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Abstract: Various types of coiled carbon filaments have been synthesized using chemical 

vapor deposition and other methods. These carbon filaments exhibit unique electrical and 

mechanical properties due to their versatile shapes and structures. To form coiled shapes, 

different types of catalyst compositions and reactive gases have been explored. Generally, 

coiled carbon filaments are classified by coil diameter and shape (e.g., microcoil and 

nanocoil). In this review, coiled carbon filaments are classified into three growth mechanism 

categories: (1) bidirectional double helical growth; (2) bidirectional twisted growth; and  

(3) tip single helical or twisted growth. Next, their synthesis methods and hypothetical 

growth mechanisms are discussed. Then, their electrical and mechanical properties are listed. 

Finally, potential applications and uses of coiled carbon filament are mentioned. 
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1. Introduction 

Carbon is one of the most versatile chemical elements of the periodic table and exists in various 

allotropic forms including diamond, graphite, and amorphous carbon. Other carbon forms that have 

garnered considerable attention in research are fullerene, carbon nanotube, graphene, carbon nanodot, 

and coiled carbon filaments [1–6]. These materials have been studied extensively to elucidate their 

unique and exciting properties and novel potential applications. Coiled carbon filaments, in particular, 
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have been found to possess attractive morphologies, as well as excellent mechanical and electrical 

properties including superelasticity, low Young’s modulus, relatively high electrical conductivity, and 

good electromagnetic (EM) wave absorption [7–10]. These properties have led to the evaluation of 

helically shaped filaments with nano and micrometer coil diameters for use as tactile sensors, 

electromagnetic interference (EMI) shielding, and field emission devices [7,10,11]. In the early years, 

despite reports by several groups of successfully growing coiled carbon filaments, reproducing published 

results remained challenging. In 1953, vermicular carbon filaments were found in the deposition of 

carbon in the brickwork of blast furnaces and were reproduced by iron containing brick by Davis et al. [12]. 

In 1972, Baker et al. [13] produced twisted carbon filaments with 30–60 nm diameters using nickel 

particle catalyst. The following year, Boehm reported twisted carbon filaments and double helical 

filaments by pyrolysis of diluted Fe(CO)5 vapor. This led to a proposed growth mechanism for double 

helical filaments [14]. In addition, the Motojima research group established a method to synthesize 

bidirectionally grown double helical carbon filaments or carbon microcoils (CMCs) that were several 

micrometers in diameter by adding sulfur compound [15]. The Nakayama research group developed tip 

grown single helical carbon filaments or carbon nanocoils (CNCs) with diameters in the range of several 

tens to several hundred nanometers using iron-tin based catalysts [6]. Figure 1 illustrates the different 

varieties of coiled carbon filaments that have been synthesized over the years. Based on growth mode, 

coiled carbon filaments can be classified into three groups: (1) bidirectionally grown double helical 

carbon filaments (b-DHCFs) [16]; (2) bidirectionally grown twisted carbon filaments (b-TCFs) [17]; and 

(3) tip grown single helical carbon filaments (t-SHCFs) [18] or tip grown twisted carbon filaments  

(t-TCFs) [18]. Structurally, some t-SHCFs and t-TCFs can have hollow cores like multi-walled carbon 

nanotubes (MWCNTs) [19]. Surface-wise, t-SHCFs and t-TCFs generally have sharp edges. In contrast, 

b-DHCFs and b-TCFs are smooth. All of these growth modes strongly depend on catalyst and reactive 

gas compositions. 

Figure 1. Different types of coiled carbon filaments: (a) bidirectionally grown double helical 

carbon filaments (b-DHCFs) [16]; (b) bidirectionally grown twisted carbon filaments  

(b-TCFs) [17]; (c) tip grown single helical carbon filaments (t-SHCFs) [18]; and (d) tip 

grown twisted carbon filaments (t-TCFs) [18]. Reprinted with permission from [16–18],  

Copyright 1999 AIP Publishing LLC, Copyright 2004 Elsevier, and Copyright 2010 Elsevier. 
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2. Synthesis 

2.1. Synthesis of Bidirectionally Grown Double Helical Carbon Filaments 

To synthesize uniform bidirectionally grown double helical carbon filaments (b-DHCFs), a small 

amount of sulfur or phosphorus additive is introduced with reactive gases. The amount of sulfur or 

phosphorus additive, the compositions and flow rate of gases and reaction temperature all strongly 

influence the growth of double helical structures [4,15]. Chemical vapor deposition (CVD) has been the 

most popular technique used to synthesize b-DHCFs; but other methods have been explored as well, 

including laser-induced thermal decomposition. 

