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Abstract: High quality stoichiometric brownmillerite-type oxide single crystals have been successfully
grown by the floating zone method using a mirror furnace. We report here on the growth conditions
and structural characterization of two model compounds: Ca2Fe2O5 and Sr2ScGaO5. Both show
oxygen deficiency with respect to the average perovskite structure, and are promising candidates for
oxygen ion conductivity at moderate temperatures. While Sr2ScGaO5 single crystals were obtained
in the cubic oxygen-deficient perovskite structure, Ca2Fe2O5 crystallizes in the brownmillerite
framework. Having no cubic parent high temperature counterpart, Ca2Fe2O5 crystals were found to
be not twinned. We report on structural characterization of the as-grown single crystals by neutron
and X-ray diffraction, as well as scanning electron microscopy (SEM) coupled with EDX (Energy
Dispersive X-Ray Spectroscopy) analysis and isotope exchange experiments.

Keywords: brownmillerite; oxygen ion conduction; single crystal growth; floating zone method;
neutron diffraction

1. Introduction

In the last decades, brownmillerite type oxides have received considerable attention, because of
their rich chemistry, structural complexity, and for their interesting properties and applications [1–8].
With the general formula A2BB′O5, the brownmillerite framework can be described as an
oxygen-anion-deficient perovskite phase, and its structure can be derived from the cubic phase
by releasing 1/6 of all oxygen atoms in an ordered way along the [110] direction of the cubic perovskite.
Three different prototypes of the general formula ABO2.5 or A2B2O5 can all be obtained from the
perovskite structure, modifying every second octahedral layer toward lower coordination transition
metal polyhedra, such as a square planar coordination in LaNiO2.5 [8,9] or a square-based pyramid
coordination in CaMnO2.5 [10,11]. The brownmillerite structure is finally characterized by tetrahedral
layers containing isolated MO4 tetrahedral zigzag chains, which are separated by 1D oxygen vacancy
channels, alternating with octahedral layers (see Figure 1). On top of the basic brownmillerite
framework, several modulated superstructures as well as disorder in the stacking sequence have
been characterized, leading in total to a more complex arrangement of the octahedral and tetrahedral
layers [1–4].

The formation of empty 1D oxygen vacancy channels along the [100] direction in the
brownmillerite network (see Figure 1) goes along with an orthorhombic symmetry and related cell
parameters of abrown

∼= aperov
√

2, bbrown
∼= 4aperov, and cbrown

∼= aperov
√

2 with respect to the perovskite
parent structure. However, the attribution of the space group in some cases remains ambiguous
between Pnma, Imma, and I2mb. The associated structural difference is important, however, since
Pnma and I2mb result into ordered (BO4)∞-tetrahedral chains, while Imma yields an average and
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disordered orientation, which can be static or dynamic. The latter case has been discussed as an
indicator favouring low temperature oxygen mobility in brownmillerite frameworks [12].
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Some oxides with brownmillerite type structure—such as SrFeO3−x or SrCoO3−x—have been shown 
to exhibit oxygen mobility down to room temperature [13–15]. This makes brownmillerite-type oxides 
an attractive class of compounds for many technologically important applications in the field of solid 
state electrolytes, and more specifically for membranes or pure electrolytes in solid oxide fuel cells 
(SOFC) or for air separation, but equally important as sensor and electro catalysts. 

