit contains three cationic complexes and six perchlorate
anions. The environment of the manganese(II) ions is best described as octahedral, with scarce
variations among the three cations in the asymmetric unit. The bipyO2 ligands exhibit κ2 coordination
mode, forming seven-membered metallacycles. The X-ray outcomes have been used as the starting
point for DFT and TDDFT calculations, aimed to elucidate the charge transfer origin of the noticeable
absorption in the visible range. The MLCT nature is confirmed by the hole and electron distributions
associated with the spin-allowed transitions. DFT calculations on the related manganese(III) complex
indicate that the geometry of [Mn(bipyO2)3]2+ changes only slightly upon oxidation, in agreement
with the reversible electrochemical behaviour experimentally observed.

Keywords: manganese(II); bipyridine dioxide; single-crystal X-ray diffraction; DFT calculations;
absorption spectroscopy; cyclic voltammetry

1. Introduction

The adoption of 2,2′-bipyridine-1,1′-dioxide (bipyO2) as a ligand in coordination
chemistry began in the 1960s, with the preparation of complexes of some divalent and
trivalent metal ions belonging to the first-row transition series and to Group 12 [1–3]. The
homoleptic manganese(II) complex [Mn(bipyO2)3]2+ was obtained either as perchlorate or
as tetrachloro-platinate salt, and characterized through elemental analysis, conductivity
and magnetic measurements, and IR spectroscopy. The formulae indicate that bipyO2 acts
as a bidentate O-donor, forming a seven-membered metallacycle upon coordination. The
related manganese(III) complex was synthesized using potassium persulphate as oxidant
and isolated as perchlorate or persulphate salt. Halide salts of the manganese(II) complex
with the general formula [Mn(bipyO2)3]X2 (X = Br, I) were obtained in 1964 using the corre-
sponding hydrated metal halides as reactants. The characterization data were corroborated
with the collection of the absorption spectra in DMF solutions. The orange color, associated
with absorptions in the visible range with a maximum at 410 nm, was attributed to charge
transfer transitions [4]. The replacement of the metal precursor with manganese(II) chloride
or thiocyanate afforded different complexes. In particular, a polymeric derivative with
bridging chloro-ligands was proposed as the product of the reaction between bipyO2 and
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MnCl2 in ethanol, while the characterization data suggested the formation of the mononu-
clear heteroleptic complex [Mn(N-NCS)2(bipyO2)2] starting from Mn(NCS)2. In both cases,
an octahedral environment was expected around manganese(II) [5].

In subsequent studies, an absorption band centred at 428 nm was assigned to charge
transfer processes in the [Mn(bipyO2)3]2+ cation [6]. The population of the correspond-
ing excited state appears to cause the destabilization of the complex, with consequent
progressive decomposition [7]. The same phenomenon was observed also for related
pyridine-N-oxide and quinoline-N-oxide homoleptic manganese(II) complexes [8]. The
depopulation of the excited states does not seem to follow radiative decay routes, since no
study concerning the photoluminescence of [Mn(bipyO2)3]2+ has ever been reported. The
absorption and emission features are completely different compared to those exhibited by
homoleptic manganese(II) complexes with bidentate phosphine oxides in the coordination
sphere [9–11]. In the absorption spectra of these last compounds, no band attributable to
charge transfer processes is present, while the emission spectra show bands associated with
the 4T1(4G)→6A1(6S) metal-centred transition.

EPR data concerning the [Mn(bipyO2)3]2+ cation were also reported and, based on the
splitting parameter A (92 G), it was concluded that the metal–ligand bonds have a covalent
character comparable to those in [Mn(NCCH3)6]2+ and [Mn(H2O)6]2+, but lower compared
to the related homoleptic 2,2′-bipyridine complex. Electrochemical measurements on
acetonitrile solutions revealed that the complex is oxidized in two reversible one-electron
steps at E1/2 = 0.87 V and 1.62 V vs. SCE [6]. The ease of oxidation of manganese(II) once
surrounded by bipyO2 is another element of difference in comparison with the bidentate
phosphine oxide derivatives. Thanks to these redox properties, the manganese(III) complex
[Mn(bipyO2)3]3+ was used in a kinetic study as oxidant towards the copper(I) complex
[Cu(dmp)2]+ (dmp = 2,9-dimethyl-1,10-phenanthroline) [12].

Despite the presence in the literature of several characterization data, the [Mn(bipyO2)3]2+

complex was never structurally investigated. Moreover, the electronic structure of the
complex, at the basis of the absorption features and the redox properties, was never studied
from a computational point of view. Here, we report the single-crystal X-ray structure
determination of the hydrated perchlorate salt of [Mn(bipyO2)3]2+, representing a rare
example of structural characterization of a homoleptic bipyO2 metal complex. The X-ray
outcomes have been used as starting point for DFT and TDDFT calculations, aimed to
elucidate the absorption and electrochemical features of the complex.

