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Abstract:

 Phononic crystals can be used to control elastic waves due to their frequency bands. This paper analyzes the passive and active control as well as the dispersion properties of longitudinal waves in rod-type piezoelectric phononic crystals over large frequency ranges. Based on the Love rod theory for modeling the longitudinal wave motions in the constituent rods and the method of reverberation-ray matrix (MRRM) for deriving the member transfer matrices of the constituent rods, a modified transfer matrix method (MTMM) is proposed for the analysis of dispersion curves by combining with the Floquet–Bloch principle and for the calculation of transmission spectra. Numerical examples are provided to validate the proposed MTMM for analyzing the band structures in both low and high frequency ranges. The passive control of longitudinal-wave band structures is studied by discussing the influences of the electrode’s thickness, the Poisson’s effect and the elastic rod inserts in the unit cell. The influences of electrical boundaries (including electric-open, applied electric capacity, electric-short and applied feedback control conditions) on the band structures are investigated to illustrate the active control scheme. From the calculated comprehensive frequency spectra over a large frequency range, the dispersion properties of the characteristic longitudinal waves in rod-type piezoelectric phononic crystals are summarized.
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1. Introduction


Phononic crystal, which refers to natural or artificial materials characterized by periodic modulations of elastic properties, was put forward about two decades ago [1]. Since then, it has been widely investigated for applications based on controlling elastic waves [2], because it possesses frequency bands.



To control longitudinal waves, rod-type phononic crystals have been proposed. For example, Asiri et al. [3] and Asiri [4] devised periodic passive struts and mounts, which are essentially rod-type elastic phononic crystals, to isolate undesirable longitudinal vibrations in the helicopters and automobiles, respectively. The investigations of longitudinal waves in rod-type elastic phononic crystals up to 2014 were reviewed in Guo and Fang [5]. Unfortunately, these periodic elastic rods can only control the propagation of longitudinal waves in a passive mode. That is, their band structures are totally fixed as long as the geometrical, material and boundary configurations of the unit cells are determined. The frequency bands may not always fit to the external excitations. Therefore, rod-type phononic crystals containing smart material components have been presented in order to control the longitudinal waves in an active mode. Their frequency bands can be adjusted by tuning the temperature [6,7], magnetic [8] or electric [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26] field to suit the external excitations. Among these smart periodic rods, the periodic piezoelectric rods [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26] have particularly been paid more attention, because the piezoelectric materials are widely used and the electric field is comparatively easier to control. Thus far, two kinds of rod-type piezoelectric phononic crystals have been presented to actively control longitudinal-wave bands via electromechanical coupling. One kind is formed by periodically bonding shunted piezoelectric patches on the host rod, and the other is shaped through periodically arranging the piezoelectric constituent rods [9]. The attenuation of longitudinal vibrations/waves in rods with periodic shunted piezoelectric patches have been studied by Thorp et al. [10], Chen et al. [11] and Lossouarn et al. [12,13] using the transfer matrix method (TMM). Here, we focus on the longitudinal vibrations/waves in periodically arranged piezoelectric rods. After Baz [9] proposed the seminal concept about active control of periodic structures, Singh et al. [14] illustrated the effectiveness of the periodic rod with piezoelectric actuators by analyzing the frequency bands and responses with the TMM. Asiri et al. [15] and Asiri [16,17] predicted the attenuation of longitudinal waves in periodic binary piezoelectric-elastic composite rods using the combination of spectral element method and TMM, and validated their analysis by experiment. Using the same TMM, Li et al. [18] and Wang et al. [19] analyzed the localization of frequency bands in randomly disordered periodic binary piezoelectric-elastic rods without and with initial stress, respectively. Recently, Degraeve et al. [20] proposed to use periodic electrical boundary conditions realized by periodically embedded electrodes to tune Bragg bands in uniform homogeneous piezoelectric rods. This kind of electrical charge Bragg band gap in cases of electric-open, external capacitances and electric-short boundary conditions was studied by an analytical method (AM), finite element method (FEM) and experimental measurements. The model of Degraeve et al. [20] was extended by Kutsenko et al. [21] to consider the negative capacitance and by Ponge et al. [22] to devise a tunable Fabry–Perot resonator whose performance was validated by TMM and FEM analysis as well as experiment. Degraeve et al. [23] also extended their previous model by considering the different electrodes in the unit cell with different electrical boundaries and studied the electrical charge Bragg bands of the new phononic crystal with a semi-analytical method and experiment. The extensions to a model with elastic rod insert in the unit cell and with negative external capacitance were conducted in Reference [24] using the previous AM, FEM and experiment. Kutsenko et al. [25] further studied the band structures of more general rod-type piezoelectric phononic crystals where the unit cell consists of several piezoelectric or elastic-piezoelectric rods by TMM. The effective constitutive parameters were also derived. Vasilenko and Rogacheva [26] provided the similar effective modulus and the electroelastic state equations of periodic piezoelectric and adhesive rods by the homogenization method.



Although the above-mentioned studies make the longitudinal-wave band structures of periodically arranged piezoelectric or elastic-piezoelectric rods relatively clear, to the authors’ knowledge, pending problems still exist in four aspects: (1) Few studies have analyzed the longitudinal-wave bands in the high frequency range. The first reason is that the analytical method, like the conventional TMM, is proposed on the basis of classical rod theory valid only within pretty low frequency range. The second one is that the numerical method, like the versatile FEM, may be inefficient for the high frequency analysis since large amount of elements and very small time step are required in this case. (2) The mechanical vibration of the electrodes and the Poisson’s effect of the constituent rods are neglected without understanding their influences. The influence of the elastic rod inserts on the band structures is not clear enough. (3) Two electrical control manners in general have been proposed, i.e., setting the external voltage through the feedback control gain [14,15,16,17] and tuning the external electric capacity [18,19,20,21,22,23,24,25,26], since the electric-open and electric-short conditions correspond to zero and infinity electric capacities, respectively. The connection and difference of the influences of the applied feedback control and of the applied electric capacity on the frequency bands are not known. (4) The wave dispersion property has been solely represented by the frequency–wavenumber dispersion curve. However, other forms of dispersion curves such as the frequency–wavelength and frequency–phase velocity spectra are also vital to convey wave dispersion properties in different perspectives and engineering practices [5].



Aiming at solving the above four pending problems, this paper presents a modified transfer matrix method (MTMM) to analyze the longitudinal waves in rod-type piezoelectric phononic crystals, whose unit cell consists of any number of piezoelectric or elastic-piezoelectric rods with electrodes covered on the ends of piezoelectric rods. The proposed MTMM combines the Love rod theory [27,28], [29] (pp. 139–142), [30], the method of reverberation-ray matrix (MRRM) [5] and the transfer matrix method (TMM) [14,15,16,17,18,19,21,22,25] to analyze the dispersion curves by considering the Floquet–Bloch theorem [31,32] and to calculate the transmission spectra. The Love rod theory is adopted to model the longitudinal wave motions in the piezoelectric, elastic and electrode constituent rods of the unit cell. The MRRM is utilized to derive the member transfer matrices of the constituent rods. Therefore, the proposed MTMM is effective over a large frequency range as long as the Love rod theory is valid, as illustrated by the numerical examples. The influences of the electrode’s thickness, the rods’ cross-sectional dimension, the elastic rod inserts and the applied electric capacity and the applied feedback control on the band structures are studied numerically. All the frequency-related dispersion curves are calculated to show comprehensively the dispersion properties of characteristic longitudinal waves in rod-type piezoelectric phononic crystals. This paper is organized as follows. Section 2 derives the formulation of the proposed MTMM. Numerical examples are given in Section 3 to validate the MTMM, to demonstrate the influences of the electrode’s thickness, the rods’ cross-sectional dimension and the elastic rod inserts for the passive control, to illustrate the influences of the applied electric capacity and feedback control for the active control, and to indicate all the frequency-related dispersion curves in both low and high frequency ranges. Section 4 draws conclusions.