2.1.1. CVD Method 

The reaction temperature used to synthesize b-DHCFs is usually between 700 and 850 °C with CVD 

and depends on the catalyst chemical composition [15]. Like the wide reaction temperature range, choice 

of catalyst can also vary broadly. For example, Motojima et al. [15] demonstrated that many types of 

metal powder catalysts such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Co, and Ni could be used to grow 

b-DHCFs, which Motojima et al. [15] referred to as CMCs. Each of these metal catalysts has a different 

optimum reaction temperature and amount of sulfur additive gas during CVD. However, it has been 

shown that it is more effective to grow double helical CMCs with Ni, Ti, or Ta. Using Ni, the average 

external coil diameter was found to be 5 μm and the length of coil after two hours was between 5 and  

8 mm [20]. Although Fe has been used as catalyst for the synthesis of carbon nanofibers and nanotubes, 

Fe powder with sulfur additive gas was not able to synthesize double helical CMCs [15]. Although 

hydrogen sulfide (H2S) gas or thiophene (C4H4S) has usually been used to synthesize double helical 

CMCs, they can be obtained without these additives using MoS2 catalyst. Cobalt and tungsten sulfides 

also worked without sulfur additive gas [15]. Double helical CMCs grown by nickel sulfide catalyst 

without sulfur additive gas were reported as well. However, the uniformity of these CMCs was low 

compared to that of CMCs using thiophene or H2S additive [21]. Yang et al. [22] demonstrated that TiC 

with H2S gas successfully formed b-DHCFs with an external coil diameter of about 300 nm. Then,  

Ding et al. [23] synthesized b-DHCFs using phosphorus instead of sulfur. Nickel phosphorus based 

alloys (Ni–P and Ni–W–P) without hydrogen, sulfur or phosphorus additive gases were used to grow  

b-DHCFs and triple helical CNCs with 100–300 nm of external coil diameter, as shown in Figure 2. 

Interestingly, the pre-heat treatment temperature for Ni–P alloy catalysts influenced the growth ratio of 

single helix or twist to double helix. Additionally, it was observed that the b-DHCFs with several 

hundred nanometer diameters had the same turbostratic graphite structure as b-DHCFs with several 

micrometer diameters [23,24]. 
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Figure 2. TEM images of double helical CNCs grown by Ni–W–P catalyst [23]. Reprinted 

with permission from [23], Copyright 2004 AIP Publishing LLC. 

 

2.1.2. Other Synthesis Methods 

Other methods in addition to CVD have been used successfully to synthesize coiled carbon filaments 

as well. For example, Okada et al. [25] reported that b-DHCFs with about 3 μm of external coil diameter 

were synthesized using laser-induced thermal decomposition. With this method, allene (C3H4) gas as 

carbon source, sulfur hexa-fluoride (SF6) as sulfur additive and gaseous ferrocene ((C5H5)2Fe) as catalyst 

were heated by a continuous wave CO2 laser on alumina substrate. Another method employed by  

Kuzuya et al. [26] led to the synthesis of b-DHCFs with 3–4 μm of external diameter using a plasma and 

catalyst technology (PACT) reactor. Here, hydrocarbon gas (e.g., methane, propane, ethylene or 

acetylene) as a carbon source with H2S and H2 gases was decomposed by nitrogen plasma. Afterwards, 

the decomposed gases were introduced to the nickel catalyst powder on graphite substrate.  

2.2. Bidirectionally Grown Twisted Carbon Filaments 

To synthesize bidirectionally grown twisted carbon filaments (b-TCFs), CVD is usually used at a 

reaction temperature between 500 and 800 °C with sulfur or phosphorus additive gas [23,27].  

Chen et al. [27] reported growing b-TCFs using Ni catalyst supported on Al2O3 powder with H2S gas. 

The external coil diameter was between 100 and 500 nm. Structurally, the b-TCFs were slightly more 

crystallized than b-DHCFs. Ding et al. [23] demonstrated that Ni–P and Ni–W–P alloys produced not 

only double helical CNCs, but also b-TCFs with about 100 nm of external diameter (Figure 3).  

In contrast, Qin et al. [28,29] reported a low reaction temperature method for the synthesis of b-TCFs 

without sulfur and phosphorus gas. Qin et al. grew b-TCFs using Cu catalytic nanoparticles with 

acetylene gas at 195 °C. The Cu nanoparticles were prepared by the reduction of copper sulfate with 

sodium borohydride [28,29]. X-ray diffraction (XRD) revealed the b-TCFs non-graphitic structure; and 

infrared (IR) spectroscopy along with elemental analysis indicated their hydrocarbon composition with 

C to H molar ratios of 1.06 to 1 because of the very low reaction temperature [28]. Nitze et al. [30] 

synthesized b-TCFs using fullerene supported palladium nanoparticles (Pd2C60) at the reaction 

temperature between 550 and 600 °C with acetylene gas and water. The Pd2C60 was able to selectively 

grow more b-TCFs than Pd film. Overall, the morphologies of the b-TCFs grown by Ni with sulfur 

additive gas, Ni–P alloys, Cu nanoparticles, and Pd2C60 were all quite similar. 
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Figure 3. A growth tip of the bidirectionally grown twisted carbon filaments [23]. Reprinted 

with permission from [23], Copyright 2004 AIP Publishing LLC. 

 

2.3. Synthesis of Tip Grown Single Helical or Twisted Carbon Filaments 

For the synthesis of tip grown single helical carbon filaments (t-SHCFs), chemical composition, size 

and uniformity of catalyst play important roles [31–33]. Typically, t-SHCFs are synthesized by CVD 

using two or more chemical compositions of catalyst with acetylene or methane as carbon source along 

with argon or helium. For the iron-based catalyst, the reaction temperature was 680–700 °C [32]. Except 

in a few reports, sulfur or phosphorus additive with hydrogen gas was not used for the single helical 

structure [18,22,32]. 