2. Experimental Section
2.1. Materials and Methods

Manganese(II) perchlorate hexahydrate, lithium perchlorate, 2,2′-bipyridine, 30% hy-
drogen peroxide water solution, ferrocene (Fc) and organic solvents were purchased from
Merck (Darmstadt, Germany). All the reactants were used as received, except for acetoni-
trile, which was purified before use according to established methods [13]. In addition,
2,2′-bipyridine-1,1′-dioxide (bipyO2) was synthesized following a reported procedure [1].
In a typical preparation, a solution containing 5000 g of 2,2′-bipyridine (32.0 mmol) in 40 mL
of glacial acetic acid and 6 mL of 30% hydrogen peroxide water solution was heated at
70 ◦C for 3 h. Further hydrogen peroxide solution (4.5 mL) was then added to the reaction
mixture, which was kept under stirring at 70 ◦C for 20 h. After cooling at room temperature,
acetone was added until the precipitation of a solid occurred, which was then filtered. The
crude product was dissolved in the minimal volume of hot water. After cooling, acetone
was slowly added until the complete precipitation of the white solid, which was collected
by filtration, washed two times with 15 mL of acetone, and dried under vacuum. Yield: 90%
(5.425 g). Characterization data are in agreement with those recently reported for the same
compound obtained with a different synthetic approach [14]. [Mn(bipyO2)3](ClO4)2·2H2O
was synthesized based on reported procedures [1,4]. Mn(ClO4)2·6H2O (0.362 g, 1.0 mmol)
was dissolved in about 2 mL of distilled water at room temperature. A solution containing
3.2 mmol (0.602 g) of bipyO2 dissolved in the minimum volume of water (about 10 mL)
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was slowly added. After a few minutes, the product started to separate as an orange solid.
The reaction mixture was kept under stirring at room temperature for three hours and then
cooled with an ice bath. After twenty minutes the solid was filtered, washed twice with
5 mL of ethanol, and dried under vacuum. Yield: 80% (0.524 g). Selected characterization
data are reported in the Section 3. Crystals suitable for X-ray diffraction were collected
from the slow evaporation of water solutions.

Carbon, hydrogen and nitrogen elemental analyses were obtained using an Elementar
(Langenselbold, Germany) Unicube microanalyzer. Magnetic susceptibility measurements
were carried out on solid samples at 298 K and 3.5 kGauss magnetic field strength using
an MK1 magnetic susceptibility balance (Sherwood Scientific Ltd., Cambridge, UK). The
measured magnetic susceptibility was corrected for the diamagnetic contribution using tab-
ulated Pascal’s constants [15]. IR spectra in KBr (spectroscopy grade, Merck) were collected
in the 4000–450 cm−1 range using a Perkin-Elmer (Shelton, CT, USA) SpectrumOne spec-
trophotometer. 1H NMR spectra were collected in D2O (Eurisotop, Saint-Aubin, France)
employing a Bruker Avance 400 instrument (Billerica, MA, USA) operating at 400.13 MHz of
1H resonance. Spectra were referred to the partially non--deuterated fraction of the solvent,
itself quoted to sodium trimethyl-silyl-propane-sulfonate. Conductivity measurements in
acetone were carried out with a Radiometer (Copenhagen, Denmark) CDM83 instrument
and compared with literature data [16]. Cyclic voltammetry measurements in acetonitrile
containing 0.1 M LiClO4 were conducted using an eDAQ (Denistone, Australia) ET014-199
instrument coupled with an eDAQ ET074-1 glassy carbon working electrode (1 mm diame-
ter) and an eDAQ ET078-1 Pt-coated titanium rod auxiliary electrode. All the measurements
were carried out under argon at room temperature. Ferrocene was introduced as internal
standard and a Pt wire was used as pseudo-reference electrode. CV data are reported
following the IUPAC convention [17]. Absorption spectra in dichloromethane at room
temperature were recorded in a 10 × 10 mm fluorescence quartz cuvette (Hellma GmbH,
Müllheim, Germany) with an OceanOptics (Ocean Insight, Orlando, FL, USA) HR4000CG
UV-NIR detector, fiber-coupled to an OceanOptics CUV-ALL-UV cuvette holder equipped
with collimators and an OceanOptics FHS-UV in-line filter holder. The cuvette holder
was fiber-coupled to an OceanOptics DH-2000-BAL deuterium-halogen lamp. The angle
between the source and the detector was 180◦. The experimental equipment was further
coupled with an OceanOptics LSM-405A LED light source centred at 405 nm for photode-
composition studies (output power 10 mW), or with OceanOptics LSM-310A and LSM-365A
UV LED light sources for emission measurements. The angle between the LED sources and
the detector was 90◦. Attempts to investigate possible luminescence of solid samples at
room temperature were carried out using a Horiba Jobin Yvon (Kyoto, Japan) Fluorolog-3
spectrofluorometer, equipped with a continuous-wave xenon arc lamp coupled to a double
Czerny–Turner monochromator as excitation source and a single grating monochromator
coupled to a Hamamatsu (Shizuoka, Japan) R928 photomultiplier tube as detection system.