2. Analysis of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals with the MTMM


2.1. Basic Model


Consider a periodic piezoelectric composite rod with its unit cell consisting of alternate homogeneous piezoelectric and elastic rods as well as electrodes between them. The schematic of the unit cell is shown in Figure 1, where [image: there is no content] members and [image: there is no content] joints ([image: there is no content]) are denoted from left to right by [image: there is no content] and [image: there is no content], respectively. All of the components are assumed to be rigidly connected. The piezoelectric rods are polarized along the length direction. The electrodes are covered at the ends of the piezoelectric rods, to which any of the four electrical boundaries (electric-open, applied electric capacity, electric-short and applied feedback control conditions) is imposed. Therefore, the longitudinal effect of the piezoelectric rods is utilized. Figure 1 also shows the pertinent physical and geometrical parameters of some typical constituent rods, where the Voigt notation (compressed matrix notation) is used for reducing the orders [33]. [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] ([image: there is no content], [image: there is no content]) and [image: there is no content] are the elastic constants, the piezoelectric constants, the dielectric constants, the Poisson’s ratios and the material density of the piezoelectric rod [image: there is no content], respectively; [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are the cross-sectional area, second moment of inertia about [image: there is no content] and [image: there is no content] axis and the rod length, respectively; [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are the corresponding parameters of the elastic rod [image: there is no content]; and [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are those of the electrode [image: there is no content].


Figure 1. The unit cell of general periodic piezoelectric rods.



[image: Crystals 06 00045 g001 1024]







2.2. Coordinate Systems and Physical Variables


For the convenience of system and joint description, a global coordinates [image: there is no content] is set up as shown in Figure 2a. To facilitate the member description, a pair of dual local coordinates [image: there is no content] and [image: there is no content] is set up for any typical member [image: there is no content] (also called [image: there is no content] or [image: there is no content] in the pertaining coordinates), as also indicated in Figure 2a.


Figure 2. The description of the unit cell: (a) the global and local coordinates; (b) the convention of generalized displacements and forces; and (c) the convention of wave amplitudes.



[image: Crystals 06 00045 g002 1024]






To make the later derivation clear, hereafter we use [image: there is no content], [image: there is no content] and [image: there is no content] to express the displacements of a particle along [image: there is no content], [image: there is no content] and [image: there is no content] axes, respectively. [image: there is no content], [image: there is no content] and [image: there is no content] are used to represent the specified forces along [image: there is no content], [image: there is no content] and [image: there is no content] axes of a surface particle, respectively. The resulting axial force at a cross-section of the constituent rod is denoted by [image: there is no content]. [image: there is no content] and [image: there is no content] are the displacement and resulting external force at the unit cell ends along [image: there is no content] axis, respectively. For the electrical variables: [image: there is no content] is the electric potential at a cross-section of the constituent rod; [image: there is no content] is the electric charge density per surface area; and the total electric charge on a cross-section is denoted by [image: there is no content].



In general, the axial displacements and forces are the fundamental physical variables to analyze the system, which are shown in Figure 2b. [image: there is no content] ([image: there is no content]) and [image: there is no content] ([image: there is no content]) denote the axial displacement and force of joint [image: there is no content] ([image: there is no content]), respectively, which are described in coordinates [image: there is no content]. The axial displacement and force of a typical member [image: there is no content] at cross-section [image: there is no content] in [image: there is no content] are denoted by [image: there is no content] and [image: there is no content], respectively. Those physical variables can also be described in [image: there is no content] as [image: there is no content] and [image: there is no content], respectively. For a piezoelectric constituent rod, say rod [image: there is no content], the electric field intensity and displacement as vector quantities as well as the electric potential and charge as scalar quantities are needed to be considered in the analysis. They are represented as [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] in [image: there is no content] as well as [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] in [image: there is no content], respectively, as also given in Figure 2b. It should be noted that all the physical variables are deemed as positive when they are along the positive direction of the pertaining coordinate. During the following analysis, the generalized displacements and forces are expressed by the wave amplitudes, which are depicted in Figure 2c.




2.3. Governing Equations and Wave Solutions of a Constituent Rod


Based on the basic idea of Love rod theory [27,28], [29] (pp. 139–142), [30], which considers the Poisson’s effect, the time-domain equations governing the longitudinal wave motions in any of the constituent rods described in its dual local coordinates can be derived by Hamilton principle [29] (pp. 126–131), [34]. The assumptions of the Love rod with considering the Poisson’s effect include: (1) The axial displacement (electric potential) is uniformly distributed on any cross-section of the rod. Hence, the axial displacement (electric potential) at the centroid is used to represent that of the whole cross-section. (2) The two lateral displacements are linearly distributed on the cross-section. They are zero at the centroid and alter linearly with the corresponding coordinates. The proportional coefficients are the multiplication of the corresponding Poisson’s ratios with the axial strain of that cross-section. Apply these assumptions and the three-dimensional elasticity [33,34], [35] (pp. 57–60), the derivation for a piezoelectric rod is detailed in Appendix A, and that for an elastic rod which representing any of the elastic rods and the electrodes is briefed in Appendix B.



For any piezoelectric rod in the unit cell, say member [image: there is no content], applying Fourier transform [36] (p. 725) to the time-domain governing equations and constitutive relations, as given in Equations (A12) and (A11), leads to the frequency-domain counterparts as


[image: there is no content]



(1)






[image: there is no content]



(2)




where [image: there is no content] is the circular frequency and a caret over a physical variable signifies the corresponding quantity in the frequency domain here and after. [image: there is no content] ([image: there is no content]) and [image: there is no content] ([image: there is no content]) are the axial displacement (force) and the electric potential (charge) at any cross-section [image: there is no content], respectively. [image: there is no content], [image: there is no content] and [image: there is no content], as given in Appendix A, are the equivalent elastic, piezoelectric and dielectric constants, respectively; [image: there is no content] is the material density; [image: there is no content] ([image: there is no content]) and [image: there is no content] ([image: there is no content]) are the Poisson’s ratio and the cross-sectional moment of inertia with respect to [image: there is no content] ([image: there is no content]) axis, respectively; and [image: there is no content] is the cross-sectional area. When [image: there is no content] is deemed as the scalar electric charge at the initial end of the piezoelectric rod with [image: there is no content] the uniform electric displacement, the second formula of Equation (2) leads to


[image: there is no content]



(3)




where [image: there is no content] is the electric potential difference (electric voltage) between the two ends of the piezoelectric rod. Consider the associated mathematical formulas to the four electric boundary conditions, as shown in Table 1, the expressions of [image: there is no content], [image: there is no content] and [image: there is no content] as formulas of mechanical variables can be obtained from Equation (3), which are also provided in Table 1. The specified electrical coefficients are external capacitance [image: there is no content] and control gain [image: there is no content] for the applied electric capacity and the applied feedback control conditions, respectively, while the electric-open and the electric-short conditions do not have specified electrical coefficient.