When high oxygen mobility in brownmillerite type oxides merges with oxygen non-stoichiometry, 
this not only gives rise to complex oxygen defect structures at room temperature, but also induces phase 
transitions at high temperatures, which have a direct influence on the microstructure; i.e., on the twin 
domain structure of as-grown single crystals. Phases like SrFeO3−x or SrCoO3−x show a high temperature 
parent perovskite phase with cubic symmetry, which in addition is non-stoichiometric. Adjusting the 
appropriate oxygen stoichiometry corresponding to the ideal A2B2O5 composition requires a perfect 
knowledge of the phase diagram; i.e., the oxygen stoichiometry at high temperatures as a function of the 
applied p(O2). However, while SrFeO2.5 can then be obtained by furnace cooling under controlled p(O2), 
this is no longer true for SrCoO2.5 under similar reaction conditions, as slow cooling results in a phase 
segregation and the formation of a Co-deficient modulated hexagonal modification  
SrxCoO3 (x = 14/11) [7]. Stoichiometric SrCoO2.5 can only be obtained by quenching from high 
temperatures, and is consequently a metastable phase at room temperature. Thereby, cooling from a 
cubic perovskite phase at high temperatures to a brownmillerite phase with orthorhombic symmetry at 
room temperature may generally go along with the formation of twin domains, which in this specific 
case can reach up to twelve different domains [16]. 

Other brownmillerite phases exist which are stoichiometric under normal reaction conditions 
but show different high temperature phase transitions. This is the case comparing Ca2Fe2O5 with 
Sr2ScGaO5. While Sr2ScGaO5 shows a phase transition towards the cubic perovskite phase above 
1400 °C [17,18], Ca2Fe2O5 does not. The case of Sr2ScGaO5 is peculiar, as the high temperature 
perovskite phase, once obtained, is kinetically stable—even during furnace cooling down to room 
temperature. On the other hand, Ca2Fe2O5 has no perovskite structure counterpart, and crystal 
growth leads directly from the melt to the brownmillerite framework. Such a situation is therefore 
completely different in terms of domain structure compared to Sr2(Fe/Co)2O5, as outlined above. It is 
thus evident that thermodynamic and kinetic stabilities play a crucial role during the formation of 

Figure 1. Brownmillerite structure with alternating octahedral (O) and tetrahedral (T) chains. On
the right, different switching arrangements for the (MO4)∞-tetrahedral chains in brownmillerite-type
frameworks. Full ordering is achieved for a description in I2mb and Pnma, showing different relative
but ordered chain arrangements for different layers, while the superposition of both arrangements
results, on an average scale, in split positions for the in-plane oxygen and M-atoms, which can be
described in the Imma space group symmetry.

Some oxides with brownmillerite type structure—such as SrFeO3−x or SrCoO3−x—have been
shown to exhibit oxygen mobility down to room temperature [13–15]. This makes brownmillerite-type
oxides an attractive class of compounds for many technologically important applications in the field of
solid state electrolytes, and more specifically for membranes or pure electrolytes in solid oxide fuel
cells (SOFC) or for air separation, but equally important as sensor and electro catalysts.

When high oxygen mobility in brownmillerite type oxides merges with oxygen non-stoichiometry,
this not only gives rise to complex oxygen defect structures at room temperature, but also induces
phase transitions at high temperatures, which have a direct influence on the microstructure; i.e., on the
twin domain structure of as-grown single crystals. Phases like SrFeO3−x or SrCoO3−x show a high
temperature parent perovskite phase with cubic symmetry, which in addition is non-stoichiometric.
Adjusting the appropriate oxygen stoichiometry corresponding to the ideal A2B2O5 composition
requires a perfect knowledge of the phase diagram; i.e., the oxygen stoichiometry at high temperatures
as a function of the applied p(O2). However, while SrFeO2.5 can then be obtained by furnace cooling
under controlled p(O2), this is no longer true for SrCoO2.5 under similar reaction conditions, as slow
cooling results in a phase segregation and the formation of a Co-deficient modulated hexagonal
modification SrxCoO3 (x = 14/11) [7]. Stoichiometric SrCoO2.5 can only be obtained by quenching from
high temperatures, and is consequently a metastable phase at room temperature. Thereby, cooling
from a cubic perovskite phase at high temperatures to a brownmillerite phase with orthorhombic
symmetry at room temperature may generally go along with the formation of twin domains, which in
this specific case can reach up to twelve different domains [16].