2.3.1. Indium, Iron and Tin Based Catalysts 

Zhang et al. [6] discovered that Fe coated indium tin oxide (ITO) could be used as catalyst to 

synthesize single helical carbon tubule nanocoils. Iron with a thickness of 15 nm was coated onto a  

300 nm ITO film by vacuum vaporization through shadow masks. The external diameter of the resultant 

tubules was 30–80 nm (Figure 4). As illustrated in Figure 5, the single helical carbon tubule nanocoil 

had a more aligned graphite structure than the b-DHCF [6,24]. The interlayer spacing of graphite for 

single helical carbon tubule nanocoils was 0.33 nm [6]. 

Figure 4. TEM micrograph of a single helical carbon tubule nanocoils [6]. Reprinted with 

permission from [6], Copyright 2000 Japan Society of Applied Physics. 
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Figure 5. TEM micrographs of (a) bidirectionally grown double helical carbon filament [24] 

and (b) a single helical carbon tubule nanocoils [6]. Reprinted with permission from [6], 

Copyright 2000 Japan Society of Applied Physics; Reprinted with permission from [24], 

Copyright 2004 Elsevier. 

  

Okazaki et al. [33] grew single helical CNCs using Sn–Fe–In–O catalytic particles synthesized by 

wet chemical reaction. Iron chloride (FeCl3), indium chloride (InCl3), and tin chloride (SnCl3) aqueous 

solutions were mixed in appropriate ratios. An ammonium carbonate ((NH4)2CO3) aqueous solution or 

base solution was added to the mixture of iron, indium and tin chloride solution to precipitate iron, 

indium and tin hydroxides simultaneously. The precipitate was rinsed with deionized water, dried at  

110 °C, and milled to make a fine powder. This powder was then heated to form Fe2O3, In2O3, and SnO2 

by dehydration. The optimum composition ratio of In to Sn in Fe matrix to grow single helical CNCs 

was 10%–33% to below 3.3%, but not zero. 

2.3.2. Fe–Sn Oxide Catalyst 

Kanada et al. [19] reported that Fe–Sn oxide could be used to synthesize multi-walled CNCs. Fe–Sn 

thin film catalyst was prepared using a vacuum arch plasma deposition method. Fe and Sn were 

uniformly co-deposited on Si substrate using two independent arc plasma guns. An Fe/Sn ratio of 4 to 3 

was best for yielding CNC. The Fe–Sn thin film was annealed at 150 °C in air for 12 h in order to oxidize 

the catalyst to prevent Sn from vaporizing during heating. The average coil diameter of CNCs 

synthesized with the catalyst was 54 nm. As shown in Figure 6, the CNCs had a hollow structure and 

multi-walled graphene layers. 

Li et al. [18] produced single helical CNCs with average coil diameters of 500–900 nm with  

Fe–Sn–O catalytic particles. The catalytic particles were prepared by sol-gel method using Fe2(SO4)3, 

FeCl3 or Fe(NO3)3 as an iron precursor and SnCl2 as a tin precursor. The iron and tin precursors in a 

molar ratio of 3:1 along with C6H8O7H2O were mixed in ethanol. The mixture was heated and stirred at 

80 °C for 3 h to transform the solution to gel; the gel was then heated in air at 700 °C to obtain  

Fe–Sn–O particles. Interestingly, it was observed that the type of iron precursor used had a strong 

influence on CNC morphology (i.e., helical or twisted shapes). The shapes for FeCl3, Fe2(SO4)3, and 

Fe(NO3)3 were found to be helical, helical and twisted, and twisted with other shapes, respectively. 
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Figure 6. TEM image of multi-walled CNC [19]. Reprinted with permission from [19], 

Copyright 2008 Japan Society of Applied Physics. 

 

2.3.3. Fe-Based Alloy Catalysts with Sulfur Additive Gas  

Iron-based alloy (Fe:Ni:Cr = 44:5:1) catalyst with hydrogen sulfide gas can be used to synthesize 

single helical carbon microcoils, with coil diameters ranging from 0.5 to 3 μm. On the other hand,  

nickel-based alloy (Fe:Ni:Cr = 5:44:1) grew double helical CMCs [34]. Fe–Ni–In with thiophene gas 

was also used to grow single helical CMCs [17]. The twisted ribbon-like carbon filaments in Figure 7 

were synthesized by Chen et al. [35] using iron-based alloys (Fe74Co18Ni8 or Fe71Cr18Ni8Mo3) with H2S 

gas. The width and thickness of these ribbon-like nanofibers were 100–200 nm and 10–50 nm, 

respectively. In addition, it should be noted that although sulfur was added, the growth mode with  

iron-based alloy was from the tip instead of bidirectional. 

Figure 7. Representative twisted ribbon-like nanofibers grown by Fe14Cr18Ni8 catalyst [35]. 