Table 1. The expressions of involved electrical variables as formulas of mechanical variables.



	
Electrical Boundary Conditions

	
Associated Mathematical Formulas

	
Expressions of [image: there is no content]

	
Expressions of [image: there is no content]






	
Electric-open

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Applied electric capacity

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Electric-short

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Applied feedback control

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Electrical Boundary Conditions

	
Expressions of [image: there is no content]

	
Expressions of [image: there is no content]




	
Electric-open

	
[image: there is no content]

	
[image: there is no content]




	
Applied electric capacity

	
[image: there is no content]

	
[image: there is no content]




	
Electric-short

	
[image: there is no content]

	
[image: there is no content]




	
Applied feedback control

	
[image: there is no content]

	
[image: there is no content]










According to the theory of ordinary differential equations [36] (p. 503), the solution to the spectral axial displacement can be obtained directly from Equation (1). Substituting the above expressions of [image: there is no content] into the first formula of Equation (2) and then introducing the solution to the spectral axial displacement, one obtains the wave solution to the spectral axial force. These solutions are expressed as


[image: there is no content]



(4)




where [image: there is no content] is the imaginary unit. The first and the second terms in the two formulas of Equation (4), when combining with the kernel function [image: there is no content] of the Fourier transform [36] (p. 725), represent waves traveling along the negative and positive [image: there is no content]-axis that are called as the arriving and departing waves, respectively. [image: there is no content] and [image: there is no content] are the corresponding undetermined wave amplitudes. [image: there is no content] and [image: there is no content] are the wave number and wave speed, respectively. [image: there is no content] and [image: there is no content] are the axial-force influence coefficients of the piezoelectric rod that are irrelative and relative to the electrical boundary condition, respectively. The expressions of [image: there is no content] for the four electrical boundary conditions are also shown in Table 1. It should be noted in Table 1 that as ([image: there is no content] or [image: there is no content]), all the solutions to [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] for the applied electric capacity (applied electric capacity or applied feedback control) condition are degenerated to the corresponding ones for the electric open (short) circuit condition.



For any elastic rod (or electrode) in the unit cell, say member [image: there is no content] (or [image: there is no content]), the frequency-domain governing equation and constitutive relation are obtained by Fourier transform [36] (p. 725) to their time-domain counterparts, as given in Equations (A17) and (A18)


[image: there is no content]



(5)






[image: there is no content]



(6)




respectively. From these equations, the wave solutions to the axial displacement and force of an elastic rod (or electrode) are directly obtained as


[image: there is no content]



(7)




where [image: there is no content] and [image: there is no content] should be noted, and all the other quantities are identical to those for the piezoelectric rod.




2.4. Transfer Matrix of a Member


Based on the concept of MRRM [5], the transfer matrix of a structural member, which relates the axial displacement and force of one end with those of the other, can be derived.



For any piezoelectric rod in the unit cell, say member [image: there is no content], the wave solutions to the axial displacements and forces in the dual coordinates [image: there is no content] and [image: there is no content] can be written from Equation (4). When the constants satisfying [image: there is no content] ([image: there is no content]) is noticed, these wave solutions are expressed as


{u^JK(xJK)N^JK(xJK)}=[11ζ1(j)−ζ1(j)][eik1(j)xJK00e−ik1(j)xJK]{a1JKd1JK}+[00−B(j)B(j)]{u^JK(0)u^JK(l(j))}{u^KJ(xKJ)N^KJ(xKJ)}=[11ζ1(j)−ζ1(j)][eik1(j)xKJ00e−ik1(j)xKJ]{a1KJd1KJ}+[00−B(j)B(j)]{u^KJ(0)u^KJ(l(j))}



(8)







Due to the uniqueness of the physical variables at any cross section ([image: there is no content]) of a typical member [image: there is no content], compatibility conditions exist between the displacement (force) expressed in the dual local coordinates


[image: there is no content]



(9)







Substituting Equation (8) into Equation (9) gives the phase relations of the typical member [image: there is no content]


[image: there is no content]



(10)







By noticing [image: there is no content] and [image: there is no content], letting [image: there is no content] and [image: there is no content] in Equation (8), and then introducing Equation (10) into the resulting equation, one obtains the relations between the displacements/forces at the member ends and the departing wave amplitudes


{u^JK(0)N^JK(0)}=[1−e−ik1(j)l(j)[B(j)e−ik1(j)l(j)−(ζ1(j)+B(j))][−(ζ1(j)−B(j))e−ik1(j)l(j)−B(j)]]{d1JKd1KJ}{u^KJ(0)N^KJ(0)}=[−e−ik1(j)l(j)1[−(ζ1(j)−B(j))e−ik1(j)l(j)−B(j)][B(j)e−ik1(j)l(j)−(ζ1(j)+B(j))]]{d1JKd1KJ}



(11)







Eliminating the departing wave amplitudes from Equation (11), one obtains the transfer relation of the typical piezoelectric member [image: there is no content]


[image: there is no content]



(12)




where [image: there is no content] is the transfer matrix of piezoelectric member [image: there is no content]. The quantities forming [image: there is no content] are


Δ=−B(j)(e−2ik1(j)l(j)−1)+2ζ1(j)e−ik1(j)l(j), t11=−t22=−(ζ1(j)−B(j))e−2ik1(j)l(j)−(ζ1(j)+B(j))t12=e−2ik1(j)l(j)−1, t21=−(ζ1(j))2(e−2ik1(j)l(j)−1)+2ζ1(j)B(j)(e−ik1(j)l(j)−1)2



(13)







The transfer relation of any elastic rod (electrode) in the unit cell, say member [image: there is no content] ([image: there is no content]), can be derived by starting from Equation (7) and then using a similar way as that for the piezoelectric member [image: there is no content]. It can be expressed as the same form as Equation (12), but the quantities building the member transfer matrix [image: there is no content] ([image: there is no content]) should be


[image: there is no content]



(14)







Please note that if the single local coordinates (other than the dual local coordinates) is used to describe a structural member, the conventional member transfer matrix can be derived. Its components are


Δ=−B(j)(e−ik1(j)l(j)−eik1(j)l(j))+2ζ1(j), t11=t22=(ζ1(j)−B(j))e−ik1(j)l(j)+(ζ1(j)+B(j))eik1(j)l(j)t12=−(e−ik1(j)l(j)−eik1(j)l(j)), t21=−(ζ1(j))2(e−ik1(j)l(j)−eik1(j)l(j))+2ζ1(j)B(j)(e−ik1(j)l(j)+eik1(j)l(j)−2)



