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Abstract: Directionally solidified multicrystalline silicon (mc-Si)-based solar cells have dominated
the global photovoltaic market in recent years. The photovoltaic performance of mc-Si solar cells
is strongly influenced by their crystalline defects. The occurrence of minicrystallization results
in much smaller grain size and, therefore, a larger number of grain boundaries in mc-Si ingots.
Dislocations in the minicrystallized regions have been rarely investigated in the literature. In this
work, optical microscopy was used to investigate dislocations in the mincrystallized regions in
mc-Si ingots grown by the directional solidification method. The distribution of dislocations was
found to be highly inhomogeneous from one grain to another in the mincrystallized regions. High
inhomogeneity of dislocation distribution was also observed in individual grains. Serious shunting
behavior was observed in the mc-Si solar cells containing minicrystallized regions, which strongly
deteriorates their photovoltaic properties. The shunting was found to be highly localized to the
minicrystallized regions.

Keywords: crystal dislocation; multicrystalline silicon; directional solidification; minicrystallization;
solar cell

1. Introduction

Renewable energy technology has been receiving much attention in recent years as a result of
severe global warming due to excessive greenhouse gas emission. As one of the most important and
advanced renewable energy technologies, the photovoltaic (PV) industry has enjoyed a high growth
rate in the last decade [1,2]. At present, solar cells based on crystalline silicon (c-Si), including both
multicrystalline (mc) and single crystalline (sc) silicon, dominate the global PV market. Due to the
relatively low cost associated with the production of mc-Si ingots, more than half of the c-Si solar
cells in the world are based on mc-Si. Production of mc-Si starts with the melting of solar-grade
Si feedstock in silica crucibles (coated with Si3N4 on its inner surfaces) in a protected atmosphere
of argon. The molten Si is then directionally solidified to form an mc-Si ingot. The weight of an
industrial mc-Si ingot for mc-Si solar cells is generally over 500 kg. Wafers with a cross-section area of
156 mm × 156 mm and a thickness about 180~200 µm are obtained using the wire sawing process.

Crystalline defects—such as grain boundaries [3] and dislocations [4–19]—impurities [20,21],
and foreign inclusions [22–24] in mc-Si wafers degrade the PV performance of mc-Si solar cells.
In order to enhance the PV performance of mc-Si solar cells, a lot of effort has been devoted to
reducing the number of grain boundaries and the dislocation densities in mc-Si [7,25,26]. However,
the occurrence of minicrystallization [27] in mc-Si ingots that are grown by the directional solidification
method introduces much smaller grains within the minicrystallized regions (Figure 1), resulting in a
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larger number of grain boundaries within these regions, which can degrade the PV performance of
mc-Si solar cells.
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minicrystallized regions in mc-Si ingots grown by the directional solidification method. In this work, 
the dislocation characteristics in the minicrystallized regions were studied using optical microscopy. 
The PV properties of mc-Si solar cells containing minicrystallized regions were investigated. 

2. Experiment 

Mc-Si ingots were grown by a local PV mc-Si wafer manufacturer using an industrial 
directional solidification system (DSS, GT Solar). These mc-Si ingots were generally over 500 kg in 
weight. The mc-Si ingots are boron-doped and have a resistivity of about 1.0–2.5 Ω cm. In this work, 
mc-Si ingots (intended for commercial mc-Si solar cells) containing minicrystallized regions were 
selected for sample preparation in this study. After the surfaces of these mc-Si samples containing 
minicrystallized regions were polished, two steps of an etching process—a Secco solution used for 
the first step followed by a Yang solution etching—were conducted to reveal dislocation etch pits. 
An optical microscope (VHX 600) was employed to observe the dislocations in the mc-Si samples 
containing minicrystallized regions. 