Reprinted with permission from [35], Copyright 2005 Elsevier. 
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2.3.4. Sn Catalyst Supported by BaSrTiO3 Substrate 

Sun et al. [36] reported synthesizing single helical CNCs with 200–900 nm of external coil diameter 

using Sn on BaSrTiO3 substrate as catalyst. Sn was introduced in the pits or grain boundary triple 

junctions of polycrystalline BaSrTiO3 substrate. The catalytic particles on the tip of CNCs consisted of 

Sn, Sr, Ba, Ti and O with a Sn:Ba:Sr:Ti:O molar ratio of 1:6:4:10:30 based on quantitative energy 

dispersive X-ray (EDX) analysis. 

2.3.5. Water Soluble Na-K Catalyst  

Qi et al. [37] successfully grew single helical CNCs using water-soluble, wet chemistry prepared 

NaxKy catalyst; which involves a less complicated and inexpensive CNC purification process. Sodium 

hydroxide, potassium hydroxide and citric acid were dissolved in absolute ethanol. The mixture was 

stirred at 60 °C for 4 h and then heated at 80 °C to form white powder. Next, the powder was heated 

twice in air at 600 °C for 4 h to yield NaxKy catalyst. 

3. Growth Mechanisms 

3.1. Growth Mechanism of Bidirectionally Grown Double Helical and Twisted Carbon Filaments  

Tip growth has some derivative growth modes related to catalyst composition (Figure 8).  

Multi-directional carbon filaments were formed on nickel catalysts containing high sulfur  

coverage [38,39]. Bidirectional growth of carbon filament using Fe–Sn catalytic particles was also 

reported [40]. Audier et al. [41,42] proposed a mechanism for carbon bidirectional growth as illustrated 

in Figure 9. The dissociative chemisorption of the gas can occur at the emerging line of a subgrain 

boundary of the metallic bicone catalytic particle. The bicone subgrain boundary is either of the (110) 

type with a face-centered cubic (FCC) metallic structure, or of the (100) type with a body-centered cubic 

(BCC) metallic structure. Because of the dislocation, the subgrain boundary was slightly disoriented  

(1° to 5°) with respect to the bicone catalyst axis (Figure 9). The diffusion coefficient along a subgrain 

boundary is about 104 times higher than the bulk diffusion coefficient. Therefore, carbon atoms can 

diffuse very quickly at first into the subgrain boundary, and afterwards symmetrically through both parts 

of the bicone [41,42]. Chen et al. [43] proposed a growth mechanism for bidirectionally grown double 

helical carbon filaments (b-DHCFs) synthesized with nickel catalyst and sulfur additive. During growth, 

a quasi-liquid phase composed of Ni–C–S–O is formed around rhombohedral Ni3C catalyst and extends 

in two directions to grow bidirectional carbon filaments. The order of magnitude for carbon deposition 

on Ni crystal planes was (100) > (111) > (110). Since each crystal plane on the surface of rhombohedral 

Ni catalyst is different, the ratio of catalytic activity on each crystal face of rhombohedral Ni catalyst 

determines the degree of curvature for carbon filaments and subsequently the external coil  

diameters [44]. Growth tips of b-DHCFs and bidirectionally grown twisted carbon filaments (b-TCFs) are 

shown in Figure 10 [27,44]. At unoptimized reaction temperatures, bidirectionally grown straight carbon 

filaments were observed (Figure 11) [45]. It was suggested that helical shape of carbon filaments is 

formed by the rotation of catalyst and the different shapes between b-DHCFs and b-TCFs are attributed 

to rotation direction of catalysts (Figure 12) [27].  
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Figure 8. Schematic representation of different types of growth observed in carbon  

filaments [38]. Reprinted with permission from [38], Copyright 1989 Elsevier. 

 

Figure 9. Schematic drawing of (a) bitube formation [41] and (b) disorientation (1° to 5°) 

of (110) subgrain boundary with respect to bicone axis [42]. Reprinted with permission  

from [41,42], Copyright 1985 Elsevier and Copyright 1982 Elsevier. 

 

Figure 10. Growth tip of (a) a bidirectionally grown double helical carbon filament  

(b-DHCF) [44] and (b) a bidirectionally grown twisted carbon filament (b-TCF) [27]. The 

white tips on the top are the catalytic grains. Reprinted with permission from [27,44], 

Copyright 2003 Elsevier and Copyright 2002 Elsevier. 
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Figure 11. SEM image of bidirectionally grown straight carbon filaments at 953 K [45]. 

Reprinted with permission from [45], Copyright 2005 Elsevier. 

