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Abstract: Periodic arrays in one, two, and three dimensions, made of magnetic spheres embedded
in a fluid matrix, are considered in this study and utilized as phononic structures. The propagation
of acoustic waves through these structures is analyzed experimentally, in low- and high-frequency
region, via laser vibrometry, as well as standard underwater acoustic measurements. A first
comparison to theoretical calculations obtained through multiple-scattering techniques and multipole
models reveals a distinct behavior depending on the immersion fluid and/or frequency regime.
Our results show that the elastodynamic response of these systems can be, under conditions, simply
described by classical elastic theory without taking directly (ab initio) into account the magnetic
character of the spherical particles. The structures considered above could offer several possibilities
including facility of construction and use in filtering applications, but they are also of interest
from a theoretical point of view, as a means to investigate the validity of several approximate
theoretical descriptions.

Keywords: phononic crystals; layer-multiple-scattering; magnetic spheres; Hertz contact; underwater
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1. Introduction

Phononic crystals are composite materials with a periodic modulation of their elastic properties
(mass density and propagation velocities of the longitudinal and transverse elastic waves) leading to
formation of frequency regions where the elastic waves cannot propagate whatever the direction of
propagation, known as phononic band gaps. Though this property motivated the primary interest
for these structures by analogy with energy band gaps in crystalline solids, in the last two decades,
phononic crystals and related structures have become popular and continuously attract a growing
interest [1,2], especially after the triggering of several new physical ideas such as cloaking [3], negative
refraction [4], and acoustic and thermal diodes [5], often transferred from their electromagnetic
counterpart, the photonic crystals.

Most of the work, experimental as well as theoretical, has initially been focused on structures with
cylindrical scatterers embedded in a, solid or fluid, host medium, due to their facility of construction
and relative simplicity in the theoretical description. However, systems with spherical or other
finite-shape scatterers (ellipsoids, cubes, pillars, etc) become nowadays interesting since they offer
the possibility of constructing low-dimensional arrays or metasurfaces [6], which are of practical
importance for applications in small-sized devices. On the other hand, these kinds of scatterers are
massively used at the nanoscale to fabricate three-dimensional (3D) colloidal crystals by self-assembly
techniques [7–9], while experiments at macroscale are less frequent especially due to difficulties in
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fabrication. They concern mostly structures made of solid spheres immersed in a fluid (water or
air) [4,10], apart from cases of all-solid [11] or all-fluid [12] component structures. In the above cases,
spheres are not consolidated between each other to form a continuous closed periodic network. The
latter constitutes a special category of the well-known granular media, merging the physics of periodic
materials to that of the elastic contact between solids [13]. Periodic granular materials have been
extensively studied up to now [14–19], especially from the point of view of the nonlinear waves
appearing in the structures as a result of strong applied forces in static and dynamic regime. In these
works, discrete models [15–19] or finite element techniques [14] are used for the theoretical description
of the elastic response of the system.

Here, we propose the use of rare-earth permanent magnetic spheres to construct one, two, and
three-dimensional phononic crystals. We exploit the magnetic force between adjacent spheres to
keep the structure in touch, the network of spheres forming a solid continuous frame. These kinds
of scatterers have already been used to construct one-dimensional chains made of an alternation of
magnetic and not magnetic supercells (each of them consisting of several spheres) [20]. In our case, the
applied magnetic forces are weak, thus allowing for operation in the linear elastic regime. We study,
experimentally and theoretically, the elastic response of the arrays and analyze the underlying physical
mechanisms. The elastic contact between spheres is not involved in our theoretical calculations based
on multiple-scattering techniques that utilize the vectorial multipole character of the elastic wavefields,
not taken into account in the discrete models. Our results show that the elastic contact effect is not
prominent in some cases, depending on the manner the system is excited and/or the immersion fluid.

The paper is organized as follows. After a brief description of the method of calculation in
Section 2, we present the main results in Section 3 for two configurations (arrays immersed in water
and arrays immersed in air) and conclude the paper in Section 4.

2. Method of Calculation

We shall briefly outline the basic ideas of the method used for the theoretical calculations, namely
the layer-multiple-scattering method (LMS) as applied to phononic crystals and related structures [21,22].
This method follows the principles of the KKR formalism [23,24], first applied to describe the
electronic structure of crystalline solids and appropriately modified to treat also surface state physical
phenomena [25]. Its power and efficiency lie in the multipole character of the expansions of the waves,
modes and all derived physical quantities, thus offering the possibility of revealing the underlying
physical mechanisms.

The essence of the method is tightly connected to the multiple scattering of the elastic waves
propagating in a host medium containing more than one, well-defined and non-overlapping inclusions
(scatterers) in its interior, the scatterers having different elastic parameters from those of the matrix.
Two key quantities are necessary in this rigorous, exact description: the transition, T-matrix, describing
the scattering of an elastic wave by a single specific object, and the free propagator matrix, Ω, describing
the propagation of an elastic wave from one point of the host medium to an other. For a more qualitative
description of the method, the reader can refer to, e.g., References [26,27], while the full quantitative,
detailed and complete description can be found in [21,22].

Before describing the essential steps of the LMS method, we note that this method can treat
infinite periodic structures, or even heterostructures, consisting of a sequence of layers, along a specific
direction, say z-axis. Each layer—a two-dimensional (2D) array of spheres embedded in a host matrix,
an interface separating two homogeneous and isotropic media, a homogeneous and isotropic plate,
or a combination of them—is supposed to extend to infinity along xy-plane and must have the same
2D periodicity (if any), thus leading to conservation of the wavevector component, k‖, parallel to the
layer’s characteristic surface (xy-plane). The LMS, being an on-shell method, calculates all necessary
physical quantities for a given, specific frequency ω (we assume an e−iωt dependence), each calculation
being independent. Thus, ω and k‖ constitute two external variables to be determined for each
calculation and all calculated quantities depend on these two parameters.
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A second characteristic of major importance for the LMS method is the combination of two vector
representations, the vector spherical-wave basis characterized by the angular momentum numbers `
and m, and the vector plane-wave basis characterized by the 2D reciprocal lattice vectors g defining
the diffracted beams. For instance, for a square (2D) array with lattice constant a, g = 2π

a (n1x̂ + n2ŷ),
where n1,2 = 0,±1,±2, · · · .

