Next Article in Journal
The Molecular Structure of 1,2:5,6-Di-O-isopropylidene-3-O-toluenesulfonyl-α-D-glucofuranose
Previous Article in Journal
Synthesis and Molecular Structure of tert-Butyl 4-(2-tert-butoxy-2-oxoethyl)piperazine-1-carboxylate
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

1,4-Diazabicyclo[2.2.2]octane (DABCO) 5-aminotetrazolates

by
Gerhard Laus
1,
Volker Kahlenberg
2,
Klaus Wurst
1,
Michael Hummel
1 and
Herwig Schottenberger
1,*
1
Faculty of Chemistry and Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
2
Institute of Mineralogy and Petrography, University of Innsbruck, 6020 Innsbruck, Austria
*
Author to whom correspondence should be addressed.
Crystals 2012, 2(1), 96-104; https://doi.org/10.3390/cryst2010096
Submission received: 10 January 2012 / Revised: 18 January 2012 / Accepted: 19 January 2012 / Published: 6 February 2012

1. Introduction

The crystal structures of anhydrous 5-aminotetrazole [1] and its monohydrate [2] are known. Due to its amphiprotic nature [3,4,5], this nitrogen-rich heterocycle has served as cation [6,7,8,9,10] or as anion in energetic salts [11]. Organic salts containing 5-aminotetrazole as anion have been first described by Henry [12]. Crystal structures of several metal 5-aminotetrazolates have been reported [13]. This compound has also received much attention lately as ligand in coordination polymers [14,15,16,17,18,19,20].
1,4-Diazabicyclo[2.2.2]octane (DABCO) is a widely used complexing ligand, and numerous crystal structures of its salts and coordination compounds have been reported [21,22]. The two nitrogen atoms of this tertiary diamine show markedly different basicities [23], facilitating the formation of monocations (DABCO–H+). Dicationic species (DABCO–H22+) are obtained only with strong acids, e.g., the dihydrochloride [24], dinitrate [25], and sulfate [26].
Continuing our interest in DABCO salts [21] and hydrates [22] we decided to explore combinations of DABCO and 5-aminotetrazole.