Mc-Si wafers (156 mm × 156 mm) with or without minicrystallized regions were selected for 
fabricating solar cells under identical processing conditions. The mc-Si solar cells in this work were 
manufactured by the standard PV industry manufacturing line [28]. In brief, mc-Si wafers were 
textured for light trapping, followed by phosphorous diffusion. Phosphosilicate glass (PSG) was 
removed by diluted hydrofluoric acid (HF) solution. The parasitic pn junctions at the wafer edge and 
rear were etched off using mixed acid solution. The emitter sheet resistance was about 60 Ω/□. 
SiNx:H antireflection coatings were deposited on the front surfaces by plasma-enhanced chemical 
vapor deposition (PECVD, Centrotherm, excitation frequency at 40 kHz). Aluminium and silver 
pastes were screen-printed on the rear and front surfaces of the mc-Si wafers, respectively. After 
drying, the metallized mc-Si wafers were then sintered in a belt furnace to form the front and back 
electrodes as well as the back-surface field (BSF). The PV properties of the solar cells were 
characterized at room temperature under the air mass (AM) 1.5G illumination. 

Figure 1. Photograph of a multicrystalline silicon (mc-Si) wafer (156 mm × 156 mm) containing a
minicrystallized region (indicated by the white arrows).

Up to now, little research has been reported on the dislocation characteristics in the
minicrystallized regions in mc-Si ingots grown by the directional solidification method. In this work,
the dislocation characteristics in the minicrystallized regions were studied using optical microscopy.
The PV properties of mc-Si solar cells containing minicrystallized regions were investigated.

2. Experiment

Mc-Si ingots were grown by a local PV mc-Si wafer manufacturer using an industrial directional
solidification system (DSS, GT Solar). These mc-Si ingots were generally over 500 kg in weight.
The mc-Si ingots are boron-doped and have a resistivity of about 1.0–2.5 Ω cm. In this work, mc-Si
ingots (intended for commercial mc-Si solar cells) containing minicrystallized regions were selected for
sample preparation in this study. After the surfaces of these mc-Si samples containing minicrystallized
regions were polished, two steps of an etching process—a Secco solution used for the first step
followed by a Yang solution etching—were conducted to reveal dislocation etch pits. An optical
microscope (VHX 600) was employed to observe the dislocations in the mc-Si samples containing
minicrystallized regions.

Mc-Si wafers (156 mm × 156 mm) with or without minicrystallized regions were selected for
fabricating solar cells under identical processing conditions. The mc-Si solar cells in this work were
manufactured by the standard PV industry manufacturing line [28]. In brief, mc-Si wafers were
textured for light trapping, followed by phosphorous diffusion. Phosphosilicate glass (PSG) was
removed by diluted hydrofluoric acid (HF) solution. The parasitic pn junctions at the wafer edge
and rear were etched off using mixed acid solution. The emitter sheet resistance was about 60 Ω/�.
SiNx:H antireflection coatings were deposited on the front surfaces by plasma-enhanced chemical
vapor deposition (PECVD, Centrotherm, excitation frequency at 40 kHz). Aluminium and silver pastes
were screen-printed on the rear and front surfaces of the mc-Si wafers, respectively. After drying,
the metallized mc-Si wafers were then sintered in a belt furnace to form the front and back electrodes
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as well as the back-surface field (BSF). The PV properties of the solar cells were characterized at room
temperature under the air mass (AM) 1.5G illumination.

3. Results and Discussion

Figure 2 shows the optical microscopy images for a minicrystallized region in the mc-Si
sample grown by the directional solidification method. The distribution of dislocations is highly
inhomogeneous among grains in the minicrystallized region. For instance, as shown in Figure 2, grain
A has a much higher dislocation density than grain B. Such a highly inhomogeneous distribution of
dislocations among grains was also observed in the normal regions of mc-Si samples [19]. This high
inhomogeneity of dislocation distribution can be better observed among grains A, B, and C in Figure 3,
which was captured at a higher magnification. In Figure 3, the average dislocation density in grains A,
B, and C is estimated to be about 9.8 × 106 cm−2, 2.6 × 105 cm−2, and 2.5 × 105 cm−2, respectively.
This represents a difference of about 39 times in their dislocation density between grain A and grain C.
In addition, the dislocation distribution is also rather inhomogeneous within individual grains. For
instance, in grain A, as indicated by the white arrows in Figure 3, two densely distributed dislocation
clusters are present, and their dislocation density is over 1 × 108 cm−2.
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Figure 3. Image of grains with different dislocation densities from one grain to another. 

