
Article

Crystal-Structure Analysis with Moments of the
Density-of-States: Application to Intermetallic
Topologically Close-Packed Phases

Thomas Hammerschmidt *, Alvin Noe Ladines, Jörg Koßmann and Ralf Drautz

Atomistic Modelling and Simulation, ICAMS, Ruhr-Universität Bochum, 44801 Bochum, Germany;
alvin.collado@rub.de (A.N.L.); joerg.kossmann@rub.de (J.K.); ralf.drautz@rub.de (R.D.)
* Correspondence: thomas.hammerschmidt@rub.de; Tel.: +49-32-234-29375

Academic Editor: Duc Nguyen-Manh
Received: 5 November 2015; Accepted: 25 Janaury 2016; Published: date

Abstract: The moments of the electronic density-of-states provide a robust and transparent means
for the characterization of crystal structures. Using d-valent canonical tight-binding, we compute
the moments of the crystal structures of topologically close-packed (TCP) phases as obtained from
density-functional theory (DFT) calculations. We apply the moments to establish a measure for
the difference between two crystal structures and to characterize volume changes and internal
relaxations. The second moment provides access to volume variations of the unit cell and of the
atomic coordination polyhedra. Higher moments reveal changes in the longer-ranged coordination
shells due to internal relaxations. Normalization of the higher moments leads to constant (A15,C15)
or very similar (χ, C14, C36, µ, and σ) higher moments of the DFT-relaxed TCP phases across the 4d
and 5d transition-metal series. The identification and analysis of internal relaxations is demonstrated
for atomic-size differences in the V-Ta system and for different magnetic orderings in the C14-Fe2Nb
Laves phase.

Keywords: intermetallics; transition metals; topologically close-packed phases;
bond-order potentials

1. Introduction

Many intermetallic compounds show the formation of topologically close-packed (TCP) phases.
The dominant factors that govern their structural stability are the average number of valence
electrons [1–4] and differences in atomic size [5,6]. This has been investigated in detail for the χ

phase [7], the Laves phases [8–10], the A15 phase [11–14], and the σ phase [15]. The theoretical
analysis of TCP phases is mostly based on density-functional theory (DFT) calculations [16–25] and
approximate electronic structure methods [12,13,26–29].

The relaxations of unit cell and internal coordinates are implicitly included in the DFT
calculations but are rarely characterized in detail. Existing approaches for the characterization
of the atomic environment include curvilinear coordinates [30], simplex representations [31,32],
symmetry functions [33], Coulomb-matrices [34], overlapping atomic functions [35], topological
fingerprints [36], or Fourier series of atomic radial distribution functions [37]. A possible alternative
to these purely geometrical measures are the moments [38] of the electronic density-of-states (DOS)
that are well-known from recursion [39] and bond-order potentials (BOPs) [40–44]. For each atom in
a crystal structure, the moments are determined by the set of self-returning paths of a given length.
The information on the crystal structure is picked up by the paths in terms of chemical elements,
bond distances and bond angles. In this manner, the moments subsume the detailed information of
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the positions and the local environment of the individual atoms. This has been used in the past to
analyze trends of structural stability, see, e.g., [12,13,26,27,40,45,46].

Here, we use the moments to analyze the internal relaxations of the unit cells of TCP phases as
obtained from DFT calculations and to establish a measure for the difference between two crystal
structures. In Section 2, we outline the methodology and computational details. In Section 3,
we perform a moments analysis of volume relaxations and internal relaxations due to band-filling
variation across the TM series, due to atomic-size differences in V-Ta TCP phases and due to magnetic
ordering in C14-Fe2Nb.

2. Methodology

2.1. Moments of the Density-of-States

The n-th moment µ
(n)
iα of the electronic DOS niα(E) of orbital α of atom i is given by

µ
(n)
iα =

∫
Enniα(E)dE (1)

The first few moments are often discussed as measures of specific properties of the
distribution, i.e.,

µ
(0)
iα =

∫
niα(E)dE :norm , (2)

µ
(1)
iα =

∫
Eniα(E)dE : center of gravity , (3)

µ
(2)
iα =

∫
E2niα(E)dE : associated to root mean square width, (4)

µ
(3)
iα =

∫
E3niα(E)dE : related to skewness, (5)

µ
(4)
iα =

∫
E4niα(E)dE : related to bimodality. (6)