2. Results and Discussion

The DABCO molecules typically adopt a cage-like structure. The aminotetrazole molecules are planar (largest deviation 0.023 Å). The four new salts contain DABCO monocations in different arrangements. In all cases, association among the aminotetrazole molecules is observed. Hydrogen bond interactions between cations and anions are found only in the anhydrous salts, whereas the hydrates show preferred interactions between anions and water molecules. Crystal data and details of the structure refinement are summarized in Table 1. Hydrogen bond parameters are shown in Table 2.
Table 1. Crystal data and structure refinement details for compounds 14.
Table 1. Crystal data and structure refinement details for compounds 14.
Compound1234
CCDC no.855698855697855700855699
Chemical formulaC6H13N2·CH2N5C6H14N2·(CH2N5)2C6H13N2·CH2N5·H2O(C6H13N2)2·C6H12N2·(CH2N5)2·(H2O)8
Mr 197.26282.34215.28650.82
Crystal size/mm30.40 × 0.40 × 0.380.36 × 0.36 × 0.280.36 × 0.24 × 0.080.2 × 0.1 × 0.05
Crystal systemOrthorhombicTriclinicMonoclinicMonoclinic
Space groupPbca P Crystals 02 00096 i001P21/cP21/c
a5.9696(1)8.7982(6)8.8064(3)12.6856(3)
b16.7493(4)8.8927(7)11.1285(3)8.8200(2)
c19.0799(4)9.7756(5)10.5456(3)31.3885(8)
α9067.827(6)9090
β9086.181(5)102.894(3)99.390(2)
γ9071.794(7)9090
V31907.73(7)671.68(9)1007.43(5)3464.91(14)
Z 8244
Dx/g cm–31.371.401.421.25
µ/mm–10.100.100.100.10
F(000)/e8483004641416
DiffractometerGemini-R UltraGemini-R UltraGemini-R UltraNonius KappaCCD
Data collection methodω scansωscansωscansφ and ω scans
Temperature/K173(2)173(2)173(2)233(2)
θmax25.425.325.423.1
h, k, l range–6 ≤ h ≤7–10 ≤ h ≤ 10–8 ≤ h ≤ 10–13 ≤ h ≤ 13
–20 ≤ k ≤ 17–10 ≤ k ≤ 10–10 ≤ k ≤ 13–9 ≤ k ≤ 9
–22 ≤ l ≤ 19–11 ≤ l ≤ 11–12 ≤ l ≤ 12–34 ≤ l ≤ 34
Absorption correctionmulti-scanmulti-scanmulti-scannone
Measured reflections103775025732215576
Independent reflections (Rint)1743 (0.028)2445 (0.025)1850 (0.033)4769 (0.042)
Observed reflections [I ≥ 2σ(I)]1534198614923567
Restraints/parameters4/1368/1996/15222/486
R1/wR2 [I ≥ 2σ(I)]0.041, 0.1080.038, 0.0980.038, 0.0830.042, 0.099
R1/wR2 (all data)0.049, 0.1120.049, 0.1020.056, 0.0890.064, 0.108
Goodness of fit1.061.091.031.03
Δρmax/min/e Å–30.23, –0.200.27, –0.280.19, –0.170.18, –0.18
Table 2. Hydrogen bond parameters (Å,°).
Table 2. Hydrogen bond parameters (Å,°).
CompoundD–H...AH...AD...AD–H...ASymmetry operation (A)
1N7–H...N51.77(2)2.698(2)168(1)–1/2+x,1/2–y,–z
N1–H...N22.24(1)3.102(2)166(1)1/2+x,y,1/2–z
N1–H...N32.24(2)3.105(2)164(1)1+x,y,z
2N10–H...N121.86(2)2.752(2)165(2)
N11–H...N51.68(2)2.636(2)167(2)–1+x,y,z
N1–H...N72.17(2)3.059(2)172(1)x,–1+y,z
N1–H...N82.29(1)3.125(2)159(1)2–x,–y,2–z
N6–H...N22.14(2)3.003(2)175(2)x,1+y,z
N6–H...N32.08(2)2.970(2)172(2)1–x,1–y,1–z
3N1–H...N22.27(2)3.152(2)169(1)1–x,–y,–z
N1–H...N42.20(2)3.061(2)161(1)x,1/2–y,–1/2+z
N7–H...N61.85(2)2.763(2)174(2)x,3/2–y,–1/2+z
O1–H...N32.17(2)3.001(2)159(2)1–x,1/2+y,1/2–z
O1–H...N52.05(2)2.938(2)174(2)
4N3–H...N21.73(2)2.707(2)176(2)
N5–H...N11.72(2)2.687(2)175(2)
N11–H...N102.17(2)3.074(2)173(2)1–x,1–y,1–z
N11–H...N152.22(2)3.078(3)164(2)
N16–H...N72.16(2)3.048(3)164(2)
N16–H...N122.22(2)3.101(2)178(2)x,1–y,1–z
O1–H...N41.98(3)2.811(2)165(3)
O1–H...O21.92(5)2.788(3)177(5)
O2–H...N61.90(2)2.760(2)173(2)1+x,3/2–y,1/2+z
O2–H...O81.87(4)2.749(3)169(5)2–x,–1/2+y,3/2–z
O3–H...O21.95(3)2.788(3)166(4)
O3–H...O41.93(2)2.759(3)170(3)
O4–H...N91.98(3)2.843(3)180(2)1–x,1–y,1–z
O4–H...O51.88(2)2.761(3)178(2)
O5–H...N141.97(2)2.828(2)175(3)
O5–H...O11.98(2)2.841(3)169(3)1–x,–1/2+y,3/2–z
O6–H...O11.96(3)2.800(3)169(3)
O6–H...O31.89(4)2.715(4)167(4)x,1+y,z
O7–H...N131.99(3)2.847(3)176(3)1–x,1/2+y,3/2–z
O7–H...O61.88(4)2.748(3)166(4)
O8–H...N81.97(2)2.822(2)174(2)1+x,3/2–y,1/2+z
O8–H...O71.94(3)2.764(3)164(5)