 

Figure 12. Schematic diagram of two rotation directions for catalysts during growth of  

(a) bidirectionally grown double helical carbon filament (b-DHCF) and (b) bidirectionally 

grown twisted carbon filament (b-TCF) [27]. Reprinted with permission from [27], Copyright 

2003 Elsevier. 

 

3.2. Growth Mechanism of Single Helical and Twisted Carbon Filaments 

Okazaki et al. [33] proposed a growth mechanism for single helical CNCs synthesized with  

Sn–Fe–In–O catalyst. With this method, the composition of the catalytic particle at the tip of the coiled 

filament is not uniform. When the composition of Sn is small, Sn can be localized in the catalyst, thus 

forming the composition gradient of Sn in Fe matrix. The deposition rate of carbon on a high-localized 

part of Sn is slower than that on a low-localized part of Sn. As shown in Figure 13, the coiled filament 

is formed due to a composition gradient of Sn between the inner and outer sides of the coils. In contrast 

to this growth mechanism, a uniform distribution of Sn in the Sn–Fe catalytic nanoparticle on the tip of a 

CNC was reported using energy dispersive spectroscopy (EDS) in the TEM (Figure 14) [46].  

Gohara et al. [47] grew CNCs with Fe–Sn catalyst and studied the growth rate of CNCs using in situ 

optical microscopy. The Growth rate of CNCs was much higher than that of non-coiled carbon filaments; 

and the activation energies for the growth of CNCs and non-coiled carbon filaments were 0.5 eV and 

1.1 eV, respectively. According to EDX results, chemical compositions of catalysts for CNCs and  

non-coiled carbon filaments were Fe–Sn and only Fe, respectively. Therefore, Sn within Fe matrix 
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increased growth rate of carbon filaments [47]. Hikita et al. [48] investigated the growth kinetics of 

CNCs synthesized with Sn–Fe–O catalyst using an in situ method with a thermogravimetric analyzer. 

Using a one dimensional growth model to analyze results, they suggested that the diffusion coefficient 

of carbon in FexSny alloy catalyst (2.8 × 10−13 m2·s−1) was a little higher than that of γ-Fe  

(2.0 × 10−13 m2·s−1) because Sn–Fe–O catalyst was reduced by carbon and defects were created during 

the reaction [48]. Duan et al. [49] proposed that an asymmetric catalyst shape causes a helical structure 

as illustrated in Figure 15. Nitze et al. [30] proposed that a hemisphere-like shape of catalyst and the 

block of carbon feed on a flat part of the catalyst are important factors for growth of b-TCFs (Figure 16). 

These factors can cause a gradient of carbon diffusion rates between the inner and outer carbon filament 

and subsequently form curved or helical filament. This reasoning might also explain the growth  

of b-DHCFs. 

Figure 13. Schematic of carbon nanocoils and fiber grown from various Sn compositions. 

(A–C) are carbon nanocoils and a carbon fiber grown from catalysts with small, medium 

and large Sn compositions, respectively. The darker part of the catalyst particle represents 

the area where Sn is included. V1 and V2 are the extrusion velocities of the carbon network 

at the outer and inner part of the carbon nanocoils and fiber, respectively [33]. Reprinted with 

permission from [33], Copyright 2005 American Chemical Society. 

 

Figure 14. EDS mapping of (a) one single helical CNC and the tip nanoparticle; and images 

showing the elemental distribution of (b) carbon; (c) iron; and (d) tin [46]. Reprinted with 

permission from [46], Copyright 2008 John Wiley and Sons. 

 



Crystals 2014, 4 477 

 

 

Figure 15. Schematics of growth of filaments from symmetric catalysts (a,b) and 

asymmetric catalysts (c,d) [49]. Reprinted with permission from [49], Copyright 2010 Elsevier. 

 

Figure 16. Drawings of the two-dimensional b-TCF growth model with hemisphere-like 

catalyst and feedstock blocking [30]. Reprinted with permission from [30], Copyright  

2011 Elsevier. 

 

4. Properties 

4.1. Electrical Properties 

The electrical conductivities for a bidirectionally grown double helical carbon filament (b-DHCF) 

with a 5 μm diameter along its helix and a tip grown single helical carbon filament (t-SHCF) with a  

196 nm diameter and 1.5 um coil length were 30–50 S/cm and 180 S/cm, respectively [8,50]. These 

helical carbon filaments have lower electrical conductivities than pyrolytic graphite (2000–4000 S/cm) [51], 

and b-DHCFs generally have a lower electrical conductivity than t-SHCFs because of their crystallinities 

(Figure 5) [6,19,24,28]. Fujii et al. [52] reported that the electrical conductivity of double helical CMCs 

increased about 10-fold by heat treatment for 6 h at 3000 °C in Ar atmosphere. As shown in Figure 17, 

heat treated CMCs at 3000 °C were well graphitized [24]. Katsuno et al. [53] reported impedance |Z| 



Crystals 2014, 4 478 

 

 

and phase angle θ of a double helical CMC with diameter of 5 μm and coil length of 1 mm (Figure 18). As 

illustrated, impedance increased with extension of CMCs and decreased with frequency above  

1 × 104 Hz. Impedance and phase angle results suggest that the response of double helical CMCs is 

equivalent to a resistor–capacitor (RC) parallel circuit; and that the inductance of double helical CMCs 

is negligible at least in the range between 1 × 102 and 1 × 105 Hz. As a typical phenomenon of conductive 

coils, the induction of electromotive force of double helical CMCs in an alternating magnetic field was 

reported by Kato et al. [54].  

Figure 17. TEM image of heat-treated double helical CMC at 3000 °C in an inert gas  

for 6 h [24]. Reprinted with permission from [24], Copyright 2004 Elsevier. 