The following basic steps are involved in the LMS method. First, after expanding all vector waves
in the spherical-wave basis, multiple-scattering is used on the 2D periodic array (monolayer) of spheres,
to calculate the wave-solution at every point as a function of T and Ω matrices. Second, the solution is
transformed into the plane-wave representation, to facilitate, later, the combination of several layers.
Thus, the four matrices, QI(IV) and QIII(II) describing, respectively, the transmission and reflection of
a plane wave incident from the left (right) on the layer, are produced. These matrices are indexed
in the space {g, g′}, each component corresponding to a vector plane-wave beam characterized by
a wavevector

K±g = k‖ + g±

√(
ω

ch

)2
− |k‖ + g|2 ẑ (1)

for a fluid host medium, with longitudinal wave propagation velocity ch. Note here that the
z-component can be real or imaginary, corresponding to propagative or evanescent along z-direction
waves. When these matrices are obtained, we can calculate the band structure by resolving
an eigenvalue problem of the form(

QI QII

−
[
QIV]−1 QIIIQI [

QIV]−1 [I−QIIIQII]
)(

u+
N

u−N+1

)
= exp (ik · a3)

(
u+

N
u−N+1

)
, (2)

where u+(−)
N(N+1) are the eigenvectors directed to the right (left) in the space between the N-th and

(N + 1)-th ((N + 1)-th and (N + 2)-th) unit cell, and k =
(

k‖, kz(ω; k‖)
)

is the Bloch wavevector.
The lattice vector a3 connects the unit cells (layers) along the z-direction.

The method can also provide us with the transmittance, reflectance and absorbance, T , R and
A = 1− T −R, respectively, of an incident plane wave, characterized by wavevector K+

g′ , through
a N-layers thick slab of the infinite crystal. We have

T (ω, k‖ + g′) = ∑
g

∣∣∣QI
gg′

∣∣∣2 K+
g;z

K+
g′ ;z

, (3)

R(ω, k‖ + g′) = ∑
g

∣∣∣QIII
gg′

∣∣∣2 K+
g;z

K+
g′ ;z

, (4)

where K+
g;z is the z-component of the wavevector given by Equation (1) (we assumed here, for simplicity,

the same medium at the left and the right of the slab), and QI,III are now the Q-matrices of the N-layers
thick slab, calculated through a simple one-dimensional (1D) multiple scattering technique (Debye
series expansion) [21,22].

Finally, the change in the density-of-states (DOS) of the elastic field for one sphere, ∆nsph(ω), or
for a layer of spheres, ∆npl(ω), with respect to the host medium can be obtained from the relations [28]:

∆nsph(ω) =
1
π

∂

∂ω
ImTr ln [I + T] , (5)

∆npl(ω) = ∆nsph(ω)− 1
π

∂

∂ω
ImTr ln [I− TΩ] . (6)
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3. Results and Discussion

We use millimeter-scale rare-earth magnetic spheres to construct two kinds of periodic structures,
in one, two, and three dimensions (denoted as 1D, 2D and 3D, respectively): linear chains, square arrays
and cubic crystals, respectively. The first system is immersed in air and excited by contact transducers,
while the transmitted signal is recorded via laser Doppler vibrometry (LDV). The two other systems are
immersed in water, and, for both emitted and received signals, standard underwater experiments are
performed and immersion transducers are used. The spheres are made of a Neodymium-Iron-Boron
(Nd-Fe-B) magnetic alloy and have diameters d = 3, 5, and 10 mm, with different corresponding
magnetic strengths, N42, N35 and N40, respectively. Their properties, as well as the sample code used
in the experiments, are given in the first four columns of Table 1. The elastic properties of the materials
used in the calculations are summarized in Table 2, after experimental verification of the samples. We
note here that the elastic parameters of the magnetic material are quite close to those found typically
for steel.

Table 1. Magnetic spheres: manufacturer specifications and deduced physical parameters.

Sample Diameter a Magnetic
Grade a

Sphere-to-Sphere
Pull Force a

Contact Area
Radius b

Effective
Velocity c Exponent d

d (m) Fp (N) β (µm) ce f f (m · s−1) n

D10N40 0.010 N40 14.00 68.8 472 6.34
D5N35 0.005 N35 3.06 32.9 544 5.83
D3N42 0.003 N42 1.29 20.8 456 6.47

a provided by the manufacturer; b calculated from Equation (A2); c deduced from the experimental
dispersion plot (discrete wavenumber model); d calculated from Equations (A9) and (A10).

Table 2. Materials’ elastic parameters used in the calculations.

Material Mass Density Longitudinal Velocity Transverse Velocity
ρ (kg · m−3) cl (m · s−1) ct (m · s−1)

Air 1.23 340 –
Water 1000 1480 –

Magnetic alloy 7690 a 4916 b 2781 b

PVC 1450 2039 830
a measured; b deduced from ν = 0.2647 and E = 150 GPa [29].

3.1. Crystal Structures Immersed in Water

3.1.1. Three-Dimensional Structure

We first consider the case of a 3D simple cubic (sc) crystal made of touching D5N35 spheres, with
lattice parameter a = d = 5 mm. The finite-size fabricated array, shown in Figure 1a, is a succession
of seven (001) sc layers of spheres, each one consisting of a square array of 484 = (22× 22) spheres.
Magnetic attractive force is used to keep spheres in touch.