2.1. 1-Aza-4-azoniabicyclo[2.2.2]octane 5-aminotetrazolate (1)

In this most primitive salt of DABCO and aminotetrazole, the aminotetrazolate anions form ribbons parallel to the (0 1 0) plane, assembled from nine-membered rings and propagating in the direction of the crystallographic a axis. The DABCO cations are attached to the edges of the ribbons by hydrogen bonds (Figure 1).
Figure 1. Hydrogen-bonded layer of ions parallel to the (0 1 0) plane in compound 1.
Figure 1. Hydrogen-bonded layer of ions parallel to the (0 1 0) plane in compound 1.
Crystals 02 00096 g001

2.2. 1-Aza-4-azoniabicyclo[2.2.2]octane 5-aminotetrazole 5-aminotetrazolate (2)

Since aminotetrazole is not sufficiently strong an acid to create DABCO dications, the additional molecule of aminotetrazole in this 1:2 salt is incorporated in neutral form. The aminotetrazole molecules again form ribbons, this time assembled from eight- and ten-membered rings. The ribbons are linked by hydrogen-bonded DABCO monocations into layers parallel to the (–1 1 2) plane (Figure 2).
Figure 2. Hydrogen-bonded layer of ions parallel to the (–1 1 2) plane in compound 2.
Figure 2. Hydrogen-bonded layer of ions parallel to the (–1 1 2) plane in compound 2.
Crystals 02 00096 g002

2.3. 1-Aza-4-azoniabicyclo[2.2.2]octane 5-aminotetrazolate Hydrate (3)

It is interesting to observe the differences in the structures of the anhydrous salt 1 and the hydrate 3. The aminotetrazole anions obviously prefer coordination with water molecules if there is a choice. The resulting network and the chains of hydrogen-bonded DABCO monocations are shown in Figure 3. In this aesthetically appealing structure, the DABCO–H+ rods are gently caressed by a wave of anions and water molecules (Figure 4).
Figure 3. (a) Hydrogen-bond network of anions and water molecules in the hydrate of the 1:1 salt. (b) Chain of hydrogen-bonded DABCO mono-cations in compound 3. Symmetry operations i: x,3/2–y,–1/2+z; ii: x,3/2–y,1/2+z.
Figure 3. (a) Hydrogen-bond network of anions and water molecules in the hydrate of the 1:1 salt. (b) Chain of hydrogen-bonded DABCO mono-cations in compound 3. Symmetry operations i: x,3/2–y,–1/2+z; ii: x,3/2–y,1/2+z.
Crystals 02 00096 g003
Figure 4. Packing diagram of the hydrate 3. Hydrogen atoms omitted for clarity.
Figure 4. Packing diagram of the hydrate 3. Hydrogen atoms omitted for clarity.
Crystals 02 00096 g004