 

Figure 18. Dependence of (a) impedance |Z| and (b) phase angle θ on frequency as  

a function of extension for a pure CMC [53]. Reprinted with permission from [53], Copyright 

2007 Elsevier. 

(a) (b) 

4.2. Mechanical Properties 

Young’s moduli of single helical tubule CNCs were measured by Hayashida et al. [8] The CNCs 

were prepared using Fe-coated ITO catalyst and the external coil diameters used for measurements 

ranged from 144 to 830 nm. For testing, one CNC grown on the edge of a substrate was attached to the 

tip of a Si cantilever. The cantilever tip was moved to extend the CNC. Hayashida et al. found Young’s 

moduli of single helical CNCs to be ~0.1 TPa and independent of external coil diameter. The shear 

modulus of single helical tubule CNCs synthesized using Fe-coated ITO catalyst was 2.5 ± 0.4,  

2.3 ± 0.4 or 2.1 ± 0.3 GPa, depending on the estimated inner diameter of the tubule [55]. Chang et al. [9] 



Crystals 2014, 4 479 

 

 

reported shear moduli for double helical CMCs prepared by Fe-catalyzed decomposition of ethanol. The 

external coil diameter, filament diameter range, pitch and length of the CMCs were 7 μm, 100–250 nm, 

2.8 μm, and 70 μm, respectively. The shear moduli of these CMCs were 3 ± 0.2 GPa based on the 

measurement of the spring constant of the CMC using atomic force microscopy. Yonemura et al. [56] 

investigated the fracture of CNCs grown by Fe–Sn catalyst. The coil radius and filament diameter were 

0.7–0.9 μm and 0.3–0.6 μm, respectively. The average starch ratio of CNCs on the point of fracture was 

~150% and fracture was attributed to stress generated on the inner edge of the helical filament. 

5. Applications  

5.1. Electromagnetic Interference Shielding 

Due to their coiled shape, coiled carbon filaments have been expected to have an excellent 

electromagnetic absorption property. Motojima et al. [10] reported 12–110 GHz electromagnetic (EM) 

wave absorption of double helical CMC/polyurethane. As illustrated in Figure 19, the EM wave 

absorption property of this CMC composite was compared to other types of carbon composites. The size 

of the composite materials was 150 × 150 mm2 with thicknesses of 3.5 to 4.6 mm. The average reflection 

loss for the CMC composite was higher than straight vapor grown carbon fiber and other carbon 

powders. The effect of different weight percentages of CMC in polyurethane strongly influenced 

reflection loss (Figure 20). The tendency of reflection loss changed dramatically around 1–2 wt% and 

reflection loss was not improved above 2 wt% [10]. 

Figure 19. Reflection loss of different carbon materials (3 wt%) in polyurethane: (a) CMCs; 

(b) straight vapor grown carbon fibers and (c–e) different types of carbon powders [10]. 

Reprinted with permission from [10], Copyright 2003 AIP Publishing LLC. 

 

At higher concentrations of filler (20 wt% in epoxy), Chen et al. [57] observed that double helical 

CMC composites had a narrow adsorption range around 900 MHz. To broaden the absorption range, 

CMCs were coated with carbon by pyrolysis of methane. This coated CMC composite (20 wt% in epoxy) 

had a wide absorption range between 500 and 1000 MHz [57]. Tang et al. [58] reported 2–18 GHz EM 

wave absorption for composites with 35 wt% of twisted carbon nanofibers in paraffin and different 

thicknesses of 1, 1.2 and 1.5 mm. As shown in Figure 21, the composites had the highest reflection loss 

peak around 14 GHz. Additionally, note that occurrence of reflection loss peaks decreased with 
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increasing composite thickness. It was, thus, concluded that it is possible to control the reflection loss 

peak by changing composite thickness [58]. 

Figure 20. Effect of CMC weight percentage in polyurethane matrix [10]. Reprinted with 

permission from [10], Copyright 2003 AIP Publishing LLC. 

 

Figure 21. The reflection loss of different thicknesses of twisted carbon filament composites [58]. 

Reprinted with permission from [58], Copyright 2008 American Chemical Society. 

 

5.2. Tactile Sensor 

It was demonstrated that double helical CMCs in polysilicone matrix could be used as a tactile sensor. 

Motojima et al. [59] and Yang et al. [7] investigated the responses of inductance (L), capacitance (C) 

and resistance (R) for double helical CMC/polysilicone composites under different loads. Their results, 

presented in Figure 22, indicate the changes of L, C and R with applied load [7]. The C and R increased 

and L decreased when load was applied [59]. Furthermore, the changes of L, C and R for composites 

with CMCs oriented in one direction were found to be much more sensitive than composites with 

randomly oriented CMCs [7].  
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Figure 22. Changes of L, C and R parameters when different loads were applied to  

the 5 wt% CMC/polysilicone sensor with a 10 × 10 × 1 mm3 size [7]. Reprinted with permission 

from [7], Copyright 2006 IOP Publishing. 