To analyze the frequency response of this structure, a standard underwater transmission
measurement technique is used in the first stage. The corresponding experimental setup is shown in
Figure 1b. The sample is immersed in water and placed at the bottom of a sufficiently big water tank
to optimally delay side-wall reflections. Both emitting and receiving transducers are 100% broadband
500 kHz-centered Panametrics immersion transducers (1.5 in diameter) (Panametrics, Tokyo, Japan).
Each one is located at 20 cm from the (001) surface side of the sample, their mean-beam axis passing
at the center of the slab and coinciding with the z-axis, i.e., the incidence is, apart from a symmetric
angular spreading, assumed to be in the first order normal to the (001) surface. The emitter transducer
is excited by a 5058PR Olympus pulse generator/receiver (Olympus, Tokyo, Japan), providing a 300 V
high and 300 ns wide electric pulse. The generator acts also as a trigger for a Yokogawa Numeric
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Oscilloscope (Yokogawa, Tokyo, Japan) recording signals measured by the receiver transducer and
amplified by the 5058PR. The transmitted signals, sampled at 62.5 MHz and captured within a 200 µs
duration window, are next averaged using 512 acquisitions in order to minimize noise.

(a)

z

x

Water tank

Emi�er Receiver

(b)

k||kinc

Slab

7-layers-thick 

Incident 

acous!c 

beam

Figure 1. (a) the finite three-dimensional (3D) sc structure made of touching magnetic spheres of
diameter d = 5 mm, with dimensions 11 cm× 11 cm× 3.5 cm, before its immersion in water; and
(b) schematic representation of the experimental setup. The emitter-beam angular spreading (shaded
region) is characterized by a wavevector component parallel to the (001) surface of the slab, k‖, varying
from zero (normal incidence) to a maximum value depending on frequency.

The ratio between the Fast Fourier transforms (using eventually zero-padded data in order
to decrease the Fourier transform frequency step, and consequently increase the accuracy of the
obtained spectra) of the signal transmitted through the slab and the signal transmitted without the
slab, i.e., directly from the emitter transducer to the receiver, is formed to obtain a pseudo-transmission
coefficient. The corresponding experimental transmittance spectrum is presented in Figure 2a.
One observes three pass-band frequency regions separated by relatively large forbidden bands
(transmission-gaps) extending from 130 kHz to 185 kHz, from 269 kHz to 287 kHz, and from 344 kHz
to 401 kHz, these limits are found if a 1% transmittance level is imposed. These are, in general, in
accordance with multiple-scattering theoretical predictions [22], shown in Figure 2b. In the theoretical
calculations, the sc (001) planes extend to infinity and a longitudinal acoustic plane wave is considered
to be incident normally (k‖ = 0) on the structure. The main difference when comparing the plots (a)
and (b) of Figure 2 is the absence of well constructed Fabry–Perot (FP) resonances in the experimental
spectrum within the first transmission band extending up to 130 kHz. Additionally, the experimental
gaps are slightly narrower and the whole transmittance spectrum is slightly shifted towards higher
frequencies, with the first and second transmission bands leaking within the gap regions, as predicted
from the theoretical calculations at normal incidence (Figure 2b). A possible explanation could be
the simultaneous generation of several incident waves with different k‖ components and amplitudes,
due to the angular spreading of the emitter transducer beam, as schematically displayed in Figure 1b.
An attempt to reproduce this behavior, theoretically, is given in Figure 2c. We sum the transmittances
corresponding to several k‖ components along the ΓX direction, precisely over k‖ =

π
a (q, 0), where

q varies from 0 to 2
3 with a step of ∆q = 1

30 . Next, we normalize the total-sum curve with respect
to its maximum value within the frequency window of interest. The obtained curve mimics quite
successfully the behavior of the experimental spectrum at the edges of the two first transmission-gaps.
As we move towards higher frequencies, the effect of the transducer-beam angular spreading should
weaken, the angular spreading being proportional to the emitted wavelength. This approach does not
constitute of course a rigorous proof, especially that the sum should be performed by integrating over
the whole irreducible part of the surface Brillouin zone (see Figure 3). Here, we used for simplicity
only a part of the ΓX direction to match the upper frequency limit of the first transmission band. A
complete picture of the transmittance along the whole ΓX direction is given in Figure 3.
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Figure 2. (a) measured transmittance of an acoustic beam incident on the seven-(001)-layers thick
slab of the 3D sc crystal immersed in water; (b) calculated transmittance of a longitudinal plane wave
incident normally (k‖ = 0) on the structure; and (c) normalized sum of the calculated transmittances
over several k‖ =

π
a (q, 0) components, with q varying from 0 to 2

3 with a step of ∆q = 1
30 . Shaded

regions show gap positions for (b) to guide the eye.
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Figure 3. (a) calculated frequency band structure for the 3D cubic crystal of touching D5N35
spheres (lattice parameter a = d = 5 mm), immersed in water, along the direction [001] (k‖ = 0).
Solid, dotted and dashed lines denote, respectively, active non-degenerate bands (symmetry ∆1),
inactive non-degenerate bands (symmetry ∆1′ , ∆2, ∆2′ ) and inactive double degenerate bands
(symmetry ∆5); (b) the corresponding transmittance of a longitudinal plane wave incident normally on
a seven-(001)-layers thick slab of the crystal; and (c) color map of the transmittance spectra along the
ΓX direction (k‖ = (kx, 0)) of the surface Brillouin zone shown in the margin.
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For a deeper understanding of the behavior of this 3D system and of the origin of the
transmission-bands, we calculate the frequency band structure for the sc crystal along the [001]
direction (we consider a (001) plane to be the unit cell for the infinite structure and put k‖ = 0).
The results are displayed in Figure 3a together with the calculated transmittance of a normally incident
plane acoustic wave through a finite slab of seven (001) planes of spheres (see Figure 3b), the same
curve as the one of Figure 2b to facilitate comparison. The analysis of the band structure reveals some
active bands of symmetry ∆1, which represent modes that couple with an external acoustic plane wave,
incident normally on a finite (001) slab of the crystal; indeed, perfect agreement exists between these
bands and the corresponding transmittance. Additionally, we observe the existence of several inactive
(deaf) bands, of symmetry ∆1′ , ∆2, ∆2′ , and ∆5, which represent modes that do not couple with the
above-mentioned external wave incident on the same finite slab. These bands transform into active
ones (though, usually, with a weak transmission level) at off-normal incidence (k‖ 6= 0). The first
two gaps are Bragg gaps and vary slightly along ΓX (see Figure 3c); the third one, around 360 kHz, is
a hybridization (or avoided-crossing) gap originating from the existence of some localized modes at this
frequency region for the system under study and closes quickly along ΓX (see Figure 3c). The role of
the symmetry of these bands will become clearer in the following.