2.4. Bis(1-aza-4-azoniabicyclo[2.2.2]octane) 1,4-diazabicyclo[2.2.2]octane bis(5-aminotetrazolate) Octahydrate (4)

Small crystals of the octahydrate 4 were identified as a byproduct in 3. Although a slightly lower data/parameter ratio (9.81) than desirable was obtained due to weak reflections at higher angles, the structure is still considered satisfactory. A linear array of three DABCO units [27] is observed, involving two monocations and a neutral molecule. These DABCO triples are cross-linked by two water molecules (Figure 5) into infinite zig-zag chains. Clusters of four tetrazolate ions are engulfed in a cloud of water molecules including cyclic water decamers (Figure 6).
Figure 5. Packing diagram of the octahydrate 4. Uninteresting hydrogen atoms omitted for clarity. Symmetry operation i: 1+x,3/2–y,1/2+z.
Figure 5. Packing diagram of the octahydrate 4. Uninteresting hydrogen atoms omitted for clarity. Symmetry operation i: 1+x,3/2–y,1/2+z.
Crystals 02 00096 g005
Figure 6. Cluster of four aminotetrazolate ions and network of water molecules in the octahydrate 4. Hydrogen atoms omitted for clarity. Symmetry codes i: 1–x,1–y,1–z; ii: 1–x,1/2+y,3/2–z; iii: 1–x,–1/2+y,3/2–z; iv: x,3/2–y,–1/2+z; v: x,–1+y,z; vi: 1–x,2–y,1–z; vii: –1+x,–1+y,z; viii: 2–x,–1/2+y,3/2–z; ix: –1+x,3/2–y,–1/2+z.
Figure 6. Cluster of four aminotetrazolate ions and network of water molecules in the octahydrate 4. Hydrogen atoms omitted for clarity. Symmetry codes i: 1–x,1–y,1–z; ii: 1–x,1/2+y,3/2–z; iii: 1–x,–1/2+y,3/2–z; iv: x,3/2–y,–1/2+z; v: x,–1+y,z; vi: 1–x,2–y,1–z; vii: –1+x,–1+y,z; viii: 2–x,–1/2+y,3/2–z; ix: –1+x,3/2–y,–1/2+z.
Crystals 02 00096 g006

3. Experimental Section

3.1. Synthesis of DABCO 5-Aminotetrazolates

DABCO (0.56 g, 5 mmol) and the appropriate amount of 5-aminotetrazole were dissolved in MeOH (3 mL). For the hydrate, the required amount of H2O was added. The solution was slowly refrigerated to –20 °C. After 3 days the supernatant was discarded, and the crystals were collected.

3.2. Crystal Structure Determination

Intensity data were recorded with Oxford Diffraction Gemini-R Ultra and Nonius KappaCCD diffractometers using Mo Kα radiation. Experimental details are summarized in Table 1. Structure solution and refinement was performed with the programs SIR2002 (direct methods) [28] and SHELXL-97 [29]. CCDC reference numbers: 855697-855700. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

4. Conclusions

Assembly of simple but versatile building blocks offers a treasure trove of opportunities and rich rewards for the curious investigator. The structures described herein are impressive examples of this successful concept.