Other brownmillerite phases exist which are stoichiometric under normal reaction conditions
but show different high temperature phase transitions. This is the case comparing Ca2Fe2O5 with
Sr2ScGaO5. While Sr2ScGaO5 shows a phase transition towards the cubic perovskite phase above
1400 ◦C [17,18], Ca2Fe2O5 does not. The case of Sr2ScGaO5 is peculiar, as the high temperature
perovskite phase, once obtained, is kinetically stable—even during furnace cooling down to room
temperature. On the other hand, Ca2Fe2O5 has no perovskite structure counterpart, and crystal
growth leads directly from the melt to the brownmillerite framework. Such a situation is therefore
completely different in terms of domain structure compared to Sr2(Fe/Co)2O5, as outlined above.
It is thus evident that thermodynamic and kinetic stabilities play a crucial role during the formation
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of brownmillerite-type oxides, and especially during crystal growth. Additional complexity arises
for non-stoichiometric A2B2O5+δ phases, which can already undergo reversible oxygen intercalation
reactions at room temperature, and the formation of complex twin structures have been reported for
SrFeO3 − x line phases with x = 0.5, 0.25, and 0.125 during the electrochemical oxidation reaction [16].

The aim of this article is to show how crystal growth might be influenced by the existence or not
of high temperature phase transitions, and their respective impact on phase formation and structural
stability. We focus here in particular on Ca2Fe2O5 (henceforth, CFO) and Sr2ScGaO5 (in the following
SSGO) single-crystal growth by the floating zone method, and their structural characterization by
neutron and X-ray diffraction, as well as by SEM. Since both title compounds are line phases even up
to high temperatures, oxygen fugacity is not a major issue perturbing crystal growth conditions in
this respect.

2. Results and Discussion

2.1. Sr2ScGaO5

When synthesizing Sr2ScGaO5 by classical solid state reaction at 1200 ◦C, the thermodynamically
stable phase obtained shows a brownmillerite framework with I2mb space group at room temperature
and unit cell parameters a = 5.91048(5) Å, b = 15.1594(1) Å, and c = 5.70926(4) Å [18]. This structure is
characterized by two important details: (i) the B-cation shows a specific order with Sc selectively on
octahedral and Ga on tetrahedral sites; and (ii) the (GaO4)∞-tetrahedral chains show long range order
for the zigzag arrangement, as shown in Figure 1. Upon heating, the symmetry changes around 300 ◦C
towards Imma, indicating a statistical disorder of the GaO4-tetrahedra with the in-plane oxygen and
Ga atoms on a split position. The ordered Sc/Ga-distribution underlines a particular stability for this
configuration, even up to high temperatures, while the transition towards the average oxygen-deficient
perovskite framework with cubic symmetry occurs only above 1300 ◦C (as indicated in Figure 2). While
covering even more than 150 ◦C, it is still not clear whether the orthorhombic/cubic phase transition is
of first or second order. This becomes evident in Figure 2b for the heating cycle with a rate of 2 ◦C/min.
The reverse transition from cubic to orthorhombic is even more hindered, as the cubic phase remains
stable even during slow furnace cooling at 2 ◦C/min. Since there is evidence that the cubic phase
still contains predominantly ScO6 octahedra and GaO4 tetrahedra, the slow transformation kinetics is
supposed to rely on the specific microstructure which consists in a simple picture of microdomains of
the brownmillerite network, averaged by the coherence length of the diffraction method. In this way,
the cubic-to-orthorhombic transition might be regarded as a reconstructive phase transition.
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Figure 2. Phase transition from orthorhombic Sr2ScGaO5 (SSGO) with brownmillerite structure towards
the cubic oxygen-deficient perovskite obtained by temperature-dependent X-ray powder diffraction
using a heating rate of 2 ◦C/min (the diffraction peak at 39◦ is from Pt sample holder) (RT: room
temperature) (a); The outlined part is shown as a 2D-intensity plot (b), indicating that the transformation
spans a range of more than 150 ◦C.
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A cubic Sr2ScGaO5 (c-SSGO) single crystal, grown by the Floating Zone method, is shown in
Figure 3. The grown crystal had a diameter of 4 mm and 40–50 mm length. While polycrystalline
feed and seed rods were white, the grown crystal was of transparent light-yellow colour in the first
growth-start position, becoming brown beyond the first 10 mm. The appearance of the colour is
surprising, but the crystal becomes colourless after heating at 900 ◦C in vacuum.
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Chemical composition and homogeneity of the crystals were checked by SEM coupled with EDX
analysis. For this purpose, a slice of each crystal was taken perpendicular to the growth direction and
polished mechanically. The crystals were found to be free of cracks or inclusions of secondary phases
(Figure 4). EDX compositional analysis indicated a change in the stoichiometry in the first yellow
part, for which the ratio Sc:Ga is not 1:1 (Table 1), as expected from the initial Sr2ScGaO5 chemical
composition. The deposition of a fine white powder on the mirror furnace quartz tube indicated a mass
loss due to evaporation from the molten during the growth process, and we analysed the evaporated
compounds to be SrO and Ga2O3 (Table 1). For the brownish crystal, different points throughout the
cross-section of the crystal were analysed to verify the chemical composition as well as its homogeneity.
It was found that the atomic percentage of scandium, gallium, and strontium remains constant over
the whole cross section, while the Ga/Sc ratio was found to be 1 throughout the whole cross-section
(see Table 1 and Figure 4), in agreement with the chemical formula of Sr2ScGaO5.
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Table 1. Averaged elemental composition of the first yellow part and of the brownish as-grown single
crystal, as well as the deposited powder on the quartz tube during crystal growth, checked by EDX.