(15)




for the typical piezoelectric rod [image: there is no content] and


Δ=2ζ1(Π), t11=t22=ζ1(Π)(e−ik1(Π)l(Π)+eik1(Π)l(Π)), t12=−(e−ik1(Π)l(Π)−eik1(Π)l(Π))t21=−(ζ1(Π))2(e−ik1(Π)l(Π)−eik1(Π)l(Π))



(16)




for the typical elastic rod [image: there is no content] or electrode [image: there is no content] ([image: there is no content]). Although the derivation of member transfer relations on the basis of members’ dual local coordinates in our MTMM seems tangled when compared with the process based on single local coordinates, it is noticed from the comparison of Equations (13) and (14) with Equations (15) and (16), respectively, that the so-derived member transfer matrices abstain from exponentially function in form of [image: there is no content]. Namely, in Equations (13) and (14), only exponential function in form of [image: there is no content] is involved. However, in Equations (15) and (16), the exponential functions in form of [image: there is no content] and [image: there is no content] appear simultaneously.




2.5. Transfer Matrix of a Joint


At the external joint [image: there is no content], where the current unit cell is connected to the left adjacent unit cell, the compatibility condition between the member displacement and the joint displacement and the equilibrium condition between the member force and the joint force are combined to give the joint transfer relations


[image: there is no content]



(17)




where [image: there is no content] is the transfer matrix of external joint [image: there is no content] with [image: there is no content] denoting the identity matrix of second order, and [image: there is no content] here and after denotes diagonal (or block diagonal) matrix. [image: there is no content] is a variant of [image: there is no content] as [image: there is no content] other than [image: there is no content] is used in the transfer relation.



At any internal joint that connects the neighboring constituent rods, the typical joint [image: there is no content] ([image: there is no content]) for instance, the continuous conditions of the axial displacements and forces lead to the transfer relations thereof


[image: there is no content]



(18)




where [image: there is no content] is the transfer matrix of internal joint [image: there is no content].



The transfer relations of the external joint [image: there is no content] connecting the current unit cell with the right adjacent unit cell can be derived similarly as that of joint [image: there is no content]


[image: there is no content]



(19)




where [image: there is no content] is the transfer matrix of external joint [image: there is no content] and is obviously different from [image: there is no content].




2.6. Global Transfer Matrix of the Unit Cell


Considering the joint and member transfer relations alternately from joint [image: there is no content], member [image: there is no content][image: there is no content], till to joint [image: there is no content] gives the global transfer relations of the unit cell


[image: there is no content]



(20)




where [image: there is no content] is the global transfer matrix of the unit cell, and [image: there is no content] is implied.




2.7. Dispersion Relation of Infinite Periodic Structures


Due to the Floquet–Bloch principle for infinite periodic structures [31,32], the axial displacement and force of external joint [image: there is no content] are related to those of external joint [image: there is no content] by


[image: there is no content]



(21)




where [image: there is no content] is the complex wavenumber of the characteristic longitudinal waves in the periodic piezoelectric composite rod, and [image: there is no content] is the length of the unit cell.



The combination of Equations (20) and (21) gives


[image: there is no content]



(22)




which indicates that [image: there is no content] is the eigenvalue of the global transfer matrix [image: there is no content] with referring to the definition of the eigenvalues of a matrix [36] (pp. 278–279). The eigenvalue [image: there is no content] can be solved from the dispersion relation


[image: there is no content]



(23)




by first specifying the frequency [image: there is no content]. [image: there is no content] and [image: there is no content] denote solving the eigenvalues and the determinate of a matrix, respectively. The real part [image: there is no content] and the imaginary part [image: there is no content] of the dimensionless complex wavenumber [image: there is no content], which are called as the phase constant and the attenuation constant [5,32,37], are further computed from the phase and the amplitude of [image: there is no content], respectively. The wavelength [image: there is no content] and the phase velocity [image: there is no content] are then obtained through the corresponding algebra calculations. Finally, the comprehensive frequency spectra including the [image: there is no content] spectra, the [image: there is no content] spectra, the [image: there is no content] spectra and the [image: there is no content] spectra can thus be drawn, where [image: there is no content] here and after denotes the amplitude of a quantity. These frequency spectra represent the properties of characteristic longitudinal waves in the periodic piezoelectric composite rod from different viewpoints. From them, the pass-bands and the stop-bands are easily differentiated.




2.8. Global Transfer Relation of Finite Periodic Structures


For a finite periodic structure consisting of [image: there is no content] unit cells, the spectral axial displacement [image: there is no content] and force [image: there is no content] of the very right end are related to the spectral axial displacement [image: there is no content] and force [image: there is no content] of the very left end by


{u^XMp^XM}=TNT(m)⋯T2T(1)︷M thTNT(m)⋯T2T(1)︷M−1 th⋯⋯TNT(m)⋯T2T(1)︷2 ndTNT(m)⋯T2T(1)︷1 st︷M timesT˜1{u^X0p^X0}=TG{u^X0p^X0}=[TG11TG12TG21TG22]{u^X0p^X0}



(24)




where [image: there is no content] is the global transfer matrix of the finite periodic structure formed by multiple matrix multiplications as shown.



The transmission [image: there is no content] of the system can be obtained from


[image: there is no content]



(25)




where [image: there is no content] ([image: there is no content]), depending on the observed and referred quantities utilized. Thus, the transmission spectra can be obtained by first specifying the frequency [image: there is no content] in required range and then calculating the transmission coefficient [image: there is no content] from Equation (25).





3. Numerical Examples


3.1. Validation of the Proposed MTMM


First, consider a periodic piezoelectric composite rod [20] consisting of alternate [image: there is no content] long circular PZT-5H (PZ29) rod and [image: there is no content] long circular brass electrode all with [image: there is no content] diameters. The piezoelectric PZT-5H constituent rod is poled along the [image: there is no content] axis in positive direction. The material and geometrical parameters of the two constituent rods in the unit cell [35] (pp. 358–382) are listed in Table 2 except those specified otherwise. Four kinds of electrical boundaries, i.e., the electric-open, applied electric capacity, electric-short and applied feedback control conditions, are considered to impose on the electrodes. In order to compare to the results by Degraeve et al. [20], we neglect the mechanical vibration and the thickness of the brass electrodes but retain its electrical function for calculating the phase constant spectra ([image: there is no content] curves) of this PZT-5H piezoelectric rod with periodic electrical boundaries in the low and high frequency ranges. The results are given in Figure 3. For the convenience of description, the engineering frequency [image: there is no content] and the dimensionless wavenumber [image: there is no content] are used hereafter. The results of the first three electric boundaries are also compared in Figure 3 with the corresponding ones by Degraeve et al. using the analytical method (AM) [20]. It should be noted that the applied electric capacity is specified as the clamped capacitance [image: there is no content], which is the same as that used in [20].


Figure 3. The phase constant spectra of the homogeneous PZT-5H piezoelectric rod with periodic electrical boundaries: (a) electric-open condition; (b) applied electric capacity condition with [image: there is no content]; (c) electric-short condition; (d) applied feedback control condition with [image: there is no content]; and (e) all of the four abovementioned conditions in high frequency range.



