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Abstract: Reactions of a mononuclear molybdenum(V) starting material, 

(PyH)5[MoOCl4(H2O)]3Cl2, with 2,2-dimethylsuccinic acid in the presence of base afforded two 

products, (PyH)3[Mo2O4Cl4(μ2-dmsH)]·1/2CH3CN (1) and (PyH)4[Mo2O4Cl4(μ2-dmsH)]Cl (2). 

As revealed by the X-ray structure analysis, the half-neutralized form of the dicarboxylic 

acid, the dmsH− ion, coordinated to the well-known {Mo2O4}
2+ core in the syn-syn bidentate 

bridging manner. In both compounds, the non-ionized terminus of the ligand, the COOH 

function, participated in hydrogen-bonding interactions. The incorporation of the chloride 

counteranion in 2, prevented the formation of the common “carboxylic acid dimer” which 

was observed for 1. Instead, a hydrogen-bonded linkage of the COOH function with the 

chloride occurred.  

Keywords: molybdenum; {Mo2O4}
2+ core; carboxylate complexes; hydrogen-bonding; 

carboxylic acid dimer 

 

1. Introduction 

The singly metal−metal bonded {Mo2(μ2-O)2O2}
2+ structural fragment, shortly denoted as {Mo2O4}

2+, 

pervades the chemistry of molybdenum(V) [1–4]. Its ability to retain its structural integrity upon 

coordination of various ligands to its peripheral sites makes it a suitable candidate for the construction 

of metal-organic frameworks. The designed synthesis of such compounds has been an area of active 

research over the past two decades [5]. For example, the appropriately designed Mo2
4+ dimetal units 

served as preformed molecular building blocks in the formation of higher order structures [6–8].  
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We hoped that the combination of the {Mo2O4}
2+ building blocks with multidentate ligands such as  

di- or tricarboxylates would under favourable conditions result either in discrete clusters or polymeric 

materials. Our goal was realized by the reaction system of a mononuclear molybdenum(V) starting 

material, (PyH)5[MoOCl4(H2O)]3Cl2, and 1,3,5-benzenetricarboxylic acid. In the presence of a weak 

base, pyridine, a dinuclear anionic complex (PyH)4[Mo2O4Cl4(μ2-btcH2)]Cl and a tetranuclear neutral 

complex [{Mo2O4(Py)3}2(μ3-btcH)2]·6Py (where PyH+ is pyridinium cation, whereas btcH2
− and 

btcH2− stand for anionic forms of the acid with one or two ionized functions, respectively) were 

prepared [9]. Only the ionized functions of the acid were seen to participate in bonding interactions 

with the metal atoms. In both compounds, a carboxylate function coordinated to the {Mo2O4}
2+ core in 

a syn-syn bidentate bridging manner with the carboxylate oxygens occupying the positions which were 

trans to the terminal oxides (Figure 1). The carboxylate ligand of [{Mo2O4(Py)3}2(μ3-btcH)2]·6Py 

possessed another ionized function which employed a different binding mode: it coordinated in a 

monodentate manner to a metal ion in an adjacent dinuclear unit and a discrete tetranuclear cluster 

formed. Since the reaction outcome depends upon the number of the ionized functions in the acid, 

other bases apart from pyridine were used. At first, reactions of an acid with two carboxylic groups, 

2,2-dimethylsuccinic acid, hereafter designated as dmsH2, were investigated. The structural formula of 

the acid is shown in Figure 2. Following similar procedures to those employed with  

1,3,5-benzentricarboxylic acid, the reactions with dmsH2 in the presence of triethylamine or 

tetrabutylammonium hydroxide afforded two products, (PyH)3[Mo2O4Cl4(μ2-dmsH)]·1/2CH3CN 

(1) and (PyH)4[Mo2O4Cl4(μ2-dmsH)]Cl (2). Herein, their solid state structures are presented with the 

emphasis on the differences in the intermolecular interactions.  

Figure 1. A typical coordination of the carboxylate ligand to the {Mo2O4}2+  

structural core.  

 

Figure 2. A molecular formula of 2,2-dimethylsuccinic acid, dmsH2.  
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2. Results and Discussion 

2.1. Solid State Structures  

The X-ray structure analysis revealed that compounds 1 and 2 are pyridinium salts of the 

[Mo2O4Cl4(μ2-dmsH)]3− complex anion. A dinuclear [Mo2O4Cl4(μ2-dmsH)]3− ion of 2, depicted in 

Figure 3, occupies a general position within the unit cell of the monoclinic space group P 21/n. Four 

protonated pyridinium cations and a chloride counteranion are associated with each dinuclear anion. 