References and Notes

  1. Fujihisa, H.; Honda, K.; Obata, S.; Yamawaki, H.; Takeya, S.; Gotoh, Y.; Matsunaga, T. Crystal structure of anhydrous 5-aminotetrazole and its high-pressure behavior. CrystEngComm 2011, 13, 99–102. [Google Scholar]
  2. Bray, D.D.; White, J.G. Refinement of the Structure of 5-Aminotetrazole Monohydrate. Acta Crystallogr. 1979, B35, 3089–3091. [Google Scholar]
  3. Boraei, A.A.A. Acidity Constants of Some Tetrazole Compounds in Various Aqueous-Organic Solvent Media. J. Chem. Eng. Data 2001, 46, 939–943. [Google Scholar] [CrossRef]
  4. Murlowska, K.; Sadlej-Sosnowska, N. Absolute Calculations of Acidity of C-Substituted Tetrazoles in Solution. J. Phys. Chem. A 2005, 109, 5590–5595. [Google Scholar] [CrossRef]
  5. Albert, A.; Goldacre, R.; Phillips, J. The Strength of Heterocyclic Bases. J. Chem. Soc. 1948, 2, 2240–2249. [Google Scholar]
  6. Xue, H.; Gao, H.; Twamley, B.; Shreeve, J.M. Energetic Salts of 3-Nitro-1,2,4-triazole-5-one, 5-Nitroaminotetrazole, and Other Nitro-Substituted Azoles. Chem. Mater. 2007, 19, 1731–1739. [Google Scholar]
  7. von Denffer, M.; Klapötke, T.M.; Sabaté, C.M. Hydrates of 5-Amino-1H-tetrazolium Halogenide Salts – Starting Materials for the Synthesis of Energetic Compounds. Z. Anorg. Allg. Chem. 2008, 634, 2575–2582. [Google Scholar] [CrossRef]
  8. Klapötke, T.M.; Sabaté, C.M.; Stierstorfer, J. Hydrogen-bonding Stabilization in Energetic Perchlorate Salts: 5-Amino-1H-tetrazolium Perchlorate and its Adduct with 5-Amino-1H-tetrazole. Z. Anorg. Allg. Chem. 2008, 634, 1867–1874. [Google Scholar]
  9. Jin, C.; Ye, C.; Piekarski, C.; Twamley, B.; Shreeve, J.M. Mono and Bridged Azolium Picrates as Energetic Salts. Eur. J. Inorg. Chem. 2005, 3760–3767. [Google Scholar]
  10. von Denffer, M.; Klapötke, T.M.; Kramer, G.; Spiess, G.; Welch, J.M.; Heeb, G. Improved Synthesis and X-Ray Structure of 5-Aminotetrazolium Nitrate. Propellants, Explos., Pyrotech. 2005, 30, 191–195. [Google Scholar] [CrossRef]
  11. Tao, G.-H.; Guo, Y.; Joo, Y.-H.; Twamley, B.; Shreeve, J.M. Energetic nitrogen-rich salts and ionic liquids: 5-aminotetrazole (AT) as a weak acid. J. Mater. Chem. 2008, 18, 5524–5530. [Google Scholar] [CrossRef]
  12. Henry, R.A. Salts of 5-Aminotetrazole. J. Am. Chem. Soc. 1952, 74, 6303. [Google Scholar] [CrossRef]
  13. Ernst, V.; Klapötke, T.M.; Stierstorfer, J. Alkali Salts of 5-Aminotetrazole—Structures and Properties. Z. Anorg. Allg. Chem. 2007, 633, 879–887. [Google Scholar] [CrossRef]
  14. Yao, Y.-L.; Xue, L.; Che, Y.-X.; Zheng, J.-M. Syntheses, Structures, and Characterizations of Two Pairs of Cd(II)-5-Aminotetrazolate Coordination Polymers. Cryst. Growth Des. 2009, 9, 606–610. [Google Scholar] [CrossRef]
  15. Liu, D.; Huang, G.; Huang, C.; Huang, X.; Chen, J.; You, X.Z. Cadmium Coordination Polymers Constructed from in Situ Generated Amino-Tetrazole Ligand: Effect of the Conditions on the Structures and Topologies. Cryst. Growth Des. 2009, 9, 5117–5127. [Google Scholar]
  16. Liu, D.; Huang, X.; Huang, C.; Huang, G.; Chen, J. Synthesis, crystal structures and properties of three new mixed-ligand d10 metal complexes constructed from pyridinecarboxylate and in situ generated amino-tetrazole ligand. J. Solid State Chem. 2009, 182, 1899–1906. [Google Scholar] [CrossRef]
  17. Wang, X.-W.; Chen, J.-Z.; Liu, J.-H. Photoluminescent Zn(II) Metal-Organic Frameworks Built from Tetrazole Ligand: 2D Four-Connected Regular Honeycomb (4363)-net. Cryst. Growth Des. 2007, 7, 1227–1229. [Google Scholar] [CrossRef]