As a first remark, we can say that the magnetic character of the spheres does not seem to influence
their elastic behavior, as described by the classical theory of elasticity used in the calculation method.
The magnetic force which keeps spheres in contact, is not apparent when the experimental results
are compared to the corresponding calculations, at least at these frequency scales and with the given
degree of accuracy in the obtained spectra. The next step is to study closer the elastodynamic properties
of a single sc (001) layer of spheres (i.e., a square array) for two principal reasons. First, the plane,
being the unit cell of the 3D crystal, contains by its own, some fundamental properties useful for
the analysis of the behaviour of the structure. Often, localized resonances have their origin in the
single plane or in the single sphere, whose separate study can illuminate the physical origin of the
phenomena. Second, such a plane can offer a lower-dimension structure than the corresponding 3D
case. In addition, the question to answer is: does the main conclusion of this part concerning the
magnetic character of the spheres still remain valid? For these reasons, we will focus next on the
corresponding 2D case: a single sc (001) plane of touching magnetic spheres, immersed in water.

3.1.2. Two-Dimensional Structure

In this part, we present some experiments concerning the single square array of touching D5N35
spheres (lattice constant a = d = 5 mm), immersed in water, together with the theoretical analysis of the
underlying physical mechanisms. Precisely, two different experiments have been realized: transmission
at normal incidence and guided-wave detection, both involving the same transducers, electronics and
time signal processing, as for the case of the measured, at normal incidence, transmittance through the
slab of the 3D crystal of spheres.

We begin with the study of the transmission properties of the monolayer of spheres. We compute
the corresponding transmittance of an acoustic plane wave through the array for the case of normal
incidence (k‖ = 0). The results are shown in Figure 4a. We observe a transmission resonance peak
at f = 208 kHz, which corresponds to the first FP resonance of an equivalent homogeneous fluid
plate of effective thickness D and whose effective elastic parameters, mass density ρ and longitudinal
propagation velocity c, can be estimated as follows. Applying theoretical developments for disordered
arrays of spherical particles, with a 3D spatial distribution, embedded in a host medium [30], for the

case of the 3D sc crystal with φ = 4π
3

(
d
2a

)3
= 52%, the volume filling fraction occupied by the spheres,

we find that the crystal can be described, at the long-wavelength limit, by an equivalent effective
medium with parameters ρ = 2120 kg/m3 and c = 1456 m/s. The latter is in very good agreement
with the corresponding slope, as calculated from the band structure diagram (c = 1455 m/s) given in
Figure 3a. However, we expect that when the dimensions of the system become lower, going from
the 3D cubic crystal to the single 2D square array, the assumption of isotropic 3D spatial distribution
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of the spheres is not valid anymore and these effective parameters cannot describe the behaviour
of the array at low frequencies. We calculate the transmittance of an acoustic plane wave through
a fluid plate of thickness D = 0.7a and with elastic parameters ρ = 2120 kg/m3 and c = 1456 m/s
(dashed line in Figure 4a), where the thickness has been adjusted in order to produce the FP at the
same frequency position (208 kHz). Of course, the pair (D,c) is not unique. For instance, putting
D = a and c = 2060 m/s (i.e., with constant D

c ) reproduces perfectly the low-frequency behaviour
of the array, with only a slight adjustment of ρ = 2020 kg/m3 (dotted line in Figure 4a). At higher
than the FP frequencies, this effective picture fails to describe the response of the composite layer.
Other phenomena such as resonances originating from the spheres and/or lattice effects will appear,
giving a more complex structure in the calculated transmittance of the square array. We observe some
prominent peaks at 280 kHz and 412 kHz and two clear dips at 301 kHz and 396 kHz, which occur
slightly below the cut-off frequencies for the generation of the first two non-zero orders of the diffracted
beams, f1 = cwater

a = 296 kHz and f2 = f1
√

2 = 418 kHz (corresponding to reciprocal-lattice vectors
|g1| = 2π

a , i.e., with (n1, n2) = {(±1, 0), (0,±1)}, and |g2| = |g1|
√

2, i.e., with (n1, n2) = (±1,±1),
respectively). These dips are, in other words, associated to lattice resonances, localized in the plane
passing at the center of the spheres, the first of them corresponding to the first lattice resonance
along [10], i.e., with wavelength λ1 = a, and the second to the first lattice resonance along [11], i.e.,
with wavelength λ2 = a

√
2/2. The same phenomenology has been observed for monolayers of solid

spherical particles embedded in a solid matrix [31].
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Figure 4. (a) calculated transmittance (solid line) of a plane acoustic wave through a (001) layer
of D5N35 touching spheres (a = d = 5 mm), immersed in water. With dashed (dotted) line we
show the calculated transmittance of such a wave through an effective, homogeneous fluid plate
of thickness D = 0.7a (D = a) with elastic parameters ρ = 2120 kg/m3 (ρ = 2020 kg/m3) and
c = 1456 m/s (c = 2060 m/s). The red arrow indicates the position of the first FP resonance; and (b) the
corresponding measured transmitted pressure of a (001) layer of spheres excited by an immersion
transducer beam.
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Following the same experimental procedure as that described in the previous section, we obtain
the transmitted pressure through a sc (001) plane of spheres excited by the transducer’s acoustic central
beam incident normally on the plane. The results, normalized to their maximum value in the frequency
window [0, 500] kHz, are plotted in Figure 4b. Apart from the low frequency region (i.e., below
100 kHz) where the transducers sensibility vanishes, most of the features predicted by the theoretical
curve are present. We observe a sharp transition about 280–300 kHz and a transmission dip at 410 kHz.
The main difference seems to be the absence of the FP peak at about 208 kHz. In fact, the very strong
narrow peak at 282 kHz obscures the FP resonance that is hidden in the background. We verified this
hypothesis by calculating the transmitted pressure through the square array, where the FP peak is
found to be relatively weakened in amplitude, in accordance with the picture obtained experimentally.

