
crystals

Article

Crystal Growth and Associated Properties of
a Nonlinear Optical Crystal—Ba2Zn(BO3)2

Weiguo Zhang 1, Hongwei Yu 1, Hongping Wu 1,2 and P. Shiv Halasyamani 1,*
1 Department of Chemistry, University of Houston, 112 Fleming Building, Houston, TX 77204-5003, USA;

wgzhang82@gmail.com (W.Z.); hwyu15@gmail.com (H.Y.); wuhp@ms.xjb.ac.cn (H.W.)
2 Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of

Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
* Correspondence: psh@uh.edu; Tel.: +1-713-743-7716

Academic Editors: Helmut Cölfen and Ning Ye
Received: 25 May 2016; Accepted: 10 June 2016; Published: 15 June 2016

Abstract: Crystals of Ba2Zn(BO3)2 were grown by the top-seeded solution growth (TSSG) method.
The optimum flux system for growing Ba2Zn(BO3)2 crystals was 2BaF2:2.5B2O3. The transmission
spectra of a (100)-orientated crystal indicated an absorption edge of 230 nm. Powder second-harmonic
generation measurement revealed that Ba2Zn(BO3)2 can achieve type-I phase matching behavior at
the fundamental wavelengths of 1064 and 532 nm respectively. The second-harmonic generating
efficiency is around 0.85 and 0.58 times that of β-BaB2O4 when radiated with 1064 and 532 nm lasers.

Keywords: crystal growth; top-seeded solution growth method; borates; Ba2Zn(BO3)2;
second-harmonic generation

1. Introduction

Nonlinear optical (NLO) materials play a very important role in laser applications owing to
their ability to produce coherent light and thus expand the spectral ranges of solid state lasers from
ultraviolet (UV) to infrared (IR) [1–4]. Among these NLO materials, borate NLO materials have
predominance in UV applications owing to their high UV transmittance and large laser damage
threshold (LDT) [2,5]. The first report of NLO phenomena in borates was on KB5O8¨ 4H2O (KB5) [6].
The intense research on the NLO phenomena of borates was triggered by the second-harmonic
generation (SHG) reported on β-BaB2O4 (β-BBO) and LiB3O5 (LBO) in the late 1980s [7,8]. Thereafter, a
variety of NLO borate materials have been discovered, such as BaZn2(BO3)2 [9], CsB3O5 (CBO) [10],
Ba2Zn(BO3)2 [11], KBe2BO3F2 (KBBF) [12], Sr2Be2B2O7 (SBBO) [13], CsLiB6O10 (CLBO) [14], K2Al2B2O7

(KABO) [15], BaAl2B2O7 (BABO) [15], LiAB4O7 (A = K, Rb) [16], M2B5O9X (M = Pb, Ca, Sr, Ba;
X = Cl, Br) [17], MBi2B2O7 (M = Ca, Sr) [18], Ca5(BO3)3F [19], BiAlGa2(BO3)4 [20], Bi2ZnOB2O6 [21],
Ba3Sr4(BO3)3F5 [22], BaMBO3F (M = Zn, Mg) [23], M3B6O11F2 (M = Sr, Ba) [24], K3B6O10Cl [25],
Li3Cs2B5O10 [26], Li4Cs3B7O14 [27], K2SrVB5O12 [28], Pb4O(BO3)2 [29], KSr4B3O9 [30], Ba4B11O20F [31],
Cs3Zn6B9O21 [32], Li2Sr4B12O23 [33], Li4Sr(BO3)2 [34] and K3Ba3Li2Al4B6O20F [35]. Despite these new
borate-based NLO materials, β-BBO, LBO and CLBO are still the most frequently used NLO crystals
in UV region, which is attributable to the difficulties of growing high quality crystals or the low
transmittance in the UV region. In order to explain the relationship between the microstructure
and NLO properties of a crystal, Chen et al. proposed an ‘anionic group theory’ which considered
the anionic group mainly responsible for the bulk NLO coefficient [36]. According to the anionic
group theory, only 10 kinds of (BxOy)n´ units would be of practical interest to borate NLO materials,
i.e., (BO3)3´, (BO4)5´, (B2O5)4´, (B2O7)8´, (B3O6)3´, (B3O7)5´, (B3O8)7´, (B3O9)9´, (B4O9)6´, and
(B5O10)5´ [36]. As some large units can be taken as linked small units, such as (B3O9)9´ formed by
three end-to-end corner-shared BO4 tetrahedra, microscopic second-order susceptibilities (χ2) and
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band gaps (∆Eg) of four primary borate anionic units were calculated and the relative orders are
χ2(B3O6)3´ « χ2(B3O7)5´ > χ2(BO3)3´ >> χ2(BO4)5´ and ∆Eg(BO4)5´ > ∆Eg(BO3)3´ « ∆Eg(B3O7)5´

> ∆Eg(B3O6)3´, respectively [1]. Even though the (B3O6)3´ group has the largest second-order
susceptibility, the (BO3)3´ group seems to be the optimum choice for borate NLO materials based on
overall considerations of nonlinearity, birefringence, UV cut-off and laser damage threshold [1,37].