[image: Crystals 06 00045 g003a 1024][image: Crystals 06 00045 g003b 1024]






Table 2. Material and geometrical parameters.



	
Materials

	
Stiffness Constants ([image: there is no content])




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
PZT-5H

	
117.0

	
126.0

	
126.0

	
84.1

	
84.1

	
79.5




	
Brass

	
162.46

	
162.46

	
162.46

	
82.58

	
82.58

	
82.58




	
Epoxy

	
6.98

	
6.98

	
6.98

	
3.76

	
3.76

	
3.76




	
Materials

	
Poisson’s Ratios

	
Piezoelectric Constants ([image: there is no content])

	
Dielectric Constants ([image: there is no content])




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
PZT-5H

	
0.41

	
0.41

	
23.3

	
−6.5

	
−6.5

	
13.02




	
Brass

	
0.337

	
0.337

	
—

	
—

	
—

	
—




	
Epoxy

	
0.35

	
0.35

	
—

	
—

	
—

	
—




	
Materials

	
Mass Density ([image: there is no content])

	
Length ([image: there is no content])

	
Cross-Sectional Area ([image: there is no content])

	
Cross-Sectional Moments of Inertia ([image: there is no content])




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
PZT-5H

	
7500

	
10

	
1/4

	
1/64

	
1/64




	
Brass

	
8320

	
0.025

	
1/4

	
1/64

	
1/64




	
Epoxy

	
1180

	
10

	
1/4

	
1/64

	
1/64










Figure 3a–c indicates that the phase constant spectra of the first three electrical boundaries in the low frequency range [image: there is no content] obtained by our proposed MTMM generally agree well with their counterparts by Degraeve et al. using AM [20]. Nevertheless, the discrepancy becomes observable in the relatively high frequency range [image: there is no content]. This is because that in the AM by Degraeve et al. [20], the classical rod theory applicable to pretty low frequency range is adopted. Our proposed MTMM, which adopts the Love rod theory, is effective till to a relative high frequency [image: there is no content] with [image: there is no content] the minimum of critical frequencies of the constituent rods (For piezoelectric PZT-5H rod, [image: there is no content]; For brass electrode, [image: there is no content]) [28]. Figure 3d shows that our proposed MTMM works also well for analyzing the phase constant spectra of the applied feedback control condition in the low frequency range. Figure 3a–d illustrates that, in any electric boundary case, the width of stop-bands decreases with its order. The comparisons of Figure 3a–d indicate that the widths of stop-bands become wider and the central frequencies of stop-bands become lower in sequence of electric-open (without band gaps), applied electric capacity, electric-short and applied feedback control boundaries due to the separate increasing of coefficient [image: there is no content]. However, this difference between the band structures of the four electrical boundaries is inconspicuous in the high frequency range, as shown in Figure 3e, since the band gaps of the latter three electrical boundaries all become trivial in that frequency range. This is because the axial-force influence coefficient [image: there is no content] of the piezoelectric rod, which is relative to the electric boundary conditions, do not change with frequency. However, the axial-force influence coefficient [image: there is no content], which is irrelative to the electric boundary conditions, obviously increases near linearly with the frequency [image: there is no content]. In all the four periodically electrical boundary cases, since the [image: there is no content]-[image: there is no content] ratio decreases very quickly with the increasing of frequency, the widths of band gaps determined by this ratio thus approach to zero quickly even the folding of bands is identifiable. The above results and the Figure 3e demonstrate that our proposed MTMM works very well in frequency range below [image: there is no content] for all four kinds of electrical boundaries.



Second, consider the same periodic piezoelectric composite rod as above except that the diameters of all constituent rods are [image: there is no content] [20] and the mechanical vibration of the brass electrodes is also reckoned in. The current minimum critical frequency of the constituent rods is [image: there is no content]. Thus it has [image: there is no content]. Using our proposed MTMM, we calculate the phase constants spectra of this periodic PZT-5H piezoelectric rod covered by brass electrodes below [image: there is no content] for all the four electrical boundary conditions. Figure 4a–d provides the results associated with the electric-open, applied electric capacity, electric-short and applied feedback control conditions, respectively, in which the lines of [image: there is no content] and [image: there is no content] are also depicted. In particular, the results of the electric-open and electric-short boundaries are compared with the corresponding ones by Degraeve et al. using the FEM and AM [20] in Figure 4a,c, respectively. In these two electrical boundary cases, the transmission spectra of a finite periodic piezoelectric composite rod consisting of 14 unit cells are also calculated by our MTMM, which are depicted and compared in Figure 5 with the corresponding results by Degraeve et al. [20]. In order to compare to the numerical transmission from FEM [20], the ordinate in Figure 5a is specified as [image: there is no content], where the parameters of PZT-5H are utilized. In Figure 5b, the ordinate is the transmission [image: there is no content] computed from [image: there is no content] by using Equation (25), for the sake of comparing with the experiment measurements [20].


Figure 4. The phase constant spectra of the periodic PZT-5H piezoelectric rod covered by brass electrodes with periodic electrical boundaries: (a) electric-open condition; (b) applied electric capacity condition with [image: there is no content]; (c) electric-short condition; and (d) applied feedback control condition with [image: there is no content].



[image: Crystals 06 00045 g004a 1024][image: Crystals 06 00045 g004b 1024]





Figure 5. The transmission (in dB units) in a finite periodic PZT-5H piezoelectric rod covered by brass electrodes consisting of 14 unit cells with electric-open and electric-short boundaries from our MTMM and their comparison with the corresponding ones by Degraeve et al. [20]: (a) comparison with the numerical transmission; and (b) comparison with the experimental transmission.
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In the electric-open and electric-short boundary cases, Figure 4a,c indicates that the phase constant spectra below [image: there is no content] from our proposed MTMM in general agree with both the results of FEM and those of AM by Degraeve et al. [20]. Figure 5a also shows that below [image: there is no content] the transmission spectra from our MTMM in general agree with the numerical transmission from FEM by Degraeve et al. [20]. The observable differences in these figures may be caused by that the FEM considers all modes and their coupling, while our MTMM considers only the longitudinal mode but with taking the Poisson’s effect into account. These differences are also due to that the vibration of electrodes is not taken into account in the FEM (and AM) models by Degraeve et al. [20]. Figure 5b manifests clearly that our predicated transmission spectra in the stop bands agree very well with the measured transmission. However, in the pass bands, our MTMM results are about 20 dB bigger than the experimental results. The damping in the experimental specimen may be the primary cause. Figure 4c and Figure 5 also indicate that the first stop bands of the model with electric-short boundary condition predicated by the phase constant spectra and by the transmission spectra are coincident. In the range of [image: there is no content], the phase constant spectra from our proposed MTMM give better prediction to those of FEM than the results of AM. The reason is that our proposed MTMM considers the Poisson’s effect while the AM neglects it. The deviation between our MTMM results and those from FEM may be due to two reasons. One is that the FEM considers all modes and their coupling, while our MTMM considers only the longitudinal mode with considering the Poisson’s effect. The other is that the electrode vibration is ignored in the FEM model. In all the four electrical boundary cases, our MTMM works well till to the frequency [image: there is no content] with [image: there is no content] the minimum critical frequency of the constituent rods. In the higher frequency range, the proposed MTMM loss efficacy since the Love rod theory becomes invalid. In sequence of electric-open, applied electric capacity, electric-short and applied feedback control boundaries, the increasing of stop-band widths and the reduction of the stop-band central frequencies still hold due to the separate increasing of coefficient [image: there is no content].