Element
Yellow Part Brown Part Deposited Powder

At % At % At %

O 58.01 ± 6 65.2 ± 7 75 ± 8
Sc 12.71 ± 1 8.6 ± 1 -
Ga 9.10 ± 1 8.9 ± 1 13.3 ± 1
Sr 20.9 ± 2 17.2 ± 2 11.7 ± 1

A single-phase cubic structure was identified from X-ray powder diffraction, obtained from
a crushed as-grown crystal. Structural refinement carried out using the Fullprof software [19]
and a vacancy disordered Pm3m model shows a monophasic compound with lattice parameters
a = 3.9932(1) Å and a unit cell volume equal to 63.6736(9) Å3.

The brownmillerite-to-cubic perovskite transition at high temperature is a classical order/disorder
phase transition, as already reported for similar brownmillerite phases at high temperature [17,20,21].
The ordered brownmillerite is thermodynamically stable below 1300 ◦C, while the average cubic phase
forms above this temperature. The cubic modification can nevertheless be obtained metastable at room
temperature, even in the form of a single crystal, allowing for the first time a Sr2ScGaO5 single crystal
to be obtained in an oxygen-deficient perovskite structure. It is interesting to note that attempts to
transform the c-SSGO single crystal towards the orthorhombic brownmillerite modification failed,
even after annealing at 1450 ◦C for more than one week.

The bulk crystalline quality of the as-grown crystal has been investigated on a centimeter-sized
sample by neutron diffraction on the 4-circle neutron diffractometer 5C2 at the Laboratoire Léon
Brillouin (LLB) [22]. Rocking curves measured in transversal ω-scan mode for several Bragg peaks are
given in Figure 5. The values of the full width half maximum (FWHM) for reflections with different
orientation of the scattering vector are close to the instrumental resolution, thus confirming an excellent
mosaicity of the crystal. Results of the structure refinement from single crystal neutron diffraction up
to 0.89 Å−1 in sinΘ/λ (see Table 2) are reported in Table 2 using SHELXL (version 2014/2) [23]. For all
refinements, the Sr occupancy has been fixed to unity, while oxygen site occupancies were refined.
The B-cation site occupancy was constrained to be unity, inversely correlating Ga and Sc contributions.
It becomes evident that the deviation from an equal Sc/Ga occupation on the B-cation site was found
to be less than 2%; the same error bar holds for the oxygen occupancies, which are statistically vacant
by 1/6. Strongly anisotropic oxygen displacement factors become evident, giving rise to a disc-shaped
distribution of all oxygen atoms, as shown in Figure 6.
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Table 2. c-SSGO structure data obtained from single crystal neutron diffraction data, collected
on diffractometer 5C2@LLB with λ = 0.83 Å, installed at the hot source of the ORPHEE reactor.
Refinements were carried out in space group Pm-3m with unit cell parameter a = 3.9932 Å (determined
from X-ray powder diffraction (XRPD), CuKα1). One hundred and fifty two measured reflections
(sin θ/λ = 0.72 Å−1), (49 unique) Rint(hkl) = 3.1%, Rw = 10%, GooF = 1.23.