 

Chen et al. [60] extended this research by investigating the effects of composite thickness on 

impedance. This was done by using 10 × 10 mm2 composites of 7 wt% CMC uniformly dispersed in soft 

polysilicone with thicknesses of 3, 5, and 7 mm. Impedance increased with applied load; and thickness 

influenced sensitivity and the maximum range of applied load [60]. Katsuno et al. [53] reported the 

impedance and phase angle changes of 5 wt% double helical CMC/silicone rubber composite  

(6 × 6 × 2 mm3) under different loads. Low loads resulted in impedance changes that were sensitive to 

low frequencies (up to 1 × 103). On the other hand, large phase angle shifts were observed for low loads 

in the frequency range of 103–104 Hz, indicating that the CMC composite was more sensitive to 

extension than CMC, as shown in Figure 18 in Electrical Properties of single carbon microcoil [53]. 

5.3. Effect of CMCs on Composite Tensile Strength 

The tensile strength of double helical CMC and PAN-based carbon fiber (CF) composites was tested 

by Yoshimura et al [61]. The external coil diameter and length of the CMCs were 1–10 μm and one to 

several hundred μm, respectively. For the CFs, the diameter and length were 7 μm and 46 μm, 

respectively. To improve wettability in epoxy resin, the surface of the CMCs and CFs were oxidized by 

60% nitric acid at room temperature. The tensile strengths of 6 vol% CMCs and 6 vol% CFs in epoxy 

resin with low tensile strength (0.17 MPa) were increased to 0.52 and 0.97 MPa, respectively. This 

showed that CMCs could reinforce composites more than CFs because the CMCs were well grabbed in 

the resin during extension. On the downside, CMCs could not improve the mechanical properties of 

epoxy resin with high tensile strength (49 MPa), unlike CFs [61]. 
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5.4. Functionalization of Coiled Carbon Filaments 

Morohashi et al. [62] demonstrated grafting of polymers onto the surface of double helical CMCs to 

improve dispersion in solvent and prevent aggregation of CMCs [57,58]. CMCs coated with copolymer 

of vinyl ferrocene with methyl methacrylate or styrene were well dispersed in THF (tetrahydrofuran), 

toluene and 1,4-dioxane [62]. Carboxyl group functionalized CMCs were prepared using nitric acid and 

then coated with poly(ethylene glycol) (PEG) or poly(isobutyl vinyl ether) (IBVE). The PEG-coated 

CMCs were dispersed in water and poly-IBVE-coated CMCs were well dispersed in silicone  

rubber [63]. Bi et al. [64,65] demonstrated nickel-phosphorus (Ni–P) coating on the surface of double 

helical CMCs (Figure 23) using an electroless plating process to add magnetic properties. The crystalline 

size and uniformity of coating could be controlled by the ratio of P and the deposition rate. The  

Ni-coated CMCs had a smaller permittivity and a larger permeability than non-coated CMCs in the 

frequency range of 8.2–12.4 GHz. The microwave absorption of Ni-coated CMCs was attributed to both 

dielectric and magnetic losses because of the magnetic property of Ni coating [64,65].  

Figure 23. SEM image of a Ni–P coated CMC [65]. Reprinted with permission from [65], 

Copyright 2009 Elsevier. 

 

Hikita et al. [66] reported an optical property of octadecylamine (ODA) functionalized CMCs. As 

shown in Figure 24, ODA functionalized CMCs emitted fluorescent light with a peak of ~423 nm using 

a 350 nm excitation light source. This occurred by passivation on the surface of the CMC turbostratic 

structure with ODA [66]. 

Figure 24. UV/Vis absorption (ABS) and fluorescence emission (FLSC, 350 nm excitation) 

spectra of ODA functionalized CMCs in isopropyl alcohol (solid curves). In addition, shown 

for comparison are the non-emissive, acid-treated CMCs without ODA (dashed curve) [66]. 

Reprinted with permission from [66], Copyright 2014 AIP Publishing LLC. 
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5.5. Synthesis of Helical Oxide Filaments Using Helical Carbon Filaments as Templates  

Oxide helical filaments or tubes were synthesized using CMCs or CNCs as templates. Motojima et al. [67] 

reported helical TiO2 filaments using double helical CMCs. A sol-gel method was used to make a TiO2 

coating on the surface of CMCs. TiO2-coated CMCs were heated in air at 500 °C for 2 h to remove CMC 

templates to obtain helical TiO2 filaments (Figure 25) [67]. 

Figure 25. SEM image of a TiO2 microcoil obtained using a double helical CMC  

template [67]. Reprinted with permission from [67], Copyright 2003 Elsevier. 

 

Qin et al. [68] demonstrated growth of helical oxide nanotubes composed of Al2O3, SiO2, HfO2 or 

ZnAl2O4 using twisted carbon nanocoils as templates (Figure 26). Each oxide was deposited on CNC 

templates with an atomic layer deposition. These templates were then removed by oxidation in air at  

500 °C for 1 h [68]. 