The moments are directly related to the crystal structure by the moments theorem [38]

µ
(n)
iα = 〈iα|Ĥn|iα〉 = ∑

j1β1...jn−1βn−1

Hiαj1β1 Hj1β1 j2β2 ...Hjn−1βn−1iα (7)

with self-returning paths iα → j1β1 → j2β2 → ... → jn−1βn−1 → iα from orbital α of atom i
along orbitals βk of atoms jk (k = 1...n − 1), where the orbitals are orthogonal. Higher moments
correspond to longer paths and thus to a more far-sighted sampling of the atomic environment. As
different crystal structures have different sets of self-returning paths of a given length, the moments
are sensitive to changes in the crystal structure. Each element of a self-returning path corresponds to
a Hamiltonian matrix that carries information on atom i

Hiαiα = 〈iα|Ĥ|iα〉 (8)

or on a pair of neighbouring atoms i and j

Hiαjβ = 〈iα|Ĥ|jβ〉 . (9)

The second moment µ
(2)
iα is the lowest moment that contains information of the environment of

an atom (the root mean square width of the DOS). It is computed from the distances to the nearest
neighbors and is therefore a measure of the volume of the atom. The third moment gives rise to a
skewed DOS as illustrated in Figure 1, left. The fourth moment characterizes the bimodal (in contrast
to unimodal) shape of the DOS as shown in Figure 1, right.
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Figure 1. The third and fourth moment gives rise to a skewing (left) and a bimodal shape (right) of
the DOS.

Knowledge of the moments allows for the construction of the electronic DOS that yields the bond
energy by integration to the Fermi level as described in the framework of BOPs in various previous
works [41–44]. This leads to close relations between the moments and the trends of structural stability
with band filling, see e.g., [27–29,40,42,47,48].

For the transition-metal (TM) compounds considered in this work, we describe Hiαjβ in
two-center approximation by d-valent canonical tight-binding (TB) [49] that provides a robust
approximate description of d-d bonding across the TM series. This approach has been used before
in the analysis of trends of TCP phase stability across the transition metal (TM) series [28,29].
The observations reported for TCP phases are equivalent to results using an alternative canonical
TB model for d-d bonding [26,27]. Compounds with different bonding chemistry would require
corresponding canonical TB models, e.g., for p-d bonding [48,50].

2.2. Computational Details

The moments analysis is performed for unit cells of TCP phases in 4d/5d unaries [29],
in V-Ta [24], and in Fe-Nb [51] that were fully relaxed by density-functional theory (DFT) calculations.
In all cases, we included all permutations of the occupations of Wyckoff positions with different
elements. The polyhedra around the Wyckoff positions are Frank–Kasper polyhedra that are
categorized according to the coordination number Z of the atom at the center of the polyhedron.
The coordination polyhedra of the considered TCP phases are compiled in Table 1. Further
crystallographic details may be found in [52].

Table 1. Frank–Kasper polyhedra with coordination numbers Z of the considered TCP phases,
ordered by increasing average Z. The list indicates the multiplicity of the different Wyckoff
positions with the same Z. The values in parentheses indicate coordination polyhedra that are not
Frank–Kasper polyhedra.

Structure fcc χ C14 C15 C36 µ A15 σ bcc

Z12 (1) 12 2, 6 4 4, 6, 6 1, 6 2 2, 8 -
Z13 - (12) - - - - - - -
Z14 - - - - - 2 6 8, 8 (1)
Z15 - - - - - 2 - 4 -
Z16 - 1, 4 4 2 4, 4 2 - - -

〈Z〉 12.00 13.10 13.33 13.33 13.33 13.39 13.50 13.57 14.00

For each DFT-relaxed unit cell, the moments are computed with analytic BOP [42,44,53,54] as
implemented in the BOPfox program package [55]. For the computation we choose Eiα = Hiαiα = 0
in order that the moments contain only geometric information as contained in the paths
iα → j1β1 → . . . . In the context of a BOP or recursion calculation, this corresponds to a
non-self-consistent calculation.
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In order to achieve a consistent comparison of different crystal structures (of the same element)
and different elements (with the same crystal structure), we make use of the structural energy
difference theorem [40,56]. As discussed in detail in [29], this theorem states that the difference in
binding energy between two equilibrium structures can be expressed to first order as

∆U = [∆Ubond]∆Urep=0 (10)

if the binding energy U is a sum of bond energy Ubond and repulsive energy Urep like in
a tight-binding bond model [57]. Using the Wolfsberg–Helmholz assumption that the repulsive
potential falls off with distance as the square of the bond integrals [40], the constraint ∆Urep = 0
can be replaced by ∆µ(2) = 0, see e.g., [29]. Such a constant value of the second moment, averaged
over the atoms in the crystal structures, is enforced by scaling all moments through division by the
average second moment. While originally developed for differences in energy, we employ this scaling
in order to separate volume changes and internal relaxations.