3.2. Passive Control of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals


Consider the same rod-type piezoelectric phononic crystal with [image: there is no content] diameters as in Section 3.1, but now reckon in the mechanical vibration of the brass electrodes. The electrode’s thickness, the rod’s cross-sectional dimension and the elastic rod insert are individually varied to show their influences on the band structures, while the other parameters remain the same as in Table 2.



3.2.1. Influence of the Electrode’s Thickness


Specifying the thickness of the electrode as [image: there is no content], [image: there is no content] and [image: there is no content], we calculate the propagation constants spectra including the phase constant spectra and the attenuation constant spectra ([image: there is no content] curves) of the periodic PZT-5H piezoelectric rod covered by brass electrodes with the four periodic electrical boundaries, respectively, and compare them with those results as the electrode’s thickness is neglected, as given in Figure 6.


Figure 6. Influence of the electrode’s thickness on the propagation constants spectra of the periodic PZT-5H piezoelectric rod covered by brass electrodes with periodic electrical boundaries: (a) electric-open condition; (b) applied electric capacity condition with [image: there is no content]; (c) electric-short condition; and (d) applied feedback control condition with [image: there is no content].
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Figure 6 illustrates that with an increase in the electrode’s thickness, the central frequencies of all the stop-bands and the width of the first stop-band slightly decrease, although this feature is not apparently clear as the electrode’s thickness varies from [image: there is no content] to [image: there is no content]. The maximum value of attenuation constants in the first stop-band increases with the electrode’s thickness.




3.2.2. Influence of the Rod’s Cross-Sectional Dimension


As the diameter of all the constituent rods is [image: there is no content], [image: there is no content] and [image: there is no content], respectively, the propagation constants spectra of the periodic PZT-5H piezoelectric rod covered by brass electrodes are calculated by our proposed MTMM. Figure 7a–d provides the results associated with the electric-open, applied electric capacity, electric-short and applied feedback control conditions, respectively.


Figure 7. Influence of the rod’s cross-sectional dimension on the propagation constants spectra of the periodic PZT-5H piezoelectric rod covered by brass electrodes with periodic electrical boundaries: (a) electric-open condition; (b) applied electric capacity condition with [image: there is no content]; (c) electric-short condition; and (d) applied feedback control condition with [image: there is no content].
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Figure 7a–d indicates that, in any electrical boundary case, the central frequencies of all the stop-bands decrease and the maximum attenuation constant in the first stop-band slightly increase with an increase in the rods’ diameter. These phenomena reflect the influence of the Poisson’s effect on the band structures. The bigger the rods’ diameter is, the larger the Poisson’s effect.




3.2.3. Influence of the Elastic Rod Insert


As an elastic rod made of epoxy, whose material and geometrical parameters are given in Table 2, is inserted into the unit cell of the periodic PZT-5H piezoelectric rod covered by brass electrodes, the propagation constants spectra are computed and compared with the results of the periodic composite rod without the epoxy component in unit cell, as depicted in Figure 8a–d in the four electrical boundary cases, respectively.


Figure 8. Influence of the elastic rod insert on the propagation constants spectra of the periodic PZT-5H piezoelectric rod covered by brass electrodes with periodic electrical boundaries: (a) electric-open condition; (b) applied electric capacity condition with [image: there is no content]; (c) electric-short condition; and (d) applied feedback control condition with [image: there is no content].



[image: Crystals 06 00045 g008a 1024][image: Crystals 06 00045 g008b 1024]






Figure 8a–d shows that inserting an elastic rod in unit cell adds many new band structures in all the four electrical boundary cases, which is due to the interaction between the elastic and piezoelectric constituent rods. When an elastic rod is inserted into the unit cell, the differences between band structures associated with the four electrical conditions are weakened. Since the inserted elastic rod is softer than the original piezoelectric rod, the values of the attenuation constants enormously enlarge. In the latter three electrical conditions, after the epoxy rod is inserted in the unit cell, the original first stop-band turns into the third stop-band, with the central frequency increased slightly and the width decreased.





3.3. Active Control of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals


Consider the same rod-type piezoelectric phononic crystal as studied in Section 3.2.3. Its unit cell, as referred to in Figure 1, is composed of an epoxy elastic rod, a brass electrode, a PZT-5H piezoelectric rod and a brass electrode. Their material and geometrical parameters are listed in Table 2. On the electrodes, external electric capacitor and feedback controller are connected to investigate the influences of applied electric capacity and feedback control boundaries on the band structures, respectively.



First, specifying the applied electric capacitance as [image: there is no content], [image: there is no content] and [image: there is no content], individually, we compute the propagation constants spectra of the periodic Epoxy-Brass-PZT-5H-Brass composite rod to study the influence of applied electric capacity on the band structures. The results are given in Figure 9a, where they are compared with those of the electric-open ([image: there is no content]) and the electric-short ([image: there is no content]) boundary conditions. Second, when the applied feedback control is specified by the control gain as [image: there is no content], [image: there is no content] and [image: there is no content], respectively, the propagation constants spectra of the periodic Epoxy-Brass-PZT-5H-Brass composite rod are calculated to discuss the influence of applied feedback control on the band structures. The results are depicted and compared with those of the electric-open and the electric-short ([image: there is no content]) boundary conditions in Figure 9b.


Figure 9. Influence of the electrical boundaries on the propagation constants spectra of the periodic Epoxy-Brass-PZT-5H-Brass composite rod: (a) applied electric capacity condition; and (b) applied feedback control condition.
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Figure 9a indicates that when the applied electric capacity is increased from 0 to infinity, the spectra of the propagation constants, as expected, change gradually from those of the electric-open condition to those of the electric-short condition. New stop-bands may first appear, and then most of the propagation constants spectra alter towards the frequency reducing direction. Thus, the central frequencies of these stop-bands and pass-bands decrease obviously with an increase in the electric capacitance. However, some band structures in certain frequency ranges, 0 – 40 kHz and 270 – 490 kHz in Figure 9a, do not alter with the applied electric capacitance, which are probably formed due mainly to the mechanical effect of the periodic composite rod. Note from Figure 9b that with the increasing of control gain from [image: there is no content], the propagation constants spectra change from those of the electric-short condition towards the frequency reducing direction. The central frequencies of most stop-bands and pass-bands decrease obviously with an increase in the control gain. However, the band structures in the same frequency ranges (0 – 40 kHz and 270 – 490 kHz) as in Figure 9a, do not change at all. This again testifies that these band structures have nothing to do with the electrical boundaries.