Compound 1 crystallizes in the same space group. Its composition is different: the asymmetric  

unit contains two [Mo2O4Cl4(μ2-dmsH)]3− complex anions, six pyridinium cations and an acetonitrile 

solvent molecule.  

Figure 3. ORTEP drawing of [Mo2O4Cl4(μ2-dmsH)]3−, the anionic part of 2. Displacement 

ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of 

arbitrary radii. 

 

The geometric properties of the [Mo2O4Cl4(μ2-dmsH)]3− anions of 1 and 2 do not show significant 

differences (see Table 1). The overall features of the {Mo2O4}
2+ cores in the [Mo2O4Cl4(μ2-dmsH)]3− 

anions are non-exceptional: (i) a short distance between a pair of molybdenum atoms, 2.5713(4) and 

2.5827(4) Å in 1 and 2.5929(7) Å in 2, and (ii) a non-planar Mo(μ2-O)2Mo rhombus whose deviation 

from planarity is given by a dihedral angle between two Mo(μ2-O)2 planes. The latter angle is known 

also as a fold angle. The larger the fold angle, the more planar moiety. The fold angles in compounds  

1 and 2 fall in the interval of values observed for other {Mo2O4}
2+ complexes with the carboxylate 

serving as a third bridging ligand. Geometric parameters of a series of such complexes are summarized 

in Table 2. The series displays with no exception larger fold angles than the {Mo2O4}
2+ complexes 

without a third bridging ligand. For example, in a dinuclear [Mo2O4Cl4(MeOH)2]
2− anion an angle of 

146.0(1)° was observed [10]. Nevertheless, the puckering of the Mo(μ2-O)2Mo moiety is a means of 

allowing a close approach of the metal atoms [11]. Therefore a somewhat more flattened Mo(μ2-O)2Mo 
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moiety in 2 is accompanied by a longer metal−metal bond length. A distorted octahedral coordination 

of each metal center of the {Mo2O4}
2+ core in the complex anions of 1 and 2 is completed by a pair of 

chlorides and an oxygen from the carboxylate group. In both compounds, the dmsH− ion, an anionic 

form of the parent acid with one ionized COOH function, is bound to the metal ions of the {Mo2O4}
2+ 

core in a syn-syn bidentate bridging manner. The carboxylate group occupies a pair of trans positions 

relative to the Mo=O bonds and is, therefore, subjected to their well-documented trans influence [12]. 

The molybdenum-to-the-carboxylate bond lengths listed in Table 2 are seen to span a wide range. 

Furthermore, in some complexes a non-equivalence in the pair of molybdenum-to-the-carboxylate 

bond lengths is displayed. In the case of [Mo2O4Cl4(μ2-dmsH)]3− anions, a more pronounced asymmetry 

in the carboxylate coordination occurs only for one of the two complex anions in the asymmetric unit 

of 1. The corresponding bond distances are 2.286(2) vs. 2.344(2) Å. In this case, the asymmetry can be 

traced also to the involvement of the particular carboxylate oxygen in another bonding interaction, i.e., 

a hydrogen bond with pyridinium cation. It is to be noted that the main difference in the two complex 

anions of the asymmetric unit in 1 is in the relative orientation of the dmsH− ligand [13]. The 

similarities and the differences can be seen in Figure 4 which shows an overlay of the two  

complex anions.  

Table 1. Relevant bonding parameters (Å, deg) of [Mo2O4Cl4(μ2-dmsH)]3− ions in 1 and 2. 

Bond 1a 2 

Mo–Mo 2.5827(4) 2.5713(4) 2.5929(7) 
Fold angleb 157.9(1) 156.6(1) 160.7(3) 
Mo–Cl 2.4407(9)−2.4718(9) 2.4522(9)−2.4722(9) 2.438(2)−2.472(2) 
Mo–O(carboxylate) 2.286(2), 2.344(2) 2.324(2), 2.366(2) 2.236(4), 2.287(4) 
C–O(carboxylate) 1.258(4), 1.288(4) 1.255(4), 1.275(4) 1.265(6), 1.271(6) 
C–O(COOH) 1.254(4), 1.293(4) 1.245(4), 1.291(4) 1.223(7), 1.312(8) 
a Two sets of parameters, one for each complex anion in the asymmetric unit; b Defined as a 
dihedral angle between two Mo(μ2-O)2 planes. 