2.2. Crystal Structure Determination

Crystallographic data were collected at CACTI (Universidade de Vigo) using a Bruker
(Billerica, MA, USA) D8 Venture Photon II CMOS detector and Mo-Kα radiation
(λ = 0.71073 Å) generated by an Incoatec (Geesthacht, Germany) Microfocus Source IµS.
The temperature was maintained at 100 K during the acquisition employing an Oxford
Cryosystems (Oxford, UK) Crystream 800 cooler. The software APEX4 v.2022.1-1 was
used for collecting frames of data, indexing reflections, and the determination of lattice
parameters [18]. The integration of the intensity of reflections was carried out with SAINT
version 8.40B, and SADABS version 2016/2 was used for scaling and empirical absorption
correction [18]. The crystallographic treatment was performed with the Oscail program
version 4.7.1 [19] and solved using the SHELXT version 2018/2 program [20]. The structure
was subsequently refined by a full-matrix least-squares based on F2 using the SHELXL
version 2019/2 program [21]. Non-hydrogen atoms were refined with anisotropic displace-
ment parameters. Hydrogen atoms were included in idealized positions and refined with
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isotropic displacement parameters. The asymmetric unit is formed by three dicationic
coordination compounds, six monoanionic molecules and an undetermined number of
water molecules, of which only three were modelled. A fourth oxygen atom (another water
molecule) and high residual density were not modelled further. In addition, some oxygen
atoms belonging to perchlorate anions maintain high thermal ellipsoids, probably because
they are split over two positions, but the disorder was not modelled. Any attempt to
obtain another higher symmetry was unsuccessful, and no symmetry operation was found
between the three components. For this reason, we decided to study another monocrystal
from a repeated synthesis, but the results obtained were comparable, since again three
cations and six anions were present in the asymmetric unit. Some water molecules (oxygen
atoms) were also found in the asymmetric unit, although the corresponding hydrogen
atoms were not modelled this time. CCDC 2260009 and 2260010 contain the supplementary
crystallographic data for the crystals studied. Since the two crystalline compounds are quite
similar, in the discussion only the first is considered. Other details concerning crystal data
and structural refinement are given in Table 1. Structural data can be obtained free of charge
from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
(accessed on 19 April 2024). PLATON (version 110423) was used to obtain some geometrical
parameters from the cif files [22].

Table 1. Crystal data and structure refinement.

CCDC number 2260009 2260010
Empirical formula C90H80Cl6Mn3N18O46 C90H80Cl6Mn3N18O46

Moiety formula 3(C30H24MnN6O6), 6(ClO4), 4(H2O) 3(C30H24MnN6O6), 6(ClO4), 4(H2O)
Formula weight 2527.24 2527.24

Temperature 100(2) K 100(2) K
Wavelength 0.71073 Å 0.71073 Å

Crystal system Monoclinic Monoclinic
Space group P21/n P21/n

Unit cell dimensions a = 21.266(2) Å a = 21.302(3) Å
b = 19.1361(16) Å b = 19.101(3) Å

c = 25.447(2) Å c = 25.487(4) Å
β = 90.517(3)◦ β = 90.354(5)◦

Volume 10,355.0(16) Å3 10,370(2) Å3

Z 4 4
Density (calculated) 1.621 Mg/m3 1.619 Mg/m3

Absorption coefficient 0.620 mm−1 0.619 mm−1

F(000) 5164 5132
Crystal size 0.214 × 0.125 × 0.095 mm 0.198 × 0.153 × 0.112 mm

Theta range for data collection 1.915 to 28.407◦ 1.921 to 28.433◦

Index ranges −28 ≤ h ≤ 28 −28 ≤ h ≤ 28
−25 ≤ k ≤ 25 −25 ≤ k ≤ 25
−33 ≤ l ≤ 33 −33 ≤ l ≤ 33

Reflections collected 591,875 190,729
Independent reflections 25850 [Rint = 0.0645, Rσ = 0.0194] 25615 [Rint = 0.0759, Rσ = 0.0500]

Reflections observed (>2σ) 22,753 20,710
Data Completeness 0.993 0.980

Absorption correction Semi-empirical from equivalents Semi-empirical from equivalents
Max. and min. transmission 0.7144 and 0.6299 0.7457 and 0.6008

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data/restraints/parameters 25,850/0/1483 25,615/0/1468
Goodness-of-fit on F2 1.069 1.096

Final R indices [I > 2σ(I)] R1 = 0.0531 R1 = 0.1002
wR2 = 0.1359 wR2 = 0.2632

R indices (all data) R1 = 0.0607 R1 = 0.1157
wR2 = 0.1421 wR2 = 0.2710

Largest diff. peak and hole 1.685 and −1.087 e.Å−3 1.681 and −0.722 e.Å−3

www.ccdc.cam.ac.uk/structures
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2.3. Computational Details