If the influence of the electrical boundaries on the band structures is overall considered when comparing Figure 9a with Figure 9b, it can be concluded that the band structures of the electric-short condition play a referential role. The band structures of the applied electric capacity [image: there is no content] (and electric-open [image: there is no content]) condition lie on their lower-frequency side, while those of the applied feedback control with control gain [image: there is no content] locate on their higher-frequency side. Consequently, in the following we focus on the electric-short condition to discuss the dispersion properties of the characteristic longitudinal waves in the rod-type piezoelectric phononic crystals.




3.4. Dispersion Properties of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals


In the case of electric-short boundary condition, comprehensive frequency-related dispersion curves, which include the eigenvalue’s amplitude spectra ([image: there is no content] curves), the wavenumber spectra ([image: there is no content] curves), the wavelength spectra ([image: there is no content] curves), the phase velocity spectra ([image: there is no content] curves), of the above discussed periodic Epoxy-Brass-PZT-5H-Brass composite rod are calculated in both low ([image: there is no content]) and high ([image: there is no content]) frequency ranges. Please notice that the minimum critical frequency is [image: there is no content]. Thus, our MTMM is valid till to [image: there is no content]. The low and high frequency results are provided in Figure 10 and Figure 11, respectively. For the convenience of presentation, the dimensionless wavelength [image: there is no content] and phase velocity [image: there is no content] are further introduced except for the engineering frequency [image: there is no content] and the dimensionless wavenumber [image: there is no content]. [image: there is no content] is the longitudinal wave speed in the epoxy rod without considering the Poisson’s effect, where [image: there is no content] and [image: there is no content] are the Young’s modulus and the material density of epoxy, respectively.


Figure 10. Various frequency-related dispersion curves of the periodic Epoxy-Brass-PZT-5H-Brass composite rod in low frequency range: (a) eigenvalue’s amplitude spectra; (b) wavenumber spectra; (c) wavelength spectra in logarithmic coordinate; (d) phase velocity spectra in logarithmic coordinate; and (e) phase velocity spectra in a small scale.
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Figure 11. Various frequency-related dispersion curves of the periodic Epoxy-Brass-PZT-5H-Brass composite rod in high frequency range: (a) eigenvalue’s amplitude spectra; (b) wavenumber spectra; (c) wavelength spectra in logarithmic coordinate; (d) phase velocity spectra in logarithmic coordinate; and (e) phase velocity spectra in a small scale.



[image: Crystals 06 00045 g011 1024]






Figure 10a–e and Figure 11a–e reflect that, in addition to the same dispersion properties of longitudinal waves in general periodic rods [5,37], the characteristic longitudinal waves in a rod-type piezoelectric phononic crystal also possess the following dispersion properties:

	(1)

	
The eigenvalue’s amplitude spectra, which cannot be obtained by MRRM [5], demonstrate clearly the width, the central frequencies and the bounding frequencies of the pass-bands ([image: there is no content]) and the stop-bands ([image: there is no content]). They also reflect the attenuation amplitudes [image: there is no content] of waves in the stop-bands, which are verified by the attenuation constant ([image: there is no content]) spectra. The eigenvalue’s amplitude spectra cannot indicate the properties of waves in the pass-bands, but the phase constant spectra do.




	(2)

	
In these frequency-related dispersion curves, the bounding frequencies of the odd and even order stop-bands correspond to [image: there is no content] and [image: there is no content] ([image: there is no content] is a natural number), respectively. Within the stop-bands, the real part ([image: there is no content]) of the complex wavenumber [image: there is no content], which cannot be computed by the MRRM [5] but obtained here by the MTMM, have the same phases as their boundaries. In the wavelength spectra, the representations corresponding to these two kinds of phases are horizontal lines [image: there is no content] and [image: there is no content]. In the phase velocity spectra, they correspond to inclined lines that pass through the origin and have slopes [image: there is no content][image: there is no content], respectively. The lines determined by the above formulas and the lines of bounding frequencies form the grids to draw the spectra in the corresponding frequency-related dispersion curves.











4. Conclusions


A modified transfer matrix method (MTMM), which is based on the Love rod theory and the method of reverberation-ray matrix (MRRM), is proposed in this paper for the analysis of characteristic longitudinal waves by combining Floquet–Bloch principle and for the calculation of transmission spectra in general rod-type piezoelectric phononic crystals with electric-open, applied electric capacity, electric-short and applied feedback control conditions. Numerical examples are given to validate the proposed MTMM, to study the passive control of the band structures by the electrode’s thickness, the rod’s cross-sectional dimension and the elastic rod insert, and to investigate the active tuning of the band structures by the electrical boundary conditions. The dispersion properties are summarized from the comprehensive frequency spectra. From these analyses, we can draw the conclusions as follows:

	(1)

	
The proposed analytical MTMM provides an alternative analysis method for the complex band structures and transmission spectra till to [image: there is no content] ([image: there is no content] is the minimum critical frequency) within which the Love rod theory is valid. Its effectiveness is validated by some numerical examples.




	(2)

	
In passive mode, the electrode’s thickness and the rod’s cross-sectional dimension can be used to slightly adjust the band structures of the rod-type piezoelectric phononic crystals, while the elastic rod insert is able to enormously alter the band structures.




	(3)

	
In active mode, the switchable electrical boundaries among electric-short, applied electric capacity, electric-open and applied feedback control conditions is effective for modulating some of the band structures that are related to the electromechanical coupling of the rod-type piezoelectric phononic crystals. The tunable capacity and control gain in the applied electric capacity and applied feedback control cases, respectively, can also be used for tuning the propagation of longitudinal waves. The band structures of the electric-short condition play a referential role for designing the active control scheme.
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Appendix A


Based on the basic idea of Love rod theory [27,28], [29] (pp. 139–142), [30], which considers the Poisson’s effect, the displacement field [image: there is no content] and the electric potential [image: there is no content] in a piezoelectric rod are assumed as


[image: there is no content]



(A1)




where [image: there is no content], [image: there is no content] and [image: there is no content] are the displacements of particle at ([image: there is no content]) in the rod along [image: there is no content], [image: there is no content] and [image: there is no content] axes, respectively; [image: there is no content] and [image: there is no content] are the Poisson’s ratios with respect to [image: there is no content] and [image: there is no content] axes, respectively; and [image: there is no content] denotes the transposition of a matrix (or vector). The strain vector [image: there is no content] and the electric field vector [image: there is no content] can then be derived from the generalized strain-displacement relations


ε=LTu=[∂∂x000∂∂z∂∂y0∂∂y0∂∂z0∂∂x00∂∂z∂∂y∂∂x0]T{uvw}=[∂u∂x,−ν12∂u∂x,−ν13∂u∂x,0,−ν13∂2u∂x2z,−ν12∂2u∂x2y]TE=−∇φ=[−∂φ∂x,0,0]T



(A2)




where the nonzero shear strains [image: there is no content] and [image: there is no content] are obviously one order higher than the three normal strains [image: there is no content], [image: there is no content] and [image: there is no content]. Consequently, we assume that [image: there is no content] and [image: there is no content], and thus all the three shear strains are zero considering [image: there is no content] by itself. In order to derive the governing equations with the Hamilton principle, the normal stresses [image: there is no content], [image: there is no content], [image: there is no content] corresponding to the nonzero strains and the electric displacement along the [image: there is no content] axis [image: there is no content] associated with the nonzero electric field should be obtained from the constitutive equations of the linear piezoelectric materials