Table 2. Dimensions (Å, deg) of {Mo2O4}
2+ units in carboxylate complexes.  

Species La Mo–O(L) Mo–Mo Fold angle Ref. 

1 dmsH− 
2.286(2), 2.344(2) 
2.324(2), 2.366(2) 

2.5827(4) 
2.5713(4) 

157.9(1) 
156.6(1) 

- 

2 dmsH− 2.236(4), 2.287(4) 2.5929(7) 160.7(3) - 
[Mo2O4Cl4(μ2-OOCCH3)]

3− acetate 2.354(1), 2.366(1) 2.5727(2) 157.01(9) [14] 
[Mo2O4Cl4(μ2-Hmal)]3− Hmal− 2.330(2), 2.357(2) 2.5859(3) 160.08(5) [15] 

[Mo2O4Cl4(μ2-Hmale)]3−b Hmale− 
2.380(2), 2.438(2) 
2.371(2), 2.377(2) 

2.5916(3) 
2.5951(3) 

156.49(9) 
158.3(1) 

[16] 

[Mo2O4Cl4(μ2-btcH2)]
3− btcH2

− 2.269(2), 2.281(2) 2.5962(4) 159.85(5) [9] 
a In all, the carboxylate ligand L is coordinated in a bidentate bridging manner to a pair of trans 
sites in the {Mo2O4}

2+ unit. Abbreviations used: Hmal− = hydrogen malonate, Hmale− = hydrogen 
maleate, btcH2

− = an anion of 1,3,5-benzenetricarboxylic acid with one ionized function; b Two sets 
of parameters, one for each complex anion in the asymmetric unit.  
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Figure 4. An overlay of the crystallographically independent complex anions in 1.  

 

In both compounds, the non-ionized COOH termini of the dmsH− ligands participate in  

hydrogen-bonding. Illustrations of hydrogen bonds and packing diagrams for 1 and 2 are given in 

Figures 5−8. For neither compound could the positions of the carboxylic hydrogen atoms be located from 

the electron density maps. The sites of protonation were thus established from the hydrogen-bonding 

pattern. In the case of 2, a non-equivalent pattern of C−O bond lengths within the COOH function 

corroborates the formulation. Lists of hydrogen bonds in 1 and 2 are provided in Tables 3 and 4. In 1, 

the COOH group of one [Mo2O4Cl4(μ2-dmsH)]3− ion is linked with the agency of two  

O–H···O hydrogen bonds with the COOH group of another complex ion (Table 3). The corresponding 

O···O distances, 2.609(3) and 2.630(3) Å, are significantly shorter than the sum of the van der Waals 

radii, 3.04 Å [17]. Such a linkage, known also as a “carboxylic acid dimer” and is illustrated in  

Figure 9, is a dominant recognition motif in the structures of carboxylic acids [18]. As will be shown 

presently, the molybdenum(V) complexes with multicarboxylate ligands which possess at least one 

non-ionized COOH function reveal several other connectivity patterns. The explanation for a displayed 

diversity lies in the presence of structural entities which can participate in interactions with the COOH 

entity. Typically, these are pyridine solvent molecules and chloride counteranions. The outcome of the 

unavoidable competition between the several hydrogen bond donors and acceptors is unpredictable. 

Compound 2 exemplifies the case when the incorporation of the chloride counteranion into the 

structure interferes with the formation of the carboxylic acid dimer. In 2, the COOH function is 

engaged in a hydrogen bond with chloride, O(31)···Cl(5)iii = 3.044(4) Å [(iii) symmetry code: x + 0.5, 

−y + 0.5, z + 0.5] which forms another hydrogen bond of a comparable length with protonated 

pyridine, i.e., N(3)iii···Cl(5)iii = 3.047(5) Å (Table 4). The other three pyridinium cations in 2 interact 

with the μ2-oxides of the {Mo2O4}
2+ core. The resulting N···O contacts are in the 2.620(8)−2.807(7) Å 

range. This type of hydrogen-bonding appears as a recurrent structural motif among the anionic 

{Mo2O4}
2+ complexes with protonated pyridine molecules as countercations [10]. Similarly, four out 

of six pyridinium cations in the asymmetric unit of 1, participate in the same type of the interaction, 

whereas the remaining two cations form hydrogen bonds with the carboxylate oxygens.  
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Table 3. Hydrogen bonds in 1. 