Next, we focus on the study of the guided wave response of the monolayer. We proceed to its
experimental characterization by measuring the transmitted pressure through the layer, adopting for
the transducers a transmission configuration, as the one shown in Figure 5a, i.e., with their axis making
an angle of 15◦ with the normal to the plane, in order to probe elastic modes propagating along the
layer and being localized in it with respect to the z-direction. We note in passing that the choice of the
angle ensures that guided waves will be excited and thus observed in the frequency region of interest,
without completely losing the symmetry advantages of the normal incidence. Both transducers’
mean beams belong to the same plane as the normal to the plane; the projection of the wavevector
component parallel to the layer lies on the ΓX direction of the surface Brillouin zone (see inset of
Figure 3), k‖ =

2π
a (q, 0), q varying from 0 to 0.5. The receiver is translated parallel to the layer (x-axis),

and the pressure scattered by the plate is captured every dx = 0.5 mm, from x = 0 to 120 mm (we set
x = 0 at the location of maximal forced transmission regime). After a double time-space FFT in the free
time and space regime of the signal, we obtain the transmitted pressure in the frequency-wavenumber
space, ( f , kΓX), whose modulus is plotted in Figure 5b. We observe a more or less continuous
transmission band of relatively weak amplitude, extending up to ∼300 kHz, interrupted by two
transmission-gap regions, from 140 to 175 kHz and from 225 to 275 kHz. This physical picture
is in accordance with the one shown in the transmission plot along ΓX direction (Figure 3c), for
k‖ = ω

cwater
sin 15◦. The nature of these modes is of FP type; in this frequency region, i.e., below

300 kHz, no localized modes exist originating from the spheres or from one plane of spheres, and the
behaviour of the real system is practically the same to that of an array of rigid (impenetrable) scatterers.
Acoustic waves hardly penetrate within the sphere and its interior is not seen. The most important
feature of the guided-response plot of Figure 5b is the appearance of three isolated, well-defined, and
relatively high-amplitude spots centered at 308, 394, and 509 kHz. We note here that the peak level of
the second spot (the strongest one) has been saturated in order to better visualize the two others.

In order to clarify the origin of these three observed peaks, we need to analyze theoretically the
resonant behaviour of one single sphere and of a square-array monolayer of such touching spheres.
In Figure 6a, we show the calculated change in the density-of-states of the elastic field (Equation (5))
for a D5N35 sphere (d = 5 mm) immersed in water, with respect to the infinitely extended water. In
the frequency window that interests us here, [0, 550] kHz, there is only an ` = 2 (quadrupole-like)
five-fold spheroidal mode at about 467 kHz, manifested as a Lorentzian-shape peak in the DOS
spectrum and whose elastic field spatial distribution (see inset plot in Figure 6a) reveals a dz2-like
orbital form corresponding to (` = 2, m = 0) angular momentum numbers. When bringing spheres
close to form a 2D square array of spheres, the high, spherical symmetry of the system lowers, and
we expect that the five-fold degeneracy (2` + 1 = 5, for ` = 2) splits up to five non-degenerated
modes. Indeed, for a k‖ lying, for instance, on the ΓX direction, we obtain five non-degenerate modes,
corresponding to five Lorentzian peaks, each of them of different height and width, as shown in
Figure 6b for k‖ =

2π
a (0.35, 0), through DOS calculations for the monolayer (Equations (5) and (6)).
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Figure 5. (a) schematic representation of the transmission configuration used to measure the guided
wave response of the square monolayer of spheres. The incident and transmitted central beam axes lie
on a plane containing the normal to the monolayer; the wavevector component parallel to the layer,
k‖, is along the ΓX direction of the square array; and (b) the modulus of the space-time (x-t) Fourier
transform of the pressure transmitted in the free guided regime along the x-direction, plotted versus
the reduced wavevector along the ΓX direction.

300 350 400 450 500 550
0

1

2

3

4

410 420 430 440 450 460 470 480
0

5

10

 

D
O

S 
(a

rb
. u

ni
ts

)

 
=2

(a)0.0

0.20

0.40

0.60

0.80

1.00

Frequency (kHz)

 

D
O

S 
(a

rb
. u

ni
ts

)

 

(b)

Figure 6. (a) calculated difference in the density-of-states of the elastic field for a D5N35 sphere
(diameter d = 5 mm) immersed in water, with respect to the infinitely extended host medium (water),
revealing an ` = 2 five-fold resonant mode. In the inset, we give, after extraction of the incident
component, the color map of the modulus of the elastic field at resonance ( f = 467 kHz), in a plane
passing at the center of the sphere (incidence is assumed along the horizontal axis directed from
left to right); the white arrows show the direction of the elastic field; and (b) calculated difference
in the density-of-states of the elastic field for a square array of touching D5N35 spheres (diameter
d = 5 mm) immersed in water, with respect to the infinitely extended host medium (water) for
k‖ =

2π
a (0.35, 0), revealing the splitting of the ` = 2 five-fold resonant modes of the individual sphere

to five non-degenerate modes (dotted lines).