Atom x y z Occupancy U (Å2)

Sr 0 0 0 1.00 Uiso = 0.0310(17)
Sc 1

2
1
2

1
2 0.521(41) Uiso = 0.0312(13)

Ga 1
2

1
2

1
2 0.479(41) Uiso = 0.0312(13)

O 0 1
2

1
2 2.462(42) U11 = 0.0390(32) U22 = U33= 0.0901(48)
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2.2. Ca2Fe2O5

As stated above, Ca2Fe2O5 is known as a stoichiometric line phase without significant variation
of the oxygen stoichiometry, up to at least 1200 ◦C. It crystallises in the brownmillerite framework with
Pnma symmetry (i.e., ordered (FeO4)∞-tetrahedral chains), but with a different stacking arrangement
compared to the room temperature modification of Sr2ScGaO5 with I2mb space group (see Figure 1).
While no cubic perovskite phase has been reported so far for Ca2Fe2O5, Krüger et al. [24,25] described
an incommensurate modulated structure with superspace group Imma(00γ)s00 and γ = 0.5588 at
T = 830 ◦C, involving complex ordering of the (FeO4)∞ chains within, and also along the stacking of the
tetrahedral layers along the b axis [24]. The phase transition from the incommensurate to commensurate
phase also induces the formation of extended defects, such as anti-phase boundaries, which have been
interpreted to originate from a phase shift of the tilting sequence of the (FeO4)∞ zigzag chains [25].
On top of the structural complexity, these lattice defects have been reported to have a direct influence
on the oxygen mobility [26]. Ca2Fe2O5 is congruently melting [27,28], which significantly helps for the
single crystal growth. The applied growth conditions reported in [28] yielded a Ca2Fe2O5 single-crystal
(CFO) of 6 mm in diameter and 120 mm in length, showing a shiny silver-black surface with metallic
lustre, as shown in Figure 7. Powder diffraction carried out on crushed parts of the as-grown single
crystals yielded lattice parameters of a = 5.4272(4) Å, b = 14.7640(1) Å, and c = 5.59724(4) Å, in very
good agreement with previous reports [12,28,29]. The corresponding XRD pattern is shown in Figure 8a.
Pattern profile refinement carried out in the profile matching mode through the Fullprof software [19]
and Pnma space group shows a monophasic compound. We underline a strong orthorhombicity for
Ca2Fe2O5, which will become important when discussing the formation of twin domains, since the
probability of obtaining mono-domain single crystals increases directly with the orthorhombicity.



Crystals 2016, 6, 146 7 of 11

Twinning in brownmillerite single crystals has been extensively discussed in [16]. The quality of the
as-grown crystal was first investigated by X-ray Laue back diffraction. Laue diffractograms were
taken along the length of the crystal, and also in several positions along the cross-section. All the
Laue patterns are consistent, and showed that the crystal growth direction is only few degrees away
from [101], as shown in Figure 8b.
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pattern taken on the middle of the cross-section of the crystal, showing the [101] growth direction (as
obtained by OrientExpress).

The bulk crystalline quality of the as-grown crystal—eventually including possible twinning—has
been checked on centimetre-sized samples by single crystal neutron diffraction on the four-circle
diffractometer 5C2, installed at the hot source of the LLB. To this end, the crystals were aligned with
the b-axis perpendicular to the diffraction plane of the diffractometer; pure transversal scans (ω scans)
were carried out for characteristic reflections such as (h00), (hh0), and (00`), in order to determine peak
width and eventually twinning.

