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Abstract: Electrocrystallization of the (S,S,S,S) enantiomer of tetramethyl-bis(ethylenedithio)-
tetrathiafulvalene donor 1 in the presence of the dianionic hexanuclear rhenium (III) cluster [Re6S6Cl8]2´

affords a crystalline radical cation salt formulated as [(S)-1]2¨Re6S6Cl8, in which the methyl substituents
of the donors adopt an unprecedented all-axial conformation. A complex set of intermolecular TTF¨¨¨TTF
and cluster¨¨¨TTF interactions sustain an original tridimensional architecture.
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1. Introduction

Tetramethyl-bis(ethylenedithio)-tetrathiafulvalene 1 (TM-BEDT-TTF) has in principle several possible
stereoisomers, yet the only ones which have been properly described are the (S,S,S,S) (Figure 1) and
(R,R,R,R) enantiomers [1–3], henceforth abbreviated (S)-1 and (R)-1, respectively.
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Figure 1. (S) enantiomer of tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) 1 with 
its axial and equatorial conformers. 

(S)-1 represents the first example of a chiral TTF derivative [4], and its synthesis allowed the 
preparation of several TTF based chiral conducting radical cation salts by electrocrystallization [1,5], 
including the ferromagnetic metal [TM-BEDT-TTF]x[MnCr(ox)3] (ox = oxalate) [6] or the 
paramagnetic semiconductor [TM-BEDT-TTF]3(PPh4)[KIFeIII(Cl2An)3] (Cl2An = dichloroanilate) [7]. 
The latter was also described as (R) enantiomer and racemate. The interest in chiral TTF precursors 
and derived materials [8] is mainly related to the combination of chirality with conducting properties 
through the electrical magneto-chiral anisotropy effect [9], recently described for enantiopure 
crystalline metallic salts of the dimethyl-ethylenedithio-tetrathiafulvalene (DM-EDT-TTF) donor [10]. 
Nevertheless, differences in conducting properties between the enantiopure and racemic 

Figure 1. (S) enantiomer of tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) 1 with
its axial and equatorial conformers.

(S)-1 represents the first example of a chiral TTF derivative [4], and its synthesis allowed the
preparation of several TTF based chiral conducting radical cation salts by electrocrystallization [1,5],
including the ferromagnetic metal [TM-BEDT-TTF]x[MnCr(ox)3] (ox = oxalate) [6] or the paramagnetic
semiconductor [TM-BEDT-TTF]3(PPh4)[KIFeIII(Cl2An)3] (Cl2An = dichloroanilate) [7]. The latter was
also described as (R) enantiomer and racemate. The interest in chiral TTF precursors and derived
materials [8] is mainly related to the combination of chirality with conducting properties through the
electrical magneto-chiral anisotropy effect [9], recently described for enantiopure crystalline metallic
salts of the dimethyl-ethylenedithio-tetrathiafulvalene (DM-EDT-TTF) donor [10]. Nevertheless,
differences in conducting properties between the enantiopure and racemic counterparts were also
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observed as a consequence of the structural disorder in TTF-oxazoline [11,12] based conductors [13,14],
or the different packings in DM-EDT-TTF salts [15]. Other interests of chiral TTFs are related to the
modulation of the chiroptical properties [16,17] or the preparation of electroactive helical fibers [18–21].
Regarding the enantiopure TM-BEDT-TTF donor 1 an important issue is the conformation adopted by
the methyl substituents of the dithiin rings, as this strongly influences the packing and intermolecular
contacts between the donors, and, consequently, the transport properties. It has been shown by
theoretical calculations that in the gas phase the all-axial conformation is slightly more stable than
the all-equatorial one, both being in equilibrium in solution [1] (Figure 1). While neutral 1 has been
crystallized as both all-ax [2] and all-eq [1] conformers, its radical cation salts show in most cases
all-eq conformation [1,2,5,6], very likely as a means to maximize the packing. The same trend was
also observed for the closely related donors DM-EDT-TTF [10,15] and DM-BEDT-TTF [22–24]. Only in
very few cases mixed (ax,ax,eq,eq) conformations have been found in the solid state structures of
1 for charge transfer complexes with TCNQ [2], radical cation salts with the iron(III) chloroanilate
complex anion [7], and a cycloadduct with tetrachlorocatecholate [25], while the all-ax conformation
has been never observed. We describe herein the first crystalline enantiopure radical cation salt of
TM-BEDT-TTF in which the oxidized donor adopts a (ax,ax,ax,ax) conformation. The counterion is the
dianionic hexanuclear rhenium cluster [Re6S6Cl8]2´ [26] which provided several series of TTF based
radical cation salts [27–30], but has never been used with a chiral donor to the best of our knowledge.

2. Results and Discussion

Electrocrystallization of a (S)-1 [1] solution in acetonitrile at 0.5 µA current intensity, in the
presence of (Bu4N)2Re6S6Cl8 [28] as supporting electrolyte, afforded small black prismatic crystals
of appropriate quality for single crystal X-ray diffraction analysis. The resulting radical cation salt,
formulated as [(S)-1]2¨Re6S6Cl8, crystallizes in the non-centrosymmetric triclinic space group P1 and
contains two independent donor molecules and one hexanuclear cluster in the asymmetric unit
(Figure 2). As expected, the cluster contains six Re atoms in an octahedral arrangement capped by six
µ3-S and two µ3-Cl atoms forming a cube, with Re–Sµ and Re–Clµ distances in the normal range [28].
The coordination sphere of each Re ion is completed by an apical Cl ligand, with Re–Clap distances
ranging between 2.362 and 2.383 Å.
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Figure 2. Two independent donor molecules and one rhenium cluster in the structure of
[(S)-1]2¨Re6S6Cl8 together with a partial numbering scheme (top); detail of the hybrid organic-inorganic
layer with an emphasis on the shorter (Cl1¨¨¨H11A 2.64 Å; Cl6¨¨¨H3B 2.67 Å; red dotted lines) and longer
(Cl3¨¨¨H12B 2.82 Å; Cl5¨¨¨H4A 2.99 Å; blue dotted lines) intermolecular Cl¨¨¨H hydrogen bonding.