Type Donor atom···acceptor atom a Length (Å) b 

COOH···COOH O(14)···O(23) 2.630(3) 
COOH···COOH O(24)···O(13) 2.609(3) 

PyH+···μ2-O N(1)···O(7) 2.767(5) 
PyH+···μ2-O N(2)···O(8) 2.716(4) 
PyH+···μ2-O N(4)···O(5) i 2.620(4) 
PyH+···μ2-O N(5)···O(6) ii 2.722(4) 

PyH+···COO− c N(3)···O(11) ii 2.737(4) 
PyH+···COO− c N(6)···O(22) i 2.833(4) 

a Symmetry codes: (i) x + 1, y, z; (ii) −x + 1, −y + 1, −z + 1; b The distances may be compared to the 
sums of the corresponding van der Waals radii: 3.04 Å for O+O, and 3.07 Å for N+O [17];  
c COO−, the carboxylate group coordinated to the {Mo2O4}

2+ core. 

Table 4. Hydrogen bonds in 2.  

Type Donor atom···acceptor atom a Length (Å) b 

COOH···Cl− O(31)···Cl(5) iii 3.044(4) 
PyH+···Cl− N(3) iii··· Cl(5) iii 3.047(5) 

PyH+···μ2-O N(1)···O(4) iv 2.620(8) 
PyH+···μ2-O N(2)···O(4) 2.807(7) 
PyH+···μ2-O N(4)···O(3) 2.666(6) 

a Symmetry codes: (iii) x + 0.5, −y + 0.5, z + 0.5; (iv) x, y, z – 1; b The distances may be compared 
to the sums of the corresponding van der Waals radii: 3.27 Å for O+Cl, 3.30 Å for N+Cl, and  
3.07 Å for N+O [17].  

Figure 9. Pair-wise association of two carboxylic acids, a common hydrogen  

bond synthon.  

 

In the absence of other hydrogen bond donors and acceptors in the compound, the COOH  

function can form an intramolecular interaction as exemplified by the hydrogen malonate complex, 

(PyH)3[Mo2O4Cl4(μ2-Hmal)]·CH3CN, with the ligand Hmal− bound in the same manner as dmsH− in 

compounds 1 and 2 [15]. The bond is formed between the COOH terminus of the Hmal− ligand and the 

carboxylate oxygen (Figure 10a). The respective O···O contact is short, it amounts to 2.552(4) Å. The 

same motif is observed for the hydrogen maleate complex (PyH)3[Mo2O4Cl4(μ2-Hmale)] with the 

O···O contacts in the 2.523(3)−2.533(3) Å range [16]. In both examples, the geometry of the ligand 

favours such an interaction. Consequently, the formation of intramolecular hydrogen bonds is a 

common feature of the hydrogen malonate or hydrogen maleate coordination chemistry [19]. On the 

other hand, the example that follows, (PyH)2[Mo2O4Cl(Py)(η2-mal)(μ2-Hmal)], shows that even 

hydrogen malonate can produce other hydrogen-bonding patterns [15]. The latter complex possesses 

also fully neutralized malonate ions, mal2−. The COOH group is hydrogen-bonded to the  
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non-coordinated oxygen of the mal2− ligand of an adjacent complex (Figure 10b). The O···O contacts 

with lengths of 2.558(4) Å link complex ions into infinite chains. A complex with the hydrogen 

succinate, (PyH)[Mo2O4Cl2(Py)2(μ2-Hsuc)]·Py, reveals a yet another structural synthon: the COOH 

group is engaged in an interaction with pyridine molecule, O···N = 2.636(4) Å [15] (Figure 10c). 

Although the stoichiometry of another example, (PyH)4[Mo2O4Cl4(μ2-btcH2)]Cl, is highly reminiscent 

of that of compound 2, the ligand, the anion of 1,3,5-benzentricarboxylic acid, possesses two  

non-ionized COOH functions and a different connectivity pattern is displayed [9]. Both of its COOH 

functions form hydrogen bonds with chloride counteranions and infinite chains are formed (Figure 

10d). The O···Cl lengths, 2.920(3) and 2.938(3) Å, are slightly shorter than in compound 2. In addition, 

three pyridinium cations are attached to each chloride counteranion. The respective N···Cl distances are 

in the 3.112(3)−3.291(3) Å range.  