As seen from Figure 9, the FWHM for all reflections (measured in transversal mode) is within
or close to the instrumental resolution [22]. The rocking curve of, for example, the (400) reflection
indicates a FWHM of the as-grown CFO crystals to be on the order of 0.2◦. Theω-scans for the (hh0)
reflections (i.e., the (−2–20) and the equivalent (−220) reflections) show unique reflections, confirming
that no twinning as discussed in [30] occurred during crystal growth. The absence of twinning in
nearly all batches we carried out can also be interpreted as evidence of the absence of a cubic perovskite
modification, at least up to the melting temperature of Ca2Fe2O5, which is around 1350 ◦C. In the case
of the presence of a cubic parent phase, one would expect the formation of twin domains, as is the
case for Sr2Fe2O5 [16]; instead, the as-grown crystals do not show any observable macroscopic twin
domains, but uniformly-shaped crystal ingot.
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2.3. Oxygen Mobility and General Scientific Interest of Cubic Sr2ScGaO5 and Ca2Fe2O5

Both title compounds show oxygen deficiency, and are thus interesting as oxygen ion conductors,
with applications as membranes or electrolytes. The temperature for oxygen mobility to set in can
be easily determined by 18O/16O isotope exchange behaviour and analysing related mass loss by
thermogravimetric analysis. Both compounds show only very low electronic conductivity, but their
oxygen mobility sets in at around 450 ◦C and 500 ◦C for Ca2Fe2O5 and Sr2ScGaO5, respectively.
These temperatures are interestingly low for stoichiometric ion transport to take place, as necessary for
oxygen separation membranes. Isotope exchange experiments are illustrated for both compounds in
Figure 10. While the exchange temperatures for both systems are similar, the exchange kinetics are not.
Using a heating rate of 5 ◦C/min in both cases, the exchange for CFO is completed at 600 ◦C, while
for c-SSGO, exchange is still not finished upon reaching 900 ◦C. The temperature was then held 3 h at
900 ◦C to complete the reaction. Simultaneous to the change of the mass loss, the 18O/16O exchange
was monitored by mass spectroscopy. The more rapid isotope exchange for Ca2Fe2O5 is probably
related to the higher catalytic surface activity in the case of Fe3+ compared to the d0/d10 configuration
of Sc/Ga, but also to the fact that FeOx polyhedra are more flexible [16], and not as rigid as reported for
ScO6 octahedra or GaO4 tetrahedra [12,18]—even in an average cubic symmetry. A similar tendency
was already observed comparing Ca2Fe2O5 and Ca2FeAlO5 [3], where the pure CFO showed a much
higher conductivity.
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Figure 10. Oxygen isotope exchange behaviour of cubic Sr2ScGa18O5 (left) and Ca2Fe2
18O5 (right)

followed by TG with a heating rate of 5 ◦C/min. The mass loss is related to the exchange of 18O to
16O, indicating that oxygen exchange is taking place as a solid/gas exchange reaction. For a 100%
enrichment, the theoretical mass loss is 2.65% and 3.67% for c-SSGO and CFO, respectively. The
18O/16O exchange is indicated by simultaneously-measured mass signals corresponding to 18O-16O
and 18O-18O.
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3. Materials and Methods

Single crystals of Ca2Fe2O5 and Sr2ScGaO5 were grown using an optical mirror furnace (NEC
SC2, Tokyo, Japan) equipped with two 500 W halogen lamps as heat source and two ellipsoidal mirrors.
Both crystal growths were performed in air atmosphere with a typical traveling rate of 1–2 mm/h,
while the upper and lower shafts were rotated in opposite directions at 25 rpm.