As indicated by black arrows in Figure 2b, some dense dislocation clusters emanate from the grain 
boundaries. In Figure 4 with higher magnification, as indicated by the white arrows, this phenomenon 
can be better observed. This suggests that grain boundaries can be one of the dislocation generation 
sources. These dislocations are mostly slip dislocations, and they should be generated during the 
solidification stage due to the thermal stress originating from the neighboring grains [19]. 
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and (b) with three regions. 

Some small grains in the minicrystallized regions are free of dislocations, while others contain 
only a rather small number of dislocations. As shown in Figure 5a, only about 10 dislocations can be 
observed in the central grain. No dislocation is present in the central grain in Figure 5b, and only 3 
dislocations are observed in the central grain in Figure 5c. It is noted in Figure 5a,b that each of the 
two grains is embedded within a larger grain. For the occurrence of such grains that are free of 
dislocation or containing rather few dislocations, one possible cause is that they originally contained 
slip dislocations (Figure 6), which could actively move and merge to form grain boundaries during 
the solidification cooling stage when the temperature is still high. Slip dislocation is an array of 
dislocation, which in fact can be considered as a low-angle grain boundary [29]. When two arrays of 
moving slip dislocations meet, they form a new low-angle grain boundary, which has a higher 
misorientation angle than the previous one. When more arrays of moving slip dislocations join the 
above two, the misorientation angle of the grain boundary will become higher. Consequently, a new 
grain with rather low density of dislocations is formed (Figure 5a,b). Nevertheless, the situation for 
the small grain containing rather few dislocations in Figure 5c is different from these two grains in 
Figure 5a,b, both of which are embedded in a single grain. It can be seen in Figure 5c that it is located 
in the junction region of four larger grains. One possible cause for the formation of the small grain 

Figure 3. Image of grains with different dislocation densities from one grain to another.

As indicated by black arrows in Figure 2b, some dense dislocation clusters emanate from the grain
boundaries. In Figure 4 with higher magnification, as indicated by the white arrows, this phenomenon
can be better observed. This suggests that grain boundaries can be one of the dislocation generation
sources. These dislocations are mostly slip dislocations, and they should be generated during the
solidification stage due to the thermal stress originating from the neighboring grains [19].
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Figure 4. Image of grains with dislocations emanating from grain boundaries: (a) with four regions,
and (b) with three regions.

Some small grains in the minicrystallized regions are free of dislocations, while others contain
only a rather small number of dislocations. As shown in Figure 5a, only about 10 dislocations can
be observed in the central grain. No dislocation is present in the central grain in Figure 5b, and only
3 dislocations are observed in the central grain in Figure 5c. It is noted in Figure 5a,b that each of
the two grains is embedded within a larger grain. For the occurrence of such grains that are free of
dislocation or containing rather few dislocations, one possible cause is that they originally contained
slip dislocations (Figure 6), which could actively move and merge to form grain boundaries during
the solidification cooling stage when the temperature is still high. Slip dislocation is an array of
dislocation, which in fact can be considered as a low-angle grain boundary [29]. When two arrays
of moving slip dislocations meet, they form a new low-angle grain boundary, which has a higher
misorientation angle than the previous one. When more arrays of moving slip dislocations join the
above two, the misorientation angle of the grain boundary will become higher. Consequently, a new
grain with rather low density of dislocations is formed (Figure 5a,b). Nevertheless, the situation
for the small grain containing rather few dislocations in Figure 5c is different from these two grains
in Figure 5a,b, both of which are embedded in a single grain. It can be seen in Figure 5c that it is
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located in the junction region of four larger grains. One possible cause for the formation of the small
grain containing rather few dislocations in Figure 5c could be a result of recrystallization during the
solidification cooling stage when the temperature is still high. Further research will be needed in order
to understand the underlying mechanism for the dislocation-free grains and the grain with very low
dislocation density.
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In order to study the influence of minicrystallization on the PV properties of mc-Si solar cells,
two mc-Si wafers (156 mm × 156 mm) were processed into solar cells. One wafer contained a
minicrystallized region (Figure 1), while the other was a normal wafer, free of minicrystallization.
Table 1 shows the PV properties (open circuit voltage Voc, short circuit current Isc, series resistance
Rs, shunt resistance Rsh, fill factor FF, and conversion efficiency η) of the two mc-Si solar cells with
and without minicrystallization. Rs and Rsh were determined from the illuminated current–voltage
(I–V) curves.
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Table 1. Photovoltaic (PV) properties of the two mc-Si solar cells with and without minicrystallization.