Both donors are oxidized into radical cations, as attested by the central C=C and C–S bond
distances, which show lengthening of C=C and shortening of C–S bonds when compared to the neutral
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precursor. The completely planar shape of the TTF unit is also in agreement with an oxidation state +1.
Interestingly, a complex set of intermolecular interaction establish between the cluster units and the
donors which envelop the former. First, hydrogen bonding interactions are observed between four
apical Cl ligands and methine H atoms ranging between 2.64 and 2.99 Å (Figure 2).

Then, the clusters further interact with the surrounding donors (Figure 3) through Clap¨¨¨S contacts
(3.38–3.72 Å, orange dotted lines) as well as Sµ¨¨¨S contacts (3.44–3.58 Å, green dotted lines), while the
donors interact laterally between them through two sets of shorter (3.21–3.30 Å, red dotted lines) and
longer (3.59–3.67 Å, blue dotted lines) S¨¨¨S contacts.
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The most peculiar feature of this structure lies, however, in the conformation of the dithiin rings in
both donors. Contrary to what was observed so far in the literature (see above), here the donors adopt
all-ax conformations which certainly hamper closer axial S¨¨¨S intermolecular contacts. The methine
carbon atoms show opposite displacements with respect to the planar S–C=C–S motif of the dithiine
rings (Table 1), thus leading to sofa-type conformations of the six membered rings [3].

Table 1. Orientations of methyl groups and displacements of methine carbon atoms with respect to the
mean plane formed by the other four atoms of the six-membered rings in [(S)-1]2¨Re6S6Cl8 and (R)-1.

Compound Orientation of Methyl Group Displacements of CH Atoms/Å

(R)-1-ax [2]
axial +0.563, ´0.331
axial +0.285, ´0.593

[(S)-1]2¨Re6S6Cl8

axial (A) +0.045, ´0.788
axial (A) +0.708, ´0.118
axial (B) +0.109, ´0.715
axial (B) +0.542, ´0.320

One can hypothesize that the occurrence of this unusual all-ax conformation which only allows
lateral S¨¨¨S intermolecular interactions, and not the classical axial σ-type interactions between
open-shell species, is strongly favoured by the peculiar nature of the anion which can engage in
hydrogen, halogen and chalcogen bonding, as detailed above.

3. Experimental Section

Five milligrams (S)-1 [1], 25 mg (Bu4N)2Re6S6Cl8 [28] and 12 mL acetonitrile were used in the
electrocrystallization experiment which was conducted at 0.5 µA at room temperature. Black prismatic
crystals were collected in the anodic compartment of the cell after several days. CCDC 1444636 contains
the supplementary crystallographic data for this paper. These data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/conts/retrieving.html.

X-ray structure determination

X-ray diffraction measurements were performed on a Bruker Kappa CCD diffractometer, operating
with a MoKα (λ = 0.71073 Å) X-ray tube with a graphite monochromator. The structure were solved
(SHELXS-97) by direct methods and refined (SHELXL-97) by full matrix least-square procedures on
F2 [31]. All nonhydrogen atoms were refined anisotropically. Hydrogen atoms were introduced
at calculated positions (riding model), included in structure factor calculations but not refined (see
Table 2).

Table 2. Crystal Data and Structure Refinement for compound [(S)-1]2¨Re6S6Cl8.

Compound [(S)-1]2¨Re6S6Cl8
empirical formula C28H32Cl8Re6S22

fw 2474.66

T (K) 293(2)

wavelength (Å) 0.71073

crystal system triclinic

space group P1
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Table 2. Cont.

unit cell dimens

a (Å) 11.9422(4)

b (Å) 12.2034(5)

c (Å) 12.3025(5)

α (deg) 108.613(4)

β (deg) 110.882(4)

γ (deg) 105.463(3)

V (Å3) 1433.57(10)

Z 1

Dc (g¨cm´3) 2.866

abs coeff (mm´1) 13.817

θ range for data collection (deg) 3.5–34.15

reflns collected 44218

indep reflns 14,253

completeness (%) 99.5

data/restraints/param 22683/4/577

structure Flack parameter ´0.006(8)

GOF on F 2 1.011

final R indices [I > 2σ(I)] R1 = 0.039, wR2 = 0.051

R indices (all data) R1 = 0.093, wR2 = 0.062

largest diff. peak and hole (e¨Å´3) 1.071 and ´1.207

4. Conclusions

The first example of a crystalline radical cation salt of the enantiopure donor tetramethyl-
bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) in which the methyl substituents adopt the
all-axial arrangement is described. The occurrence of such unprecedented situation is very likely
driven by the peculiar nature of the counterion, the hexanuclear rhenium cluster [Re6S6Cl8]2´, which
engages in intermolecular hydrogen, halogen and chalcogen bonding interactions with the oxidized
donors. This result demonstrates that the association of chiral methylated BEDT-TTF derivatives with
chalcogenated rhenium clusters provides original solid state architectures.
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