The starting polycrystalline compounds of were prepared using standard solid-state chemistry
methods. High purity SrCO3 (99.995%, ALDRICH), Ga2O3 (99.99%, ALDRICH), and Sc2O3 (REacton
99.99% REO, ALFA AESAR) were thoroughly mixed and heated in air at 1200 ◦C for 48 h with
intermediate re-grinding, to obtain pure Sr2ScGaO5. Ca2Fe2O5 was obtained by mixing CaCO3

(99.95%) and Fe2O3 (99.99%) and then heating in air at 1000 ◦C for 48 h. Calcination was repeated
twice with intermediate grinding. Finally, the sample was annealed 1200 ◦C for 24 h. Seed and feed
rods for crystal growth were obtained by hydrostatic pressing of the obtained powders at 10 bars in a
cylindrical latex tube of 6–8 mm in diameter and 100 mm in length. The rods were then sintered in air
at 1200 ◦C for 24 h to obtain dense polycrystalline rods.

Laboratory X-ray powder patterns up to 1600 ◦C were collected on a Panalytical Empyrean
diffractometer (Cu Kα1,2), equipped with the HTK 16N Anton Parr high temperature chamber.

The crystal quality and elemental composition were checked by Scanning Electron Microscopy
(SEM) analysis using a JEOL JSM 6400 (JEOL USA Inc, Tokyo, Japan) microscope equipped with an
OXFORD INCA EDS (Oxford Instruments, Oxford, UK) instrument for atomic recognition via X-ray
fluorescence spectroscopy. SEM/EDS analyses were performed on a cross section (6–7 mm in diameter)
of all grown crystals, after an accurate surface polishing and cleaning. Samples were also characterized
by isotopic exchange 18O/16O and thermogravimetric analysis (TGA) coupled with mass spectrometry
(MS). Thermogravimetric measurements were carried out on a NETSCH thermobalance Jupiter STA
449C (NETZSCH-Gerätebau GmbH, Selb, Germany) equipped with a PFEIFFER VACUUM Thermo
Star mass spectrometer (Pfeiffer Vacuum GmbH, Asslar City, Germany).

Neutron diffraction was performed on the 5C2 single crystal diffractometer installed at the LLB
(ORPHEE reactor in Saclay, France) with λ = 0.83 Å.

Laue diffraction was obtained using a tungsten anode (50 kV) on a Seifert generator in
backscattering mode, equipped with an image plate detector. Data were analysed using the Orient
Express V3.3 software.

4. Conclusions

Crystal growth of brownmillerite type oxides is discussed, depending on the high temperature
parent phase symmetry and related kinetics of the phase transformations, which may lead to different
defect structures and associated twin domains. Compared to SrFeO3−x and SrCoO3−x, the kinetics of
the high temperature cubic to low temperature orthorhombic phase transition of Sr2ScGaO5 is very
slow, allowing the cubic symmetry to be preserved, even down to room temperature. This allowed
an oxygen deficient perovskite oxide to be obtained for Sr2ScGaO5 in the form of a single crystal.
The fact that Ca2Fe2O5 single crystals are obtained for almost all batches untwinned implies that no
cubic perovskite high temperature parent phase exists, and that crystallization of the orthorhombic
brownmillerite phase occurs directly from the melt. The strong orthorhombicity thereby favors
the formation of non-twinned crystals. It is also evident that due to the different volatility of the
components, the growth conditions generally need to be optimized in a rigorous and reproducible way,
in order to draw conclusions on possible differences in the structural and physical properties. This is
not only a mandatory issue for non-stoichiometric oxides, but also in the case of solid solutions (e.g.,
for variable B-site cation stoichiometry, as is the case for Sr2ScGaO5). The composition of the seed rod
and the melt thus play a crucial role for the final crystal stoichiometry. Keeping all these parameters in
consideration, we succeeded in the growth of high quality and centimeter-sized brownmillerite-type
CaFeO2.5, and perovskite-type Sr2ScGaO5 single crystals by floating zone method. The availability of
large crystals enabled single crystal neutron diffraction—complementary to laboratory X-ray Laue
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diffraction—to evaluate their bulk crystal quality. We also want to underline the importance of
accessing neutron structure factors up to high momentum transfer for a precise structure analysis, in
order to allow high quality structure determination with meaningful displacement factors, even for
disordered and/or non-stoichiometric compounds.
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