Crystals 2016, 6, 78 11 of 20

The physical meaning of these modes can become clearer if we go back to a high-symmetry point
in the k-space. Following group theory basic arguments, we can show [32] that an ` = 2, five-fold,
spherical mode at the Γ point, k = (k‖, kz) = 0, splits into a double-degenerated mode of symmetry
Γ12 and a triple-degenerated mode of symmetry Γ25′ . Considering now k = (k‖, kz) = (0, kz) along
the [001] direction, lowers further the symmetry of the system to the C4v symmetry, and these modes
split as Γ12 = ∆1 ⊕ ∆2 and Γ25′ = ∆2′ ⊕ ∆5. In other words, flat localized bands originating from
an ` = 2 resonant mode of the sphere will split along the [001] direction to three non-degenerate
bands of symmetry ∆1, ∆2, and ∆2′ and one double-degenerate band of symmetry ∆5. We remember,
at this point, the connection between these symmetries and the d-orbitals. ∆1 transforms like a dz2

orbital (angular momentum numbers ` = 2, m = 0), and it has a spatial distribution along the z-axis,
perpendicular to the (001) plane of spheres. This mode couples with a longitudinal wave incident
normally on the plane. ∆2 and ∆2′ transform like dx2−y2 and dxy orbitals (` = 2, m = ±2), respectively,
lying both on the xy-plane. The former has its lobes aligned along x- and y-axes and can thus be
excited by a incident wave with a k‖ component along the ΓX direction; the latter has its lobes aligned
along the x = ±y lines and can thus be excited by an incident wave with a k‖ component along ΓM
direction. Finally, ∆5 transforms like a dxz or dyz orbital (` = 2, m = ±1), both having their lobes on the
planes xz and yz at 45◦ with respect to the z-axis. From the above, it is thus evident that only modes
with ∆2 symmetry will be localized on the (001) plane along the [10] direction. After analysis of the
eigenmodes for the band structure of Figure 3a, we find that there exists a flat mode of ∆2 symmetry at
about 493 kHz originating from the ` = 2 mode of the individual sphere. This mode corresponds to
the one bright experimental spot at 509 kHz.

The other two bright experimental spots, at 308 and 394 kHz, do not originate from resonant
modes of the individual sphere. They correspond to lattice resonances, and both of them constitute
the evolution with k‖ of the first dip at about 300 kHz, observed in the transmission spectrum
of the monolayer at normal incidence (k‖ = 0) shown in Figure 4a. We remember that this dip
is associated with a lattice resonance corresponding to reciprocal lattice vectors g = 2π

a (n1, n2)

with (n1, n2) = {(±1, 0), (0,±1)}. The dispersion relation (ω, k‖) of these lattice resonances can
be approximately described by setting the z-component of the wavevector (Equation (1)) equal to
zero, i.e., ω

cwater
= |k‖ + g|2. For k‖ lying along [10], k‖ = 2π

a (q, 0), and g = 2π
a (n1, n2) we have

f (q) = cwater
a
[
(q + n1)

2 + n2
2
]1/2. The first bright spot, at 308 kHz, is very close to the value of 314 kHz

obtained from this dispersion relation for q = 0.35 and (n1, n2) = (0,±1). In other words, this spot
corresponds to the first lattice resonances along [01] and [01] whose dispersion relation varies very
little with k‖ along [10]. Of course, this double-degenerated mode, lying outside [10] should not be
observed; however, it produces a weak spot due to some angular spreading of the emitter transducer,
thus exciting slightly modes out of the [10]. The second bright spot, at 394 kHz, is very close to the
value of 400 kHz obtained from this dispersion relation for q = 0.35 and (n1, n2) = (1, 0). In other
words, this spot corresponds to the first lattice resonance along [10] and its dispersion relation varies
significantly with k‖ along [10]. This mode produces a high-amplitude spot since the corresponding
lattice resonance is naturally aligned along [10]. We note in passing that, following similar analysis,
close to the third experimental spot at about 509 kHz, there exists a branch corresponding to a [11]
lattice resonance: for q = 0.45, we obtain 520 kHz, which could probably interfere with the mode
originating from the sphere resonance.

3.2. Linear Chain Immersed in Air

We close this study by considering a 1D periodic array, a linear chain with lattice constant a,
composed of N touching magnetic spheres of diameter d = a. An example of the fabricated samples
used in the experiments, is shown in Figure 7a, together with the experimental setup. The chain is
placed horizontally onto a PVC substrate in order to facilitate the positioning of the experimental
apparatus and ensure the straight alignment of the chain.

A broadband longitudinal wave contact transducer is put in contact with the spherical bead
located at one extremity of the chain, the axes of the transducer and the linear chain being identical.
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The transducer (Panametrics, Tokyo, Japan), central frequency: 1 MHz, diameter: 0.5 in), acting as
an emitter, is plugged to a Sofranel high voltage pulser/receiver (Sartrouville, France) delivering a
300 V high and 300 ns wide pulse. An OFV-505 Polytec laser velocimeter (Waldbronn, Germany) is
used to measure the normal displacement at the end of the chain: the laser beam of the velocimeter is
reflected at normal incidence at the point diametrically opposite to the contact point of the chain with
the transducer. The elastic response of the chain provided by the velocimeter is recorded by a 12-bit
hro 66zi Teledyne LeCroy oscilloscope (New York, NY, USA) over a 5 ms time window at 12.5 MHz
sampling frequency. The fast Fourier transform (FFT) is processed “as is” on the signal recorded for
each chain, revealing two well separated frequency regions with distinct response: a low-frequency
region below ∼100 kHz and a high-frequency region beyond ∼400 kHz. In all cases discussed here,
the horizontally aligned, normal to the surface of the sphere, component of the elastic field, uN( f ), is
thus obtained, as a function of frequency f . We study several chain lengths, L = Na, for three different
sphere types, D10N40, D5N35 and D3N42 (see Table 1).