Among the aforementioned newly discovered borates, Ba2Zn(BO3)2 crystalizes in the acentric
space group, Pca21, and its structure is composed of ZnO4 tetrahedra and BO3 triangles [11].
In addition, thermal analysis indicated that Ba2Zn(BO3)2 may congruently melt around 984 ˝C which
provides a piece of crystal grown from melt for structure refinement [11]. Calculated SHG coefficients
were also reported, i.e., d24 = 0.61 pm/V, around one third of d11 of β-BBO [11]. Other than the crystal
structure, thermal properties and calculated SHG coefficients, neither large size crystals nor other
physical properties were reported. Considering that Ba2Zn(BO3)2 melts congruently and (BO3)3´ unit
resides in its structure, we suggest that Ba2Zn(BO3)2 could be easily grown as large crystals and show
a higher SHG efficiency than calculated. In this work, we report on crystal growth as well as physical
properties of Ba2Zn(BO3)2.

2. Results and Discussion

2.1. Polycrystalline Powder Synthesis and Characterization

Polycrystalline Ba2Zn(BO3)2 was synthesized through standard solid-state techniques (see
Section 3.1). The powder X-ray diffraction (XRD) pattern of the polycrystalline material is in good
agreement with the calculated pattern from the single crystal data (see Figure 1) [11]. As mentioned
earlier [11], Ba2Zn(BO3)2 melts congruently at 984 ˝C and Ba2Zn(BO3)2 crystals for structure analysis
were grown from melt at 1050 ˝C. 1 g of polycrystalline Ba2Zn(BO3)2 , placed in a platinum crucible
and heated to 1100 ˝C to determine if a homogenous melt could be obtained. However, a transparent
homogenous melt was not obtained even after maintaining the temperature at 1100 ˝C for 20 h.
After slow cooling (50 ˝C/h) to room temperature, Ba2Zn(BO3)2 was partially decomposed even
though the main phase did not change according to powder XRD (see Figure 1). The extra peaks
indicated by black arrows in the figure are assigned to ZnO (PDF# 79-0206). Therefore, crystals of
Ba2Zn(BO3)2 cannot simply be grown from its stoichiometric melt.
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2.2. Crystal Growth

Our experiments indicate that Ba2Zn(BO3)2 does not melt congruently. Therefore, a modified
flux method, top-seeded solution growth (TSSG), was employed to grow Ba2Zn(BO3)2 crystals.
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We attempted many flux systems, such as B2O3, BaO–B2O3, and BaF2–B2O3. When solely taking
B2O3 as flux, we can obtain Ba2Zn(BO3)2 crystals from the system, but the viscosity is very high
that prevents growing large and high quality crystals. A BaO–B2O3 flux also works for growing
Ba2Zn(BO3)2 crystals. However, adding BaO to the system raised the crystallization temperature and
narrowed the growth temperature range. After many attempts, a BaF2–B2O3 flux was determined to
be optimum to grow Ba2Zn(BO3)2 crystals. The proper molar ratio for growing Ba2Zn(BO3)2 crystals
is Ba2Zn(BO3)2:B2O3:BaF2 = 15:2.5:2. Figure 2 shows the as-grown crystals and the powder XRD
patterns confirmed its phase (see red pattern in Figure 3). From Figure 2, it is clear that Ba2Zn(BO3)2

crystals layer during their growth. The layered face was indexed to be (100) plane (see blue pattern in
Figure 3). As discussed earlier [11], the structure of Ba2Zn(BO3)2 crystal contains two dimensional
layers which are perpendicular to the (100) direction. This may explain the layered growth tendency
of Ba2Zn(BO3)2 crystals.
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2.3. UV-Visible-Near Infrared Transmission Spectra

The UV-visible-Near infrared (UV-vis-NIR) transmission spectra of an unpolished (100) plate
of Ba2Zn(BO3)2 with a size of 6 ˆ 4 ˆ 0.2 mm3 indicated that the UV transmission starts to rapidly
decrease at around 245 nm and the UV cut-off edge for Ba2Zn(BO3)2 is around 230 nm (see Figure 4).
According to Chen’s calculation, the borates containing (BO3)3´ group could transmit well below
200 nm [1]. This result is consistent with KBBF and KABO crystals where the UV cut-off edges are
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155 and 180 nm respectively [38]. However, Chen’s calculation did not consider the contribution of
transition metals residing in borates to the UV cut-off edge. As the band gap of ZnO is 3.3 eV [39],
adding Zn cations to borates may red-shift the UV cut-off edge, e.g., BaZnBO3F has a UV cut-off edge
of 223 nm, whereas BaMgBO3F has a UV cut-off edge of 190 nm [40,41].
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2.4. Powder SHG Measurements