Attempts to carry out computational calculations starting from the experimental
crystal structure were carried out at the plane-wave DFT level, using the PBEsol GGA
functional [23] in combination with on-the-fly generated norm-conserving pseudopoten-
tials [24], but the structure resulted computationally too demanding for the determination
of the band structure. A new simplified file, containing only one [Mn(bpyO2)3]2+ cation
and two perchlorate anions, was thus derived from the original .cif file and used for the
calculations (lattice parameters: a = 12.30 Å, b = 11.10 Å, c = 12.48 Å, α = β = γ = 90◦, cell
volume = 1703.89 Å3). The relative atomic positions were taken from the original .cif file
and left unchanged. The lattice parameters were determined with the aid of preliminary
computational optimizations of the simplified cell [25], constraining the angles to 90◦ and
keeping fixed the internal coordinates. The number of resulting explicit electrons was
287. This data file is provided as a .cif file in the Supplementary Materials. The charge
was set to zero and the number of unpaired electrons in the unit cell was set to five, ac-
cording to experimental outcomes. The plane-wave basis cut-off was set at 1380 eV. The
Brillouin zone sampling for the self-consistent field calculation was carried out with a
2 × 2 × 2 Monkhorst–Pack grid. The dispersion corrections from Tkatchenko and Scheffler
were added [26]. Relativistic effects were accounted through the scalar Koelling–Harmon
approximation [27]. The band structure was calculated considering 12 points along the
Γ-Z-U-X-Γ path. The software used was CASTEP 20.1 [28–30]. The 3D plots were generated
with XCrysDen 1.6 [31,32].

The geometry optimizations of systems formally composed by [Mn(bpyO2)3]n+ cations
(n = 2, 3) and two perchlorate anions were carried out without symmetry constraints using
the TPSS0 hyper-GGA method, with 25% HF exchange [33], in combination with Ahlrichs’
def2-TZVP basis set [34], the D4 corrections for London dispersion [35,36], and the C-
PCM implicit solvation model (dichloromethane as continuous medium) [37,38]. The
“unrestricted” formalism was applied, and the absence of meaningful spin contamination
was verified by comparing the computed <S2> values with the theoretical ones. The IR
simulations were carried out using the harmonic approximation [39]. A scaling factor of
0.93 was estimated from the comparison between simulated and observed C-H stretching
wavenumbers. The same C-PCM/TPSS0/def2-TZVP method was used to investigate the
absorption features of [Mn(bpyO2)3](ClO4)2 employing TDDFT theory [40]. The number of
roots considered was 24, with the same multiplicity of the ground state. The output of the
TDDFT calculation is provided in .pdf format in the Supplementary Materials. Calculations
were carried out using ORCA 5.0.3 [41,42]. The Cartesian coordinates of the DFT-optimized
geometry are provided as an .xyz file in the Supplementary Materials. The output files,
converted in .molden format, were analysed with Multiwfn, version 3.8, from which the
electron-hole distributions were obtained [43,44].

3. Results and Discussion

The complex [Mn(bipyO2)3](ClO4)2·2H2O was prepared by reacting hydrated man-
ganese(II) perchlorate with a slight excess of bipyO2 in water, according to previously
reported methods [1,4]. The carbon and hydrogen elemental analysis data were close to
the theoretical values (Anal. calcd for C30H28Cl2MnN6O16: C, 42.17%; H, 3.30%; N, 9.84%.
Found: C, 42.00%; H, 3.35%; N, 9.79%). The molar conductivity in acetone at 298 K was
203 ohm−1mol−1cm2, as expected for a 2:1 electrolyte with perchlorate counterions [16].
The value of corrected molar magnetic susceptibility obtained at 298 K was 1.40 × 10−2

c.g.s.u., corresponding to a magnetic moment of 5.8 BM, in line with a high-spin d5 metal
complex of the first transition series with negligible interactions among the paramagnetic
centres [45]. Given the strong paramagnetic relaxation [46], scarce information was ob-
tained from the 1H NMR spectrum in D2O at 300 K, composed by the superposition of very
broad resonances in the aromatic region between 9.0 and 7.0 ppm. No signal attributable to
the presence of a diamagnetic free ligand was however detected. The 1H NMR spectrum
was not meaningfully improved by changing the temperature.
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The stretching related to the N-O bonds in [Mn(bipyO2)3][PtCl4] was associated in
the past with an intense IR band at 1210 cm−1, together with weak shoulders at 1235
and 1225 cm−1. The wavenumbers were lower than those of the free ligand (1262 and
1255 cm−1), an outcome attributed to the weakening of the N-O bonds caused by coordi-
nation [2,47]. The IR spectrum of the perchlorate salt here reported (Figure 1) is slightly
different compared to previous outcomes, since two bands with comparable intensity are
observable in the region generally attributed to the stretching of coordinated N-O bonds,
respectively, at 1233 and 1214 cm−1. DFT TPSS0 calculations predicted the N-O stretchings,
mixed with C-H bendings, at around 1245 cm−1 (scaled value). The number and the
relative intensities of the bands in the experimental spectrum thus almost appear in part
related to the choice of the counteranion and to solid-state effects. On considering other
selected portions of the spectrum, the perchlorate anions are associated with an intense
band centred at 1092 cm−1. The νO-H stretching region is composed of two bands and a
shoulder, respectively, at 3594, 3504 and 3430 cm−1 because of the presence of lattice water
molecules. The related HOH bending vibrations correspond to a convolution of bands
centred at 1626 cm−1 [47].
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Slow evaporation of water solutions allowed the isolation of single crystals suitable
for X-ray diffraction. The compound crystallizes in the monoclinic system, P21/n space
group (Z = 4), and the asymmetric unit contains three cationic complexes, six perchlorate
anions and an undetermined number of water molecules (see the Section 2.2). The resulting
cationic complexes in the crystal structure were manganese(II) ions coordinated by three
chelating 2,2′-bipyridine 1,1′-dioxide ligands. The ORTEP drawing of one of the cations is
shown in Figure 2. Figure 3 shows the asymmetric unit content. The environment of the
manganese(II) ions is best defined as octahedral with scarce variations among the three
cations in the asymmetric unit, as confirmed by the output of the Shape program reported
in Table 2 [48]. Consequently, as observable in Figure 3, the three complexes are almost
super-imposable. Salient bond lengths and angles are collected in Table 3.
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Figure 3. (a) Asymmetric unit of the crystal structure. Color map: Mn, violet; Cl, green; O, red; N,
blue; C, grey; H, white. For the sake of clarity, only selected atoms were labeled to show the labelling
scheme. (b) Superimposition of the three cationic molecules found in the asymmetric unit. Hydrogen
atoms are omitted for clarity and the three complexes are distinguished using different colors for the
carbon atoms (blue, green and violet).