Figure 10. Various hydrogen-bonding motifs involving COOH functions in {Mo2O4}
2+ 

complexes. (a) An intramolecular O–H···O bond in (PyH)3[Mo2O4Cl4(μ2-Hmal)]·CH3CN; 

(b) COOH terminus of the Hmal− ligand is bonded to the COO− moiety of the mal2− ligand 

in (PyH)2[Mo2O4Cl(Py)(η2-mal)(μ2-Hmal)]; (c) In (PyH)[Mo2O4Cl2(Py)2(μ2-Hsuc)]·Py, the 

COOH group interacts with pyridine solvent molecule [15]; (d) O–H···Cl interactions in 

(PyH)4[Mo2O4Cl4(μ2-btcH2)]Cl result in infinite chains [9].  

 
(a) (b) 

 
 

(c) (d) 

  



Crystals 2013, 3 284 

 

 

2.2. Infrared Spectroscopy  

The positions of the asymmetric and symmetric ν(COO) vibrations can be used to diagnose the 

carboxylate binding mode [20,21]. Due to the presence of two functions in dmsH− ligands in 1 and 2, 

no unambiguous assignation can be made. A group of bands in the region of 1550−1350 cm−1 finds  

its origin in the νasym(COO) and νsym(COO) of the coordinated carboxylate moiety. Strong bands at  

1698 cm−1 for 1 and at 1710 cm−1 for 2 may be assigned to the C=O stretching frequency for the acid 

end of the dmsH− ligand [22]. The shift to lower frequency for 1 is in accordance with the involvement 

of the COOH function in a strong hydrogen-bonding to form a dimer.  

3. Experimental Section  

3.1. General  

All procedures were conducted in air. Most chemicals were purchased from Aldrich Chemical Co., 

and triethylamine from Fluka. They were used without further purification. (PyH)5[MoOCl4(H2O)]3Cl2 

was prepared following the published procedure [10]. The infrared spectra were measured on solid 

samples as nujol mulls using a Perkin Elmer 2000 series FT-IR spectrometer. Elemental analyses were 

carried out by the Chemistry Department service at the University of Ljubljana.  

3.2. Preparation of (PyH)3[Mo2O4Cl4(μ2-dmsH)]·1/2CH3CN (1)  

2,2-dimethylsuccinc acid (353 mg, 2.415 mmol) was added to the solution of triethylamine  

(490 mg, 4.84 mmol) in acetonitrile (25 mL). To this solution, (PyH)5[MoOCl4(H2O)]3Cl2 (562 mg, 

1.31 mmol of molybdenum) was added. The red solution was left to stand in a closed Erlenmeyer flask 

at ambient conditions overnight. On the following day, the solution was placed in the refrigerator. 

Orange crystals of 1 that formed after two days were filtered off. Yield: 248 mg (47%). Calc. for 

C22H28.5Cl4Mo2N3.5O8: C, 32.88; H, 3.57; N, 6.10. Found: C, 33.05; H, 3.67; N, 6.11. IR (cm−1):  

2250 w, 1698 vs, 1634 m, 1611 m, 1546 vs, 1536 vs, 1486 vs, 1418 m, 1402 m, 1366 w, 1324 m,  

1300 m, 1222 m, 1201 m, 1168 m, 1054 w, 961 vvs, 937 vs, 887 m, 817 w, 776 m, 751 vvs, 721 vvs, 

681 vvs, 605 s.  

3.3. Preparation of (PyH)4[Mo2O4Cl4(μ2-dmsH)]Cl (2)  

2,2-dimethylsuccinc acid (730 mg, 5.0 mmol) was dissolved in methanol (5 mL), followed by  

the addition of a methanol solution (1.0 M) of tetrabutylammonium hydroxide (10 mL, 10.0 mmol). 

Methanol was removed by careful pumping on the vacuum line. Acetonitrile (20 mL) was added to  

the oily residue. Each gram of thus obtained solution contained 0.319 mmol of (n-Bu4N)2dms. This 

solution (2.19 g, 0.70 mmol of (n-Bu4N)2dms) was added to the acetonitrile (20 mL) solution of 

(PyH)5[MoOCl4(H2O)]3Cl2 (450 mg, 1.05 mmol of molybdenum). The solution of deep yellow colour 

was left to stand in a closed Erlenmeyer flask at ambient conditions overnight. On the following day, 

the volume of the solution was reduced to ca. one half by pumping on the vacuum line. The resulting 

solution was placed in the refrigerator. The orange crystals of 2 which formed after two days were 

filtered off and washed with the hexanes. Yield: 160 mg (34%). Calc. for C26H33Cl5Mo2N4O8:  
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C, 34.75; H, 3.70; N, 6.23. Found: C, 34.65; H, 3.62; N, 6.19. IR (cm−1): 1710 vs, 1636 s, 1606 s,  

1535 vvs, 1485 vvs, 1429 vs, 1308 m, 1245 w, 1203 vs, 1159 w, 1135 m, 1055 w, 954 vvs, 880 m,  

750 vvs, 722 vvs, 683 vvs, 630 w, 604 m.  