2.3. Moments of TCP Phases

In order to demonstrate that the moments provide a robust approach to analyze the crystal
structure, we computed the moments of the DFT-relaxed unit cells of Ta in different TCP crystal
structures [29] using a canonical d-valent TB model [49]. Other 4d/5d TM yield very similar results
(see Section 3.1). In Figure 2 we compiled the second to sixth moments of fcc, bcc and the TCP
phases χ, C14, C15, C36, µ, A15, and σ as obtained from the DFT-relaxed unit cells. Modifications of
the atomic positions due to, e.g., magnetism (see Section 3.3) or spin-orbit coupling, are reflected in
the moments.

Figure 2. Second to sixth moments (colors) computed with a canonical d-valent TB model for
DFT-relaxed crystal structures of Ta. Several values of the same moment (symbols) reflect the different
environments of different Wyckoff positions. (This color coding is used in all following figures.)

The moments were scaled to exhibit a constant average second moment 〈µ(2)〉 = 1 for each TCP
phase. The first moment takes a constant value of zero by construction and is therefore omitted in the
plot. The results of fcc and bcc show a single value for each moment as only one Wyckoff position is
present, see Table 1 for comparison. The TCP phases comprise several Wyckoff positions, therefore,
for each n-th moment, several values are shown for one crystal structure, which reflects the different
atomic environments of the different Wyckoff positions. This can be illustrated, e.g., by considering
the Laves phases (C14, C15, C36) that exhibit only Z12 and Z16 polyhedra. The considerable volume
difference of these polyhedra manifests itself as a pronounced difference of the respective second
moments of the Laves phases in Figure 2. At higher moments, the C15 phase with two Wyckoff
positions continues to show two distinct values, while the higher moments for C14 and C36 split
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further according to their three and five Wyckoff positions, respectively. The A15 phase, in contrast,
shows very similar values of the second moment for both Wyckoff positions that correspond to Z12
and Z14 polyhedra of comparable size.

The moments provide access to a quantitative comparison of the crystal structure of TCP phases,
e.g., by considering the set of n = 1 . . . nmax averaged moments of structure i as vector and evaluating
the distance

∆(nmax)
ij =

√√√√√nmax

∑
n=1

µ
(n)
i − µ

(n)
j

n2n

2

(11)

of two TCP phases i and j in moments space. Here, we normalized the moments with n2n in
order to balance their relative contribution to ∆(nmax)

ij . The values of ∆(6)
ij obtained with the moments

of Figure 2 are compiled in Table 2.

Table 2. Similarity matrix of TCP phases in terms of the distance in moments space ∆ij. The entries
are ordered by increasing difference to bcc. The symmetric lower-left part is omitted for brevity. The
grey scale reflects the numerical entries and is included to guide the eye.

∆
(6)
ij · 100 bcc χ σ A15 fcc µ C14 C36 C15

bcc 0.000 0.226 0.304 0.362 0.885 1.365 1.619 1.982 2.301
χ - 0.000 0.220 0.315 0.808 1.301 1.550 1.922 2.247
σ - - 0.000 0.290 0.662 1.124 1.378 1.747 2.069

A15 - - - 0.000 0.818 1.161 1.403 1.769 2.091
fcc - - - - 0.000 0.655 0.886 1.236 1.546
µ - - - - - 0.000 0.257 0.623 0.947

C14 - - - - - - 0.000 0.375 0.702
C36 - - - - - - - 0.000 0.327
C15 - - - - - - - - 0.000

Ordering the columns of the similarity matrix (Table 2) by the structural difference to bcc, we
observe a nearly perfect arrangement of increased structural difference with increased distance to the
diagonal of the similarity matrix. The structural similarities are also in line with previously reported
trends of energy differences in [29]. The two groups of TCP phases, (i) χ, σ, A15 that are mainly
stabilized by band filling and (ii) µ, C14, C36, C15 that are stabilized significantly by atomic-size
mismatch, show small values of ∆(6)

ij for TCP phases of the same group and large values for TCP
phases of different groups.