[image: there is no content]



(A3)




where [image: there is no content] and [image: there is no content] are the stress vector and electric displacement vector, respectively; [image: there is no content] is the [image: there is no content] symmetric and positive definite elastic constant matrix, [image: there is no content] is the [image: there is no content] piezoelectric constant matrix, and [image: there is no content] is the [image: there is no content] symmetric dielectric constant matrix ([image: there is no content], [image: there is no content]). Substitution of Equation (A2) into Equation (A3) gives


[image: there is no content]



(A4)







Consider Hamilton’s principle for linear piezoelectric continuum [34]


[image: there is no content]



(A5)




where [image: there is no content], [image: there is no content] and [image: there is no content] are the kinetic energy, the electric enthalpy and the external work in the system. The kinetic energy [image: there is no content] in the whole piezoelectric rod is obtained from Equation (A1) as


[image: there is no content]



(A6)




where [image: there is no content] signifies the space region of the rod; [image: there is no content] is the material density; [image: there is no content] and [image: there is no content] are the length and the cross-sectional area of the rod, respectively; [image: there is no content] and [image: there is no content] are the cross-sectional moment of inertia with respect to [image: there is no content] and [image: there is no content] axes, respectively; and the over dot signifies the derivative of quantities about time here and after. The electric enthalpy [image: there is no content] [33,34] in the whole piezoelectric rod is written from Equations (A2) and (A4) as


H=12∭Ω(σTε−DTE)dΩ=12∭Ω(σxεx+σyεy+σzεz−ExDx)dΩ=12∫0lcA(∂u∂x)2dx+∫0leA∂u∂x∂φ∂xdx−12∫0lαA(∂φ∂x)2dx



(A7)




where [image: there is no content], [image: there is no content] and [image: there is no content] are the equivalent axial stiffness, piezoelectric and dielectric constants of the piezoelectric rod, respectively. The equivalent axial stiffness constant [image: there is no content] in the current anisotropic piezoelectric rod, like the Young’s modulus [image: there is no content] in the isotropic elastic rod, comprehensively reflects the contributions of anisotropic stiffness coefficients to the axial stiffness. [image: there is no content] denotes the axial rigidity of the piezoelectric rod. It can be deduced that the bigger [image: there is no content] is, the faster the longitudinal wave in the rod. The equivalent axial piezoelectric constant [image: there is no content] and dielectric constant [image: there is no content] comprehensively represent the contributions of anisotropic piezoelectric and dielectric coefficients to the axial piezoelectricity and dielectricity, respectively. [image: there is no content] measures the axial stress generating from unit axial electric field or the axial electric displacement resulting from unit axial strain, i.e., the transformation ability between electrical energy due to axial electric field and mechanical energy due to axial vibration. [image: there is no content] denotes the ability to store electrical energy of the piezoelectric rod due to axial electric field. As will be seen at the end of this section, [image: there is no content] and [image: there is no content] have direct and inverse correlations to the longitudinal wave speed in the rod, respectively. The external work [34] imported to the piezoelectric rod consists of mechanical and electrical work in form of


[image: there is no content]



(A8)




where [image: there is no content] signifies the boundary surfaces with specified surface forces [image: there is no content] of the system; [image: there is no content] is the electric charge density per area; [image: there is no content] and [image: there is no content] are the specified axial force and electric charge on the ends of the piezoelectric rod, respectively. Substituting Equations (A6)–(A8) into Equation (A5) and then applying the integration by parts to some terms so that the integral terms have common variation [image: there is no content] or [image: there is no content], one obtains


[image: there is no content]



(A9)







Notice that in Hamilton’s principle, the generalized displacement functions at time [image: there is no content] and time [image: there is no content] are given [29] (pp. 126–131), [34], i.e., the variations of these functions vanish at times [image: there is no content] and [image: there is no content]. Hence, on the basis of δu|t=t1=0 and δu|t=t2=0, the first term in Equation (A9) should vanish. The second and third (fourth and fifth) terms in Equation (A9) represent the variations of energy functional inside the rod (on the rod ends) due to the variations [image: there is no content] and [image: there is no content], respectively. It is because that [image: there is no content] and [image: there is no content] are independent each other both inside the rod and on the rod ends, the second to fifth terms in Equation (A9) should vanish. Since the variations [image: there is no content] and [image: there is no content] are arbitrary as [image: there is no content], the vanishing of the second and third terms of Equation (A9) leads to the governing equations (Euler equations) of the piezoelectric Love rod


[image: there is no content]



(A10)







On the rod end, [image: there is no content] ([image: there is no content]), if [image: there is no content] and [image: there is no content] are arbitrary, the vanishing of the fourth and fifth terms of Equation (A9) gives rise to the constitutive relations (natural boundary conditions) of the piezoelectric Love rod


[image: there is no content]



(A11)







Substituting the latter formula into the former one in Equation (A10), one expresses the governing equations of the piezoelectric Love rod as


[image: there is no content]



(A12)




where only the axial displacement [image: there is no content] is involved.




Appendix B


The governing equations and the constitutive relations of an elastic rod of anisotropic material based on the Love rod theory [27,28], [29] (pp. 139–142), [30] can be derived in a similar way as that discussed in Appendix A. However, all the electric quantities should not appear. In particular, the constitutive equations of the linear elastic materials


[image: there is no content]



(A13)




should be utilized to give the normal stresses [image: there is no content], [image: there is no content], [image: there is no content]


[image: there is no content]



(A14)




corresponding to the nonzero strains. Besides, Hamilton’s principle for linear elastic body [29] (pp. 126–131) is identical to Equation (A5) except that the electric enthalpy [image: there is no content] should be replaced by the strain energy [image: there is no content]


[image: there is no content]



(A15)




and the external work should be


[image: there is no content]



(A16)







Substituting the kinetic energy [image: there is no content] as given in Equation (A6), the strain energy [image: there is no content] in Equation (A15) and the external work in Equation (A16) into Hamilton’s principle for linear elastic body [29] (pp. 126–131), and conducting the variation and integration by parts, one can write an equation similar to Equation (A9) but without the electric terms. In the same way, the governing equations and the constitutive relations of the anisotropic elastic Love rod are obtained as


[image: there is no content]



(A17)




and


[image: there is no content]



(A18)




respectively. It should be pointed out that Equations (A17) and (A18) can also be easily degenerated from Equations (A12) and (A11), respectively, by eliminating the electrically relative terms. If the elastic rod is made of isotropic material, then the equivalent stiffness [image: there is no content] and the Poisson’s ratios [image: there is no content], [image: there is no content] will be automatically degenerated to the Young’s modulus [image: there is no content] and the Poisson’s ratio [image: there is no content], respectively. The governing equations (A17) and the constitutive relations (A18) will accordingly be degenerated to those of the isotropic elastic Love rod, as given by Love [27], Graff [28], Doyle [29] (p. 140) and Ravindra [30].
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