Solar Cell Minicrystallization Voc (mV) Isc (A) Rs (Ω) Rsh (Ω) FF (%) η (%)

1 Yes 596.2 8.87 0.001 0.20 45.25 9.59
2 No 622.4 8.40 0.003 149.59 78.51 16.87

As expected, the mc-Si solar cell free of minicrystallization had a much higher conversion efficiency
(η = 16.87%) than the one containing minicrystallization (η = 9.59%). It is interesting to note in Table 1
that Isc of the mc-Si solar cell with minicrystallization was 8.87 A, which is greater than the cell free of
minicrystallization (Isc = 8.40 A). However, Voc of the mc-Si solar cell with minicrystallization was 596.2
mV, which is smaller than the cell free of minicrystallization (Voc = 622.4 mV). Thus, Voc and Isc of the
two solar cells are different, but their difference is only about 6%. However, the two cells had rather
different FF values; FF = 45.25% for the one with minicrystallization and FF = 78.51% for the one without
minicrystallization. This large difference in their FF values explains their rather different conversion
efficiencies (Table 1). The reason for the much lower FF value for the cell with minicrystallization
is because it had a much smaller shunt resistance Rsh [30]. As shown in Table 1, the cell with
minicrystallization had Rsh = 0.20 Ω, while the cell free of minicrystallization had Rsh = 149.59 Ω.
This indicates that the occurrence of minicrystallization results in a very strong shunting behavior
in the mc-Si solar cell. The shunting behavior in the mc-Si solar cell with minicrystallization can be
directly viewed in the mapping graph recorded using a Corescan scanner (Figure 7). As indicated
by the white arrow in Figure 7, it can be clearly seen that the shunting was highly localized in the
minicrystallized region. Some researchers [24] reported that SiC filaments are observed within the
grain boundaries of mc-Si grown by the directional solidification method, and the SiC filaments
are believed to be responsible for shunting behaviors in mc-Si solar cells. However, no SiC was
observed in the minicrystallized region in this work, and this could be because Si feedstock with low
carbon concentration was used in this work. The major cause for the severe shunting behavior in
the minicrystallized region should be the highly inhomogeneously distributed dislocations and the
large number of grain boundaries in this region. It has been shown [31] that the high strain within
the dislocation core can cause local distortion of the band structure and result in the formation of a
quantum well. This may help explain the occurrence of the local shunting within the minicrystallized
region. Nevertheless, further studies will be needed in order to fully understand the underlying
mechanism of such localized shunting behavior.
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4. Conclusions

Optical microscopy was employed to investigate dislocations in the minicrystallized regions in
mc-Si ingots grown by the directional solidification method. The distribution of dislocations was
found to be highly inhomogeneous from one grain to another in the mincrystallized regions. Some
grains can be free of dislocations, while others can have a dislocation density in the magnitude from
106 cm−2 to 108 cm−2. In addition, high inhomogeneity of dislocation distribution was also observed
in individual grains. Serious shunting behavior was observed in the mc-Si solar cells, which contained
minicrystallized regions, and it strongly deteriorated their photovoltaic properties. The shunting was
found to be highly localized to the minicrystallized regions.
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