3. Moments Analysis of Volume Changes and Internal Relaxations

3.1. Influence of Band Filling across TM Series

The robustness of the moments can be verified by comparing the results for the same TCP phase
of different elements. To this end, we revisit DFT calculations of unary TCP phases across the TM
series [29] and compute the moments of the unit cells as obtained from fully relaxed crystal structures.
In Figure 3, we compiled the values of the second to sixth moment of the C14, C15, A15 and σ phases
as examples.

The moments of the C15 and A15 phases are constant across the TM series due to the scaling
(Section 2.2) and the absence of internal degrees of freedom. The C14 and σ phases, in contrast,
show variations of the moments across the TM series due to the relaxation of the atoms inside the
unit cells. However, the results shown in Figure 3 indicate that these changes are small as the lower
moments remain fairly constant and only the fifth and sixth moment show a sizeable variation. These
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observations hold for the 4d TM series as illustrated by a comparison for the case of the χ phase in
Figure 4.

Figure 3. Trend of second to sixth moments of unary C14 (top left), C15 (top right), A15 (bottom left)
and σ (bottom right) phases across the 5d TM series. The values were computed from the DFT-relaxed
unit cells and scaled such that 〈µ(2)〉 = 1. (for color coding, see Figure 2.)

Figure 4. Comparison of second to sixth moments of the χ phase across the 4d (left) and 5d (right)
TM series using the DFT-relaxed unit cells with scaling such that 〈µ(2)〉 = 1. (for color coding, see
Figure 2.)

The magnitude of variation of the moments across the TM series for the χ phase is similar to
the findings for the C14 and σ phases (Figure 3). The differences between isovalent 4d and 5d TM
elements (e.g., Nb and Ta) are small even for the higher moments. The 3d TM series is omitted in this
comparison due to the influence of magnetism on the atomic relaxation (see also Section 3.3).
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3.2. Atomic-Volume Differences in Compounds: V-Ta

The structural stability of TCP phases is largely dominated by the average band-filling and by
differences in the atomic volume of the constituent elements [6]. Compounds with small differences
in atomic volume tend to form χ, A15, and σ phases. Sufficiently large differences in atomic volume of
the constituent elements can stabilize Laves or µ phases as observed recently also for experimentally
observed multicomponent TCP phase precipitates [58,59]. The associated changes in volume and
internal relaxations can be assessed with moments.

In order to isolate the role of atomic-size differences from the role of band filling, we analyze
the isovalent intermetallic compound V-Ta. The considerable difference of the atomic volume of V
and Ta leads to a stabilization of V-Ta Laves and µ phases, in contrast, e.g., to the Nb-Ta system
with negligible size difference [24]. We computed the moments for the unit cells of V-Ta TCP
phases as obtained by full relaxation with DFT calculations [24]. We considered all occupations
of Wyckoff positions with either atom in the primitive unit cells for the full range of attainable
chemical composition. The influence of atomic-size differences is directly apparent from the moments
computed for the original DFT unit cells, (i.e., without the scaling described in Section 2.2). In Figure 5,
we compiled the moments of the DFT-relaxed, unscaled unit cells for the A15 and C15 phases of V-Ta.

Figure 5. Influence of considerable atomic-size difference on moments of DFT-relaxed unit cells of
A15 (left) and C15 (middle). Variation of second moment for different Wyckoff positions in A15 and
C15 (right). (for color coding, see Figure 2.)

The set of discrete values of x is a direct consequence of occupying the sublattice that corresponds
to one Wyckoff position with only one species of atoms at a time. As the A15 and C15 phases have
no internal degrees of freedom, the variation of moments with x reflects the difference in atomic size
of V and Ta. The increase of atomic size from V to Ta leads to a decrease of the second moment
from x = 0 to x = 1. The change in volume is smooth for A15, while the volume contraction of
the thermodynamically stable V2Ta C15 phase is clearly visible as an increased second moment. The
contraction is similar for the two Wyckoff positions of C15 due to the absence of internal degrees
of freedom.