3.4. X-ray Crystallography 

Crystals were mounted on the tip of a glass fibre with a small amount of silicon grease and 

transferred to a goniometer head. Data were collected on a Nonius Kappa CCD diffractometer. Data 

reduction and integration were performed with the software package DENZO-SMN [23]. Averaging  

of the symmetry-equivalent reflections largely compensated for the absorption effects. For both 

compounds, the coordinates of some or all of the non-hydrogen atoms were found via direct methods 

using the structure solution program SHELXS [24]. The positions of the remaining non-hydrogen 

atoms were located by use of a combination of least-squares refinement and difference Fourier maps in 

the SHELXL-97 program. Hydrogen atoms, including the carboxylic hydrogen atoms, were added in 

calculated positions. All calculations were performed using WinGX System Version 1.80.05 [25]. 

Figures depicting the structures were prepared using ORTEP3 [26], SHELXTL [27], Mercury [28], 

and CrystalMaker [29]. Cell parameters and refinement results are summarized in Table 5. Further details 

on the crystal structure investigations may be obtained free of charge from The Cambridge 

Crystallographic Data Centre [30]. Cambridge Structural Database deposition numbers: CCDC-917918 (1) 

and -917919 (2).  

Table 5. Crystallographic data for 1 and 2. 

Compound 1 2 

Empirical formula C22H28.5Cl4Mo2N3.5O8 C26H33Cl5Mo2N4O8 
Formula weight 803.7 898.7 
Crystal system monoclinic monoclinic 
Space group P 21/n P 21/n 
T (K) 150(2) 150(2) 
a (Å) 9.9123(1) 9.0254(1) 
b (Å) 17.0078(1) 25.7214(4) 
c (Å) 36.1401(3) 16.2035(2) 
α (deg) 90 90 
β (deg) 97.4302(4) 97.0941(7) 
γ (deg) 90 90 
V (Å3) 6041.57(9) 3732.78(8) 
Dcalcd (g/cm3) 1.767 1.599 
Z 8 4 
λ (Å) 0.71073 0.71073 
μ (mm−1) 1.233 1.077 
Collected reflections 19959 12861 
Unique reflections, Rint 10966, 0.028 6785, 0.0281 
Observed reflections 8997 5449 
R1 a (I > 2σ(I) 0.0291 0.0526 
wR2 b (all data) 0.0658 0.1283 

a R1 = ||Fo| − |Fc||/|Fo|; 
b wR2 = {[w(Fo

2 − Fc
2)2]/[w(Fo

2)2]}1/2. 
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4. Conclusions  

Reactions of (PyH)5[MoOCl4(H2O)]3Cl2 with 2,2-dimethylsuccinic acid afforded a dinuclear 

anionic molybdenum(V) complex which crystallized as two pyridinium salts, (PyH)3[Mo2O4Cl4(μ2-

dmsH)]·1/2CH3CN (1) and (PyH)4[Mo2O4Cl4(μ2-dmsH)]Cl (2). In order to deprotonate the acid, 

triethylamine and tetrabutylammonium hydroxide were used. In either case, products with a dmsH− 

ion, a half-neutralized acid, were isolated. The ligand, the dmsH− ion, coordinated to the {Mo2O4}
2+ 

core in the already observed manner: with both oxygen atoms of the carboxylate to trans sites within 

the {Mo2O4}
2+ core. The non-ionized COOH function of the ligand got engaged in hydrogen bonds. In 

1, the COOH groups of two ligands associated to form the well-known “carboxylic acid dimer”. Due 

to the presence of chloride counteranions in 2, a different intermolecular connectivity was observed. 

The COOH group formed a hydrogen bond with the chloride. The [Mo2O4Cl4(μ2-dmsH)]3− complex 

represents a new addition to the growing family of the {Mo2O4}
2+-containing complexes with 

multicarboxylate ligands. In cases when the ligands possess non-ionized functions, diverse  

hydrogen-bonding motifs which involve the COOH functions are displayed.  
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