Table 2. Output of the SHAPE version 2.1 [49] Continuous Shape Measures calculations.

Metal Centre in [Mn(bpyO2)3]2+ HP-6 1 PPY-6 2 OC-6 3 TPR-6 4 JPPY-6 5

Mn(1) 31.434 26.431 0.448 13.827 29.948
Mn(2) 28.939 26.779 0.480 13.878 30.329
Mn(3) 28.559 25.277 0.549 13.234 28.607

1 HP-6, D6h Hexagon. 2 PPY-6, C5v Pentagonal pyramid. 3 C-6, Oh Octahedron. 4 TPR-6, D3h Trigonal prism.
5 JPPY-6, C5v Johnson pentagonal pyramid J2.



Crystals 2024, 14, 422 8 of 16

Table 3. Selected bond lengths (Å) and angles (◦) for the cationic complexes in CCDC 2260009.

Mn(1)-O(11) 2.1594(18) Mn(2)-O(41) 2.1704(19) Mn(3)-O(71) 2.160(2)
Mn(1)-O(12) 2.1409(17) Mn(2)-O(42) 2.1475(18) Mn(3)-O(72) 2.1080(19)
Mn(1)-O(21) 2.1585(19) Mn(2)-O(51) 2.1393(18) Mn(3)-O(81) 2.1329(18)
Mn(1)-O(22) 2.1585(18) Mn(2)-O(52) 2.1446(17) Mn(3)-O(82) 2.1387(17)
Mn(1)-O(31) 2.1553(18) Mn(2)-O(61) 2.1658(19) Mn(3)-O(91) 2.175(2)
Mn(1)-O(32) 2.1359(17) Mn(2)-O(62) 2.1230(18) Mn(3)-O(92) 2.143(2)
O(11)-N(11) 1.336(3) O(41)-N(41) 1.323(3) O(71)-N(71) 1.339(3)
O(12)-N(12) 1.326(3) O(42)-N(42) 1.337(3) O(72)-N(72) 1.313(3)
O(21)-N(21) 1.329(3) O(51)-N(51) 1.332(3) O(81)-N(81) 1.331(2)
O(22)-N(22) 1.328(3) O(52)-N(52) 1.324(3) O(82)-N(82) 1.333(3)
O(31)-N(31) 1.335(3) O(61)-N(61) 1.333(3) O(91)-N(91) 1.327(3)
O(32)-N(32) 1.331(3) O(62)-N(62) 1.333(3) O(92)-N(92) 1.324(3)