3.2.1. Low-Frequency Response

The experimentally obtained transmitted elastic field at the end of the chain, |uN( f )|, in the
low (kHz-range) frequency region is presented in Figure 7b, for chain lengths varying from 3 to
18 D5N35 beads (d = 5 mm). One observes a Fabry–Perot (FP) type pass-band extending up to
35 kHz characterized by an, increasing with N, number of FP resonance peaks; the band is followed by
a transmission-gap (shaded region in Figure 7b).
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Figure 7. (a) chain of N metallic spheres of diameter d = 5 mm, excited by a longitudinal transducer
(left) with the transmitted signal recorded at the end of the chain through LDV (right); (b) the modulus
of the transmitted displacement field measured at the end of the chain, |uN( f )|, as a function of
frequency f , for various chain lengths, L = Nd. The different spectra are displaced vertically to
improve visibility.
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The phase φN of the previous FFT signal transmitted through a sufficiently long chain of length
Na, when plotted as a function of frequency f , can provide an experimental dispersion relation.
In Figure 8a, we plot (solid line) the normalized phase φN/N ≡ ka after averaging for chains
from N = 15 to 18-beads long in order to minimize residual fluctuations in the plot. The result
is in accordance with the pairs (kna/π, fn) where kn = (2n+1)π

2Na , n = 0, 1, · · · , N − 1, some discrete
wavenumbers (open symbols in Figure 8a) associated to the frequency positions of the FP peaks, fn, in
the corresponding displacement field spectrum for a finite chain made of N = 15 spheres (Figure 8b).
This discrete wavenumber rule is based on a simple physical picture, taking into account the specific
boundary conditions applied for the longitudinal displacement field at both ends of the finite chain, as
schematically shown in Figure 8c. Following this picture, one should write that the FP resonances must
occur when L = Na = (2n + 1) λn

4 , where λn = 2π/kn. The two methods described above to obtain the
experimental dispersion plot, i.e., the phase-deduced band structure and the FP-based discrete model,
should be in good agreement for sufficiently long chains, at least for the lower frequency bands; and
this is indeed the case here. As a guide to the eye and to facilitate the comparison, we plot a smoothed
curve passing at the points (kna/π, fn) (see dotted line in Figure 8a). Again, a transmission-gap region
is confirmed, with lower frequency limit at 35 kHz, in accordance with the conclusions drawn when
studying the transmission spectra (see Figure 7).

u(x)

LDV beam

...

x

L=Na

Figure 8. (a) experimental dispersion plot of a linear chain of lattice parameter a, made of N touching
spheres (diameter d = a = 5 mm) deduced from the FFT phase (solid line) compared to a discrete
model description represented by the pairs (kna/π, fn) with n = 0, 1, · · · , N − 1 (open symbols).
The dotted line is a non-linear interpolation connecting the discrete points (kna/π, fn), revealing a clear
propagative band ranging from 0 to 35 kHz; (b) experimental transmitted displacement field spectrum
for the case of a finite chain (N = 15). Horizontal dashed lines are guides to the eye, associating
the frequency positions of the FP resonance peaks, fn, to the discrete wavenumbers kn, for the case
of N = 15 spheres (see text); (c) a schematic representation of the FP resonances in the linear chain
configuration with open-closed boundary conditions applied at the extremities of the chain.
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However, the most important characteristic is the linear dispersion at the long-wavelength
limit ( f → 0), allowing for the determination of the effective medium slope, which is found to be
ce f f = 544 m/s � cair. This result does not agree with calculations based on multiple-scattering
techniques [28] extended here to include the case of an infinite chain of metallic beads immersed in
air. The theoretical dispersion relation gives, at f → 0, an effective medium propagation velocity
ce f f = 338 m/s . cair. This discrepancy is related to the existence of the magnetic force Fp between
spheres producing a weak Hertzian contact. The radius of the circular-shaped contact region, β, is
calculated from the relation (A2) given in Appendix A to be of the order of 1.4% of the sphere’s radius
(see Table 1), where ν = 0.2647 and E = 150 GPa are the Poisson ratio and the Young modulus of
the magnetic alloy, respectively, obtained from the values of Table 2. The dispersion plot based on
the above discrete picture (dotted line in Figure 8a) is in very good agreement with a mass-spring
monatomic linear chain model providing the relation f = f0 sin ka

2 , f0 being the cut-off frequency of
the acoustic branch and ce f f = πa f0 (see Appendix A). Following this description, we obtain after
non-linear fitting an effective velocity ce f f = 558 m/s and a cut-off frequency f0 = 35.5 kHz.

The deviation of the experimental band structure (solid line, Figure 8a) from the simple discrete
developed model (dotted line, Figure 8a) at the region of the gap is due to finite-size effects and some
attenuation in air. Beyond the gap region, no higher-order propagative effective medium bands are
observed, as expected from a monatomic chain image. We also note here that, in the low-frequency
region, the chosen combination of materials (metallic spheres in air) follows the typical behavior of
a rigid-scatterer assembly and does not exhibit any resonances originating from the individual sphere.
These are expected to appear at about 467 0.005

d kHz, where d is the diameter of the sphere expressed in
meters, as predicted from DOS calculations (see also Figure 6a).

The same analysis is repeated for a chain made of D3N42 spheres. The results, following the
same methodology, are presented in Figure 9. Again, the FP resonance peaks in the spectrum of
the transmitted field (we consider the case of a chain with N = 15 spheres), shown in Figure 9b,
in conjunction with the discrete wavenumber model provide a set of pairs (kna/π, fn) which, after
interpolation (dotted line in Figure 9a), compare well with the normalized-phase curve (solid line
in Figure 9a). As previously, we obtain at the long-wavelength limit an effective-medium velocity
ce f f = 456 m/s; the cut-off frequency is at about 64 kHz. The main difference, however, with the
previously studied case (D5N35 spheres) is the existence of a pronounced dip in the transmission
spectrum around 35 kHz, corresponding to an S-like form in the dispersion plot (a qualitative
explanation is given in Appendix A). This is the fingerprint of an avoided-crossing gap originating
from the interaction of the first longitudinal waveguide mode of the PVC substrate with the
effective-medium propagating band. Indeed, for a 3 cm-thick PVC plate, whose elastic parameters are
shown in Table 2, the first FP resonance occurs at 34 kHz. Finally, this dispersion plot (dotted line in
Figure 9a) can be described by the mass-spring monatomic linear chain model f = f0 sin ka

2 ; we obtain
after non-linear fitting an effective velocity ce f f = 497 m/s and a cut-off frequency f0 = 52.7 kHz.