Internal relaxations become apparent in the moments computed after scaling the moments as
described in Section 2.2. For the A15 and C15 phases, the scaling leads to constant second moments
as observed for the band-filling variation (Figure 3). For TCP phases with internal degrees of freedom,
however, the internal relaxations in the V-Ta compound lead to variations of the moments also for the
scaled unit cells. This is shown exemplarily for the C14 and σ phases in Figure 6. More values than
sublattices, e.g., C14 at x = 0.5, arise if the same composition can be represented by different sublattice
occupations. The similarity of the moments of C14 for x = 0, 1/3, 2/3, and 1 indicates weak internal
relaxations for both, the stable C14-V2Ta and the energetically unfavourable [24] C14-VTa2 phase.
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These compositions correspond to occupations of both Z12 coordination polyhedra with the same
atom type. Breaking this symmetry of the coordination polyhedra by occupying the two inequivalent
Z12 sites differently (x = 2/12, 1/2, 10/12), however, leads to considerable internal relaxations.

Figure 6. Variation of moments due to internal relaxation in the V-Ta compound system for the TCP
phases C14 (left) and σ (right). The moments of the DFT-relaxed unit cells were scaled such that
〈µ(2)〉 = 1. (for color coding, see Figure 2.)

3.3. Influence of Magnetism: Fe2Nb-C14

As a further example of internal relaxations, we analyzed the C14-Fe2Nb phase. In particular, we
considered the scaled unit cells obtained by DFT calculations for different spin configurations [51].
The computed moments, summarized in Figure 7, show only weak overall variations.

Figure 7. Variation of moments of C14-Fe2Nb (left) with spin configuration of the Wyckoff sites 2a,
6h and 4f (right), as well as site-resolved close-up on the second moment (middle). The ordering
is according to structural stability [51] starting with the energetically most favorable configuration
(UD)(UD)U that is also indicated in the crystal structure (right). (for color coding, see Figure 2.)

The moments of the Nb atoms are nearly constant, showing that the coordination polyhedra
around the Nb atoms remain intact. The configurations with ferromagnetic ordering (DDD) and
with antiferromagnetic ordering of one sublattice (DUD, DUU, DDU) also show nearly identical
second to sixth moments (Figure 7, left), i.e., nearly no difference in the internal degrees of freedom.
Anti-ferromagnetic ordering within one sublattice in the case of D(UD)D and U(UD)U lifts the
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degeneracy of the higher moments. This can be traced back to a lift of degeneracy of the second
moment of the Fe 6h site (cf. Figure 7, middle) indicating that the spin-flip gives rise to a volume
change of the coordination polyhedra. For the thermodynamically most stable configuration with
spin-flips on both Fe sublattices, (UD)(UD)U, the degeneracy of the Fe 2a and the 6h site is preserved.
In this case, however, the crystallographically different Z12 polyhedra of the 2a and the 6h site
approach a common average volume.

4. Conclusions

We analyzed the volume changes and internal relaxations of unary and binary TCP phases as
obtained from DFT calculations. We used the moments of the density-of-states computed by analytic
bond-order potentials on the basis of a d-valent canonical tight-binding model and a scaling that
follows the structural energy difference theorem.

In particular, we used the moments as geometry characterization that is able to distinguish
the crystal structure of the TCP phases χ, C14, C15, C36, µ, A15, and σ. The differences between
moments serve as quantitative measures for the differences between two crystal structures. We
demonstrated the robustness of the moments across the 4d and 5d TM series that take constant values
for systems without internal degrees of freedom (fcc, C15, A15, bcc) and resolve internal relaxations
otherwise (χ, C14, C36, µ, σ). We illustrated the ability of the moments characterization to easily
identify site-specific volume changes for the case of volume contractions of the C15 phase in the V-Ta
system. The moments give furthermore a direct means to identify the main sites of relaxation in
the DFT-relaxed structures: Higher moments of the V-Ta system show that breaking the internal
symmetry of Z12 polyhedra occupations in C14 leads to considerable internal relaxations. The
moments of the Fe2Nb-C14 phase show that the energetically most favorable magnetic ordering is
accompanied by a volume-equalization of the crystallographically different Z12 polyhedra.

In summary, we demonstrate that the moments provide a robust and transparent means for the
characterization of crystal structures and local atomic configurations as well as volume changes and
internal relaxations.
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