Figure 26. TEM images of helical nanotubes after removal of CNC templates: (a) SiO2; 

(b) TiO2 and (c) HfO2 nanotubes. Insets show the diffraction patterns of selected areas of each 

nanotube [68]. Reprinted with permission from [68], Copyright 2010 John Wiley and Sons. 
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5.6. Supercapacitor and Fuel Cell 

Rakhi et al. [69] reported that RuO2, MnO2 or SnO2 nanoparticle coatings and conductive polymer 

coatings enhanced the electro-chemical capacitance of CNCs. The specific capacitances of RuO2/CNC, 

MnO2/CNC and SnO2/CNC composites were 311, 212, and 134 F/g, respectively. Specific capacitance 

was superior to that of metal oxide dispersed multi-walled carbon nanotube composite [69]. Specific 

capacitances of polyaniline coated CNCs and polypyrrole coated CNCs were 360 and 202 F/g, 

respectively [70]. Nitze et al. [71] and Suda et al. [72] reported that CNCs efficiently work as a catalyst 

support for fuel cell anode and cathode [71,72]. Pd nanoparticle coated b-TCFs as anode in formic acid 

fuel cells could generate 300 mA/mg of Pd at room temperature and showed higher power density than 

Pd nanoparticle coated MWCNTs [71]. PtRu nanoparticle coated t-SHCFs as anode in direct methanol 

fuel cells showed higher current than other carbon nanonarticles (Vulcan and Arc-Black) coated with 

PtRu nanoparticles. Moreover, the power density of Pt nanoparticle coated t-SHCFs as cathode was 

1.2 times higher than that of Pt nanoparticle coated Vulcan and 1.6 times higher than that of Pt 

nanoparticle coated Arc-Black [72]. 

5.7. Hydrogen Storage 

Furuya et al. [24] demonstrated adsorption of hydrogen on double helical CMCs, which had  

0.1–10 mm coil length, 1–5 μm coil diameter, 0.1–0.5 μm coil pitch and about 100 m2/g specific surface 

area. Adsorption of hydrogen was performed under 10 MPa hydrogen gas at liquid nitrogen temperature. 

Due to the turbostratic structure of CMCs, they adsorbed 0.12–0.16 mass% hydrogen, which was  

3–4 times larger than the amount of hydrogen commercially activated carbons adsorb [24].  

5.8. Field Emission 

Pan et al. [11] reported the field emission property of single helical tubule CNCs. A field emission 

current density of 1 mA/cm2 was achieved at 340 V and a decrease of the current density was not 

observed for 100 h. Compared to carbon nanotubes (CNTs), CNCs have a large number of edges on their 

surfaces due to their coiled shape. This explains why electron emission from CNCs was more uniform 

than CNT emission [11]. 

6. Summary and Outlook 

Coiled carbon filaments have one of the most attractive shapes and unique electrical and mechanical 

properties due to turbostratic carbon structure or well-graphitized structure. Generally, coiled carbon 

filaments have been classified by external coil diameters (e.g., carbon microcoils and carbon nanocoils). 

However, classifying coiled carbon filaments by size can be misleading in terms of their properties and 

growth mechanisms. To address this concern, in this review, coiled carbon filaments were classified by 

growth type and categorized into three groups: (1) bidirectionally grown double helical carbon filaments 

(b-DHCFs); (2) bidirectionally grown twisted carbon filaments (b-TCFs); and (3) tip grown single 

helical carbon filaments (t-SHCFs) and tip grown twisted carbon filaments (t-TCFs). Generally, sulfur 

or phosphorous plays an important role for bidirectional growth, and catalyst composition is significant 

for tip grown single helical or twisted growth. Some t-SHCFs and t-TCFs have hollow structures like 
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MWCNTs, but hollow structures of b-DHCFs and b-TCFs have not been reported. This article also 

presented electrical and mechanical properties of various coiled carbon filaments. For example, it was 

reported that types of helical carbon filaments (b-DHCFs and t-SHCFs) had lower electrical 

conductivities than pyrolytic graphite; and that b-DHCFs generally had lower conductivities than  

t-SHCFs. With regard to mechanical properties, Young’s and shear moduli results were presented for 

single helical tubule CNCs synthesized from Fe-coated ITO catalyst. And shear moduli for double 

helical CMCs formed by Fe-catalyzed decomposition of ethanol was discussed. Although their growth 

mechanisms are not yet fully understood, many synthesis methods have been developed to obtain and 

study the properties, beauty, and unique shapes of coiled carbon filaments. However, there remains an 

urgent need to pursue fundamental research into catalytic activity and growth kinetics to further our 

understanding of their growth processes. Further growth analysis of coiled carbon filaments will prove 

useful as they are being investigated for several interesting applications including EMI shielding, tactile 

sensors, supercapacitors, fuel cells and hydrogen storage devices. To fully assess coiled carbon filaments 

for such uses, it is also vital to advance synthesis methods to scale-up production, lower costs, and to 

achieve reproducibility in terms of uniform coil shape. Another urgent need is for the coil community to 

establish clear guidelines for shape categorization. Currently, there is no consensus on a structure 

classification scheme and this can lead to misunderstandings when trying to compare coiled carbon 

filaments synthesized by different research groups. The authors anticipate that this review paper will 

continue to stimulate discussion in this area. 
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