Similar results were obtained for a chain made of bigger spheres (D10N40). The effective medium
slope has been found to be ce f f = 472 m/s. The values for the effective-medium velocity together
with the radius of the contact area (see Equation (A2) of Appendix A) are summarized, for all samples
studied, in Table 1. Knowledge of ce f f can be used to extract the power law ce f f ∼ F1/n

p relating the
effective propagation velocity to the applied force. With the help of Equations (A9) and (A10) and if
we set C to be the same for all samples, we calculate the exponent n to be close to six (see Table 1), this
specific value characterizing a Hertz-type elastic contact. We note that a different power law (n = 3)
has been recently observed for the same kind of spheres, without variation of the diameter [20].

The low-frequency study concludes the following remarks. Two main differences are to be noted
between the 1D configuration and the two previous cases (2D and 3D phononic crystals). First, the 1D
array is immersed in air instead of water, and second, the excitation of the system is realized through
contact of the transducer directly with the solid material of the spheres. These two points mean that we
can neglect, at a first approximation, the existence of air in our analysis. The 1D system should behave
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like a periodically corrugated cylindrical waveguide, since the spheres are in elastic contact, forming
a continuous network. Multiple-scattering calculations fail to describe, in this case, the dispersion
relation of the longitudinal mode, along the chain, since the scattering is considered to take place in the
air region and not in the interior of the spheres. When chains, made of rare earth magnetic spheres, are
excited by contact transducers (i.e., propagation and scattering take place mainly in the material of the
spheres), the system behaves as predicted by Hertz’s theory of elastic contact, at least for weak applied
static forces of the order of Fp

πβ2 ∼1 GPa. When 2D and 3D periodic structures made of magnetic
spheres in contact are immersed in water, the excitation process (and subsequently the scattering of
acoustic waves) is realized in the water region; the elastic contact does not produce an observable
effect, as compared to multiple-scattering calculations, which do not take into account in any case the
elastic contact between spheres.
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Figure 9. (a) experimental dispersion plot of a linear chain of lattice parameter a, made of N touching
spheres (diameter d = a = 3 mm); (b) experimental transmitted displacement field spectrum for the
case of a finite chain (N = 15). All symbols, methods and analysis follow the same scheme as the one
used in Figure 8.

3.2.2. High-Frequency Response

As expected from the linear chain image, described previously, no higher propagative bands exist
beyond the cut-off frequency f0 of the acoustic branch. However, at higher frequencies (MHz-range),
localized flat resonant modes are expected to appear; they propagate along the chain, originating from
the corresponding resonances of the individual sphere. For a chain made of spheres with d = 3 mm,
we experimentally observe the formation of narrow, high-amplitude resonant bands around the
` = 2 and ` = 3 resonances of spheroidal modes of the individual sphere, as confirmed by DOS
calculations and a multipole mode analysis for the system [22,28]. These bands are centered at 0.794
and 1.166 MHz, respectively, as shown in the left panel of Figure 10; the theoretical calculation (right
panel of Figure 10) predicts 0.780 and 1.158 MHz, for the individual sphere, if the elastic parameters of
Table 1 are used. Similar results are found for chains made of D5N35 and D10N42 spheres, confirming
this high-frequency-response image.
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Figure 10. (left): color map of the transmitted displacement field measured at the end of a chain
made of N D3N42 magnetic spheres (d = 3 mm), as a function of frequency and number of spheres.
Two narrow localized bands are observed, originating from ` = 2 (top) and ` = 3 (bottom) resonance
modes of the individual sphere; (right), the corresponding DOS calculations for one sphere, together
with the elastic field on resonance, at a cut passing at the center of the sphere (incidence is considered
from left to right).

4. Conclusions

In the present paper, we studied experimentally the elastic response of 1D, 2D and 3D phononic
crystals, made of rare-earth magnetic spheres in contact, immersed in a fluid (air for the 1D and water
for the 2D and 3D structures). The excitation process (immersion or contact transducers) has been
shown to differentiate the behavior of the system, regarding the influence of the elastic contact between
adjacent spheres on the obtained dispersion relation of the structures. In particular, we have shown
that, although the magnetic force is present in all cases, producing the contact between spheres that
form a close solid network, its effect seems to vanish when excitation takes place in the immersion
fluid (water), while it cannot be neglected when excitation takes place in the magnetic material (the
immersion fluid is air). Our experimental results have been successfully compared to theoretical
predictions using multiple-scattering techniques, in the first case. The multiple-scattering description
fails. In the second case, Hertz contact cannot be neglected. The structures considered here are easy to
fabricate, since they do not necessitate any adhesion treatment and their technique of construction
is non-destructive. They can be ideal candidates for practical applications where one needs to use
phononic structures immersed in a fluid host medium and are shown to exhibit interesting properties
as narrow frequency filters in the case of 1D arrays. Their study, from a theoretical point of view, is
also of interest, especially in the case of several elastic or plastic contact models.
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The following abbreviations are used in this manuscript:

1D one-dimensional
2D two-dimensional
3D three-dimensional
FP Fabry–Perot
DOS density of states
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FFT fast Fourier transform
LDV laser Doppler vibrometer
LMS layer multiple scattering

Appendix A

We assume two identical elastic spheres of diameter d, made of the same material that is
characterized by a mass density ρ, Poisson ratio ν and Young modulus E. The two spheres are
in contact with a mutual compressive static force, Fp, applied between each other along the line
connecting their centers; this force transforms the point contact to a circular-shaped area of radius
β and the center-to-center distance decreases by δ, the indentation depth, as schematically depicted
in Figure A1. For δ small enough as compared to the diameter d, following Hertz’s theory of elastic