Powder SHG efficiency versus particle size (20–125 um) (see Figure 5) revealed that Ba2Zn(BO3)2

has an SHG efficiency approximately 0.85 and 1.5 times of β-BaB2O4 and KDP when radiated with
1064 nm lasers respectively. While the SHG efficiency of Ba2Zn(BO3)2 is around 0.58 times of β-BaB2O4

under the fundamental wavelength of 532 nm. The measurements also indicate Ba2Zn(BO3)2 is
type-I phase-matchable at both wavelengths, and falls in the class A category of SHG materials [42].
The decreased SHG efficiency at 532 nm is probably attributable to the slightly decreased transmission
at the second harmonic generating wavelength (266 nm) (see Figure 4).
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3. Materials and Methods

3.1. Materials and Polycrystalline Powder Synthesis

Polycrystalline Ba2Zn(BO3)2 was synthesized by solid-state reaction techniques. Stoichiometric
amounts of BaCO3 (Alfa Aesar, Ward Hill, MA, USA, 99%), ZnO (Alfa Aesar, Ward Hill, MA, USA,
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98%) and H3BO3 (Alfa Aesar, Ward Hill, MA, USA, 98%) were ground, placed into a platinum crucible,
and heated in air to 600 ˝C for 24 h and 900 ˝C for 40 h with intermittent re-grindings.

3.2. Powder X-Ray Diffraction

Powder X-ray diffraction measurements were carried out on a PANalytical X’Pert Pro
diffractometer (Almelo, The Netherlands) equipped with Cu Kα radiation (λ = 1.54056 Å) in the
2θ range from 10˝ to 70˝.

3.3. Single Crystal Growth of Ba2Zn(BO3)2

Polycrystalline Ba2Zn(BO3)2, H3BO3, and BaF2 (Alfa Aesar, 99%) with a molar ratio of 15:5:2
were placed in a platinum crucible, and heated to 950 ˝C for 24 h in order to form a homogenous
melt. Heating BaCO3, ZnO, H3BO3 and BaF2 with a molar ratio 30:15:35:2, at a rate of 50 ˝C/h to
950 ˝C and holding for 24 h will also form a homogenous melt. Either may be used for the crystal
growth. Crystals of Ba2Zn(BO3)2 were first grown by spontaneous crystallization, i.e., crystals formed
on a platinum wire dipped into the melt. Seed crystals were selected from these spontaneously
grown crystals. A crystallization temperature of 937 ˝C was determined by observing the growth
or dissolution of the seed crystals when dipped into the melt. A piece of seed was introduced into
the melt at a rotation rate of 10 rpm at 2 ˝C higher than the crystallization temperature of 937 ˝C in
order to reduce surface defects. The temperature was decreased to the crystallization temperature at
a cooling rate of 0.5 ˝C/min. From the crystallization temperature, the melt was cooled at a rate of
0.5 ˝C per day to 935 ˝C. When the crystal growth process was done, i.e., by observing the gap between
the growing crystal and the crucible wall (when the crystal edge is very close to the crucible wall the
crystal growth is considered complete), the crystal is pulled from the melt and cooled (20 ˝C/h) to
room temperature.

3.4. Optical Spectra Measurement

UV-vis-NIR transmission data were collected on a Varian Cary 5000 scan UV-vis-NIR
spectrophotometer (Agilent Technologies, Inc., Santa Clara, CA, USA) over the 200–2000 nm spectral
range at room temperature. An unpolished piece of (100) crystal plate with a thickness of 0.2 mm was
used to perform the measurement.

3.5. Powder Second Harmonic Generation Measurement

Powder SHG measurements were performed on a modified Kurtz-NLO system [42] using a pulse
Nd:YAG laser (Quantel Laser, Ultra 50, Bozeman, MT, USA) with wavelengths of 1064 and 532 nm.
A detailed description of the equipment and methodology has been published elsewhere [43]. As the
powder SHG efficiency has been shown to depend strongly on particle size, [42] polycrystalline
Ba2Zn(BO3)2 was ground and sieved into distinct particle size ranges (<20, 20–45, 45–63, 63–75, 75–90,
90–125 µm) to investigate its phase-matching behavior. Polycrystalline β-BBO and KH2PO4 (KDP)
were also sieved into similar particle sizes for SHG efficiency comparison.

4. Conclusions

Ba2Zn(BO3)2 crystals have been grown by the top-seeded solution growth (TSSG) method with
2BaF2-2.5B2O3 as flux. The transmission spectra and the powder SHG measurement indicated that
Ba2Zn(BO3)2 crystal is an attractive candidate for UV NLO optical application. The only issue left to
conquer is its layered growth tendency.
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