O(12)-Mn(1)-O(11) 84.31(7) O(42)-Mn(2)-O(41) 84.80(7) O(71)-Mn(3)-O(91) 173.66(8)
O(12)-Mn(1)-O(21) 94.61(7) O(42)-Mn(2)-O(61) 91.29(7) O(72)-Mn(3)-O(71) 85.15(7)
O(12)-Mn(1)-O(22) 91.66(7) O(51)-Mn(2)-O(41) 90.07(7) O(72)-Mn(3)-O(81) 99.51(7)
O(12)-Mn(1)-O(31) 91.19(7) O(51)-Mn(2)-O(42) 174.46(7) O(72)-Mn(3)-O(82) 175.03(8)
O(21)-Mn(1)-O(11) 90.63(7) O(51)-Mn(2)-O(52) 84.03(7) O(72)-Mn(3)-O(91) 90.36(7)
O(21)-Mn(1)-O(22) 82.97(7) O(51)-Mn(2)-O(61) 93.62(7) O(72)-Mn(3)-O(92) 84.03(8)
O(22)-Mn(1)-O(11) 172.15(7) O(52)-Mn(2)-O(41) 80.96(7) O(81)-Mn(3)-O(71) 86.75(7)
O(31)-Mn(1)-O(11) 95.44(7) O(52)-Mn(2)-O(42) 93.08(7) O(81)-Mn(3)-O(82) 85.38(7)
O(31)-Mn(1)-O(21) 171.99(7) O(52)-Mn(2)-O(61) 93.84(7) O(81)-Mn(3)-O(91) 89.59(7)
O(31)-Mn(1)-O(22) 91.36(7) O(61)-Mn(2)-O(41) 173.29(7) O(81)-Mn(3)-O(92) 173.23(8)
O(32)-Mn(1)-O(11) 96.00(7) O(62)-Mn(2)-O(41) 100.48(7) O(82)-Mn(3)-O(71) 96.05(7)
O(32)-Mn(1)-O(12) 174.59(7) O(62)-Mn(2)-O(42) 88.26(7) O(82)-Mn(3)-O(91) 88.80(7)
O(32)-Mn(1)-O(21) 90.80(7) O(62)-Mn(2)-O(51) 94.75(7) O(82)-Mn(3)-O(92) 91.01(7)
O(32)-Mn(1)-O(22) 88.66(7) O(62)-Mn(2)-O(52) 178.13(7) O(92)-Mn(3)-O(71) 99.35(8)
O(32)-Mn(1)-O(31) 83.40(7) O(62)-Mn(2)-O(61) 84.81(7) O(92)-Mn(3)-O(91) 84.60(8)
N(11)-O(11)-Mn(1) 114.40(14) N(41)-O(41)-Mn(2) 115.98(14) N(71)-O(71)-Mn(3) 114.30(15)
N(12)-O(12)-Mn(1) 118.29(14) N(42)-O(42)-Mn(2) 110.68(13) N(72)-O(72)-Mn(3) 117.94(16)
N(21)-O(21)-Mn(1) 112.93(14) N(51)-O(51)-Mn(2) 113.79(14) N(81)-O(81)-Mn(3) 113.71(14)
N(22)-O(22)-Mn(1) 117.12(14) N(52)-O(52)-Mn(2) 116.13(14) N(82)-O(82)-Mn(3) 113.63(13)
N(31)-O(31)-Mn(1) 113.21(14) N(61)-O(61)-Mn(2) 113.21(14) N(91)-O(91)-Mn(3) 112.43(14)
N(32)-O(32)-Mn(1) 120.55(14) N(62)-O(62)-Mn(2) 118.81(14) N(92)-O(92)-Mn(3) 113.25(15)

Structurally characterized transition metal homoleptic complexes with the bipyO2
ligand are scarce. Among the few examples found in the literature, it is worth mentioning
the Cu(II) complex [Cu(bipyO2)3]2+, obtained in hydrated form either as perchlorate [50]
or as tetrafluoroborate salt [51]. Another example concerning the first transition metals
series is the iron(III) complex [Fe(bipyO2)3]3+, also in this case isolated as perchlorate
salt [52]. Some eight-coordinated trivalent lanthanoid (Ln) complexes were also published.
In particular, [La(bipyO2)4](ClO4)3 represents a rare example of cubic coordination in-
volving a Ln3+ ion [53]. Related complexes containing smaller lanthanide ions showed
distorted dodecahedral and square anti=prismatic structures [54,55]. Structurally character-
ized bipyO2 derivatives include heteroleptic species. Selected examples show the ligand
coordinated to a lanthanide ion, to a main group metal such as bismuth, or to a Group
12 element [56–58]. In all the cited compounds, bipyO2 behaves as a chelating ligand. As
recently summarized [58], other possible coordination modes, such as bridging or transoid,
are possible, even if structurally characterized compounds are scarce. An example is the
coordination polymer [Cu2(O2CC6H5)4(bipyO2)]n [59], where bipyO2 bridges di-nuclear
copper(II) {Cu2(O2CC6H5)4} fragments.

In the compound here investigated, the dihedral angles between the pyridine rings
are in the 61.8(2)◦−71.7(2)◦ range. The average value is 65.3(2)◦, similar to that found
in the free ligand, 67.5◦, which also adopts a skew conformation [60], or in its hydrate,
70.1◦ [61]. The dihedral angle is, however, also comparable if the ligand behaves as bridge,
as observed in the previously mentioned copper(II) coordination polymer (67.12◦) [59].
The O---O distance appears, thus, a better indicator of the changes associated with the



Crystals 2024, 14, 422 9 of 16

coordination, being 3.046(2) Å in the free ligand and 3.104 Å in the corresponding hydrate
form. The average value found in the manganese(II) complex here described is shorter,
2.885(3) Å while, in the copper(II) transoid complex, it is longer than 4 Å. As expected,
the seven-membered chelate ring is significantly puckered (see Figure 2). The Mn-O
distances, between 2.108(2) and 2.175(2) Å, average 2.147(2) Å, are similar to those found
in [Mn{NC-C(CN)2}2(bipyO2)2], 2.1290(13) and 2.1780(13) Å [62], while the chelate angles
are between 82.97(7) and 85.38(7)◦, average 84.38(8)◦, slightly bigger than the 82.30(4)◦

found in previously mentioned heteroleptic tricyanomethanido complex. The M-O bond
lengths are shorter than those found in the manganese(II) polymeric compound obtained
by reacting hydrated manganese(II) acetate with 2,2′-bipyridine-3,3′-dicarboxylic acid 1,1′-
dioxide, 2.194(2) and 2.208(2) Å, where the ligand both chelates and bridges the metal
centres due to the presence of the additional carboxylic groups [63]. To the best of our
knowledge, these two compounds complete the list of crystallographic studied chelating
bipyO2 manganese(II) complexes [64].