  18. Wang, T.-W.; Liu, D.-S.; Huang, C.-C.; Sui, Y.; Huang, X.-H.; Chen, J.-Z.; You, X.-Z. Syntheses, Crystal Structures, and Magnetic Properties of Two Mn(II) Coordination Polymers Based on the 5-Aminotetrazole Ligand: Effect of Sources of Ligand on Construction of Topological Networks. Cryst. Growth Des. 2010, 10, 3429–3435. [Google Scholar]
  19. Paul, A.K.; Sanyal, U.; Natarajan, S. Use of Polyazaheterocycles in the Assembly of New Cadmium Sulfate Frameworks: Synthesis, Structure, and Properties. Cryst. Growth Des. 2010, 10, 4161–4175. [Google Scholar] [CrossRef]
  20. Qiu, Y.; Li, Y.; Peng, G.; Cai, J.; Jin, L.; Ma, L.; Deng, H.; Zeller, M.; Batten, S.R. Cadmium Metal-Directed Three-Dimensional Coordination Polymers: In Situ Tetrazole Ligand Synthesis, Structures, and Luminescent Properties. Cryst. Growth Des. 2010, 10, 1332–1340. [Google Scholar] [CrossRef]
  21. Laus, G.; Hummel, M.; Többens, D.M.; Gelbrich, T.; Kahlenberg, V.; Wurst, K.; Griesser, U.J.; Schottenberger, H. The 1:1 and 1:2 salts of 1,4-diazabicyclo[2.2.2]octane and bis(trifluoromethyl­sulfonyl)amine: thermal behaviour and polymorphism. CrystEngComm 2011, 13, 5439–5446 and literature cited. [Google Scholar]
  22. Laus, G.; Kahlenberg, V.; Wurst, K.; Lörting, T.; Schottenberger, H. Hydrogen bonding in the perhydrate and hydrates of 1,4-diazabicyclo[2.2.2]octane (DABCO). CrystEngComm 2008, 10, 1638–1644 and literature cited. [Google Scholar] [CrossRef]
  23. Quagliano, J.V.; Banerjee, A.K.; Goedken, V.L.; Vallarino, L.M. Donor Properties of Positively Charged Ligands. Pseudotetrahedral Transition Metal Complexes Containing a Monoquaternized Tertiary Diamine. J. Am. Chem. Soc. 1970, 92, 482–488. [Google Scholar]
  24. Kennedy, S.W.; Schultz, P.K.; Slade, P.G.; Tiekink, E.R.T. Triethylenediamine dihydrochloride. Z. Kristallogr. 1987, 180, 211–217. [Google Scholar] [CrossRef]
  25. Knope, K.E.; Cahill, C.L. 1,4-Diazoniabicyclo[2.2.2]octane dinitrate. Acta Crystallogr. 2007, E63, o2955. [Google Scholar]
  26. Jayaraman, K.; Choudhury, A.; Rao, C.N.R. Sulfates of organic diamines: hydrogen-bonded structures and properties. Solid State Sci. 2002, 4, 413–422. [Google Scholar] [CrossRef]
  27. Allwood, B.L.; Moysak, P.I.; Rzepa, H.S.; Williams, D.J. A novel hydrogen-bonded complex formed by reaction between bromine and 1,4-diazabicyclo[2.2.2]octane in dichloromethane solution. J. Chem. Soc., Chem. Commun. 1985, 1127–1129. [Google Scholar]
  28. Burla, M.C.; Carrozzini, B.; Cascarano, G.L.; Giacovazzo, C.; Polidori, G. More power for direct methods: SIR2002. Z. Kristallogr. 2002, 217, 629–635. [Google Scholar] [CrossRef]
  29. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar]

Share and Cite

MDPI and ACS Style

Laus, G.; Kahlenberg, V.; Wurst, K.; Hummel, M.; Schottenberger, H. 1,4-Diazabicyclo[2.2.2]octane (DABCO) 5-aminotetrazolates. Crystals 2012, 2, 96-104. https://doi.org/10.3390/cryst2010096

AMA Style

Laus G, Kahlenberg V, Wurst K, Hummel M, Schottenberger H. 1,4-Diazabicyclo[2.2.2]octane (DABCO) 5-aminotetrazolates. Crystals. 2012; 2(1):96-104. https://doi.org/10.3390/cryst2010096

Chicago/Turabian Style

Laus, Gerhard, Volker Kahlenberg, Klaus Wurst, Michael Hummel, and Herwig Schottenberger. 2012. "1,4-Diazabicyclo[2.2.2]octane (DABCO) 5-aminotetrazolates" Crystals 2, no. 1: 96-104. https://doi.org/10.3390/cryst2010096

Article Metrics

Back to TopTop