Initial computational investigations on the electronic structure of the compound were
carried out on the simplified .cif file, where only one [Mn(bipyO2)3]2 cation and two
perchlorate anions were maintained (see the Supporting Materials for further information).
The number of unpaired electrons was set to five based on the previously described
magnetic measurements. Both the alpha and beta band structures were obtained, but the
first one is more interesting, since alpha spin was attributed to the unpaired electrons. The
alpha band structure close to the valence (VB) and conduction (CB) bands is reported in
Figure 4, together with the density of states (DOS), separated by the orbital type. Partial
DOS related to the d-type orbitals of the manganese center is associated either with the
bands immediately below the VB or with a group of bands comprised between −1.4 and
−1.7 eV. The d-type DOS is much reduced for the occupied bands at lower energy, and
it is scarce for the CB and the empty bands above. The plots of the bands improved the
description of the electronic structure. VB, VB-1 and VB-2 are localized on the oxygen
atoms of the perchlorate anions. The bands VB-3 and VB-4 maintain the same character,
with minimal contribution of Mn-centred d-type functions. VB-5 and VB-6 have mixed
characters, localized on the perchlorate oxygen atoms, on the manganese(II) d-type orbitals,
and on the p-orbitals of the coordinating oxygen atoms. The contribution of the metal
center becomes dominant in the bands between VB-7 (relative energy around −0.45 eV)
and VB-10 (relative energy around −1.66 eV), with the participation of the coordinating
bipyO2 ligands, the donor atoms in particular. This last outcome suggests a non-negligible
nephelauxetic effect in the [Mn(bipyO2)3]2+ cation. The manganese center is scarcely
involved in the occupied bands, having energy below −2 eV, mainly centred on the bipyO2
ligands. The CB and the empty bands immediately above are dominated by π-delocalized
orbitals on bipyO2, with the superposition of p-type orbitals of the aromatic rings and the
oxygen atoms. Selected bands are shown in Figure 5.
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Figure 5. Density plots of selected occupied and empty bands (surface iso-value = 0.01 a.u.). Color
map: Mn, violet; Cl, green; O, red; N, blue; C, grey; H, white. The surfaces are plotted in green and
blue tones for the occupied and empty bands, respectively.

The results of the plane-wave DFT calculations suggest that the transitions respon-
sible for the absorption of the complex in the visible range could be ascribed to spin-
allowed transitions from metal-centred occupied orbitals to bipyO2-centred unoccupied
orbitals, in agreement with previous hypotheses [4,6]. The MLCT nature of the absorp-
tion was further corroborated by non-periodic C-PCM/TPSS0/def2-TZVP calculations on
[Mn(bipyO2)3](ClO4)2. Sextet multiplicity was considered, given the high-spin d5 elec-
tronic configuration of the metal centre derived from the magnetic measurements. The
optimized geometry is shown in Figure 6 together with the spin density plot. The root-
mean-square-deviation (RMSD) of the optimized [Mn(bipyO2)3]2+ cation compared to the
starting experimental structure is quite low, at 0.521 Å. The Mn-O bond lengths are in the
2.118–2.158 Å range. The O-Mn-O angles are between 167.5 and 177.3◦ (trans) and between
81.9 and 98.9◦ (cis). Selected average computed bond lengths and angles are collected in
the caption of Figure 6. The spin density plot confirms that the unpaired electrons are
essentially localized on the metal center, even if limited spin density can be observed also on
the coordinated ligands. Starting from the optimized stationary point, TDDFT calculations
predicted the wavelengths of the two spin-allowed transitions at 438 and 430 nm, i.e., in
the interval experimentally observed [4,6], with oscillator strengths, respectively, equal to
0.090 and 0.067. The molecular orbitals mostly involved in the transitions are the occupied
α-HOMO and α-HOMO-1 and the unoccupied α-LUMO, α-LUMO+1 and α-LUMO+2.
α-HOMO and α-HOMO-1 show an important contribution of d-type orbitals on the man-
ganese center, which give σ-antibonding interactions with the coordinated ligands. The
percentage of metal contribution is 38% in α-HOMO and 29% in α-HOMO-1, while the
contributions of the six coordinating oxygen atoms are 33% and 27%, respectively, for
α-HOMO and α-HOMO-1. On the contrary, the participation of the metal ion in the empty
orbitals is limited and is between 0% and 3%. α-LUMO, α-LUMO+1 and α-LUMO+2 are
essentially π* orbitals of the bipyO2 ligands, as already stated from the plane-wave DFT
calculations (Figure 6). The MLCT nature of the transitions can be better represented using
the hole-electron distributions associated with the two transitions, as observable in Figure 7.
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It is worth noting that the orbitals of the coordinating oxygen atoms participate in both the
hole and the electron surfaces.
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Figure 6. DFT-optimized geometry of [Mn(bipyO2)3](ClO4)2 (sextet state) with spin density surface
(violet tones, iso-value = 0.002 a.u.) and molecular orbitals plots from HOMO-1 to LUMO+2 (yellow
and orange tones, iso-value = 0.03 a.u.). Color map: Mn, violet; Cl, green; O, red; N, blue; C, grey;
H, white. Selected average computed bond lengths (Å): Mn-O 2.140; O-N 1.306. Selected average
computed bond angles (◦): O-Mn-O 171.4 (trans); O-Mn-O 90.2 (cis).
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The vibrational decay from the MLCT excited state appears to be a fast process since
no luminescence was observed in solution or in the solid state. Non-radiative routes
must also be competitive to the intersystem, crossing towards excited states with different
multiplicity, since no metal-centred transition was observed. For completeness, the quartet
excited state of [Mn(bipyO2)3](ClO4)2 was calculated starting from the sextet ground state
geometry and was energetically higher by about 1.73 eV, corresponding to a transition
around 720 nm. The computed value is in line with d–d transitions of manganese(II) in an
octahedral field [65,66] and the spin density remains localized at the metal center.

Another decay route is the photodecomposition of the complex, as already stated [7].
Irradiation of dichloromethane solutions of the complex with a LED source centred at
405 nm caused the progressive disappearance of the MLCT band between 400 and 500 nm
and the increase in the bands below 400 nm, as observable in Figure 8. The same behaviour
was observed using acetonitrile as solvent. The decomposition can be rationalized based on
the molecular orbitals depicted in Figure 6. Upon excitation, the N-O bonds are weakened
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by the depopulation of σ-antibonding Mn-O orbitals and the consequent population of
π-antibonding bipyO2 orbitals [8].
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Figure 8. (a) Changes of the absorption spectrum of [Mn(bipyO2)3](ClO4)2 during 5 min of irradiation
at 405 nm. (b) Comparison between the initial spectrum of the complex (orange line) and after 25 min
of irradiation (black line). CH2Cl2, 298 K.

An intriguing feature of the complex, connected with the MLCT absorption, is its
redox behaviour, the quasi-reversible oxidation processes in particular. The electrochemical
measurements carried out in this work confirmed the previous results [6]. Figure 9 shows
the superposition of the cyclic voltammograms of [Mn(bipyO2)3](ClO4)2 and bipyO2 under
the same experimental conditions. Two oxidation processes at E1/2 = 0.48 V and 1.21 V vs.
Fc+/Fc are clearly observable for the complex, absent in the cyclic voltammogram of the free
ligand. Previous investigations of [Mn(bipyO2)3]2+ and the related [Mn(terpyO3)2]2+ cation
(terpyO3 = 2,2′,2′′-terpyridine 1,1′,1′′-trioxide) strongly support that the two processes in the
anodic region are attributable to the Mn(II)/Mn(III) and Mn(III)/Mn(IV) redox couples [6].
On the other hand, the peak centred at −1.95 V vs. Fc+/Fc, with the associated reverse
process at −1.17 V vs. Fc+/Fc, corresponds to a reduction centred on the coordinated
ligands, as deducible from the comparison with the cyclic voltammogram of free bipyO2.
Focusing the attention on the first oxidation, the good reversibility of the process can
almost in part be ascribed to small structural changes in the complex after the removal of
one electron. The DFT-optimized structure of [Mn(bipyO2)3]3+ (quintet state) is almost
superimposable with that computed for the parent cation, the RMSD equal to 0.267 Å (see
also Figure 9), despite the prolate first coordination sphere due to the Jahn–Teller distortion.
The spin density remains mostly localized on the metal center. The Mn-O bond lengths
are in the 1.905–2.139 Å range. The average value is 1.998 Å, 0.142 Å shorter than that
computed for [Mn(bipyO2)3]2+. The average O-Mn-O angles are 176.4◦ (trans) and 90.0◦

(cis). The change in oxidation state does not meaningfully affect the N-O bonds, since the
average value in [Mn(bipyO2)3]3+ is 1.324 Å, only 0.018 Å longer than that computed for
[Mn(bipyO2)3]2+. On the other hand, the removal of one electron alters the composition of
the frontier orbitals with respect to the parent cation. Both α-HOMO and α-LUMO present
a meaningful participation of metal-centred orbitals, equal to 21% in α-HOMO and 32%
in α-LUMO.
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further studies. 
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line). CH3CN/LiClO4, r.t., Fc as internal standard, scan rate 1 V s−1. (b) DFT-optimized geometry
of [Mn(bipyO2)3]3+ (quintet state) with spin density surface (violet tones, iso-value = 0.002 a.u.),
superimposed to the DFT-optimized geometry of the parent cation [Mn(bipyO2)3]2+ (transparent).
Color map: Mn, violet; Cl, green; O, red; N, blue; C, grey; H, white.

4. Conclusions

The results provided in this work increased our knowledge of the cationic complex
[Mn(bipyO2)3]2+ through the single-crystal X-ray structure determination of its perchlorate
salt. Moreover, DFT and TDDFT calculations helped to shed light on the electronic structure
and, thus, on the peculiar optical and electrochemical behaviour. The ease of synthesis
and the solubility in different solvents make [Mn(bipyO2)3]2+ of potential interest as
selective reducing agent, and the possibility of light-driven reactions will be explored in
further studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst14050422/s1, MnBipyO2_ClO4.cif: single-crystal structure .cif
files; checkcif.pdf: single-crystal structure checkcif files; Mn_simplified.cif: simplified structure
for plane-wave calculations; TDDFT.pdf: output of the TDDFT calculation; DFT-coordinates.xyz:
Cartesian coordinates of the DFT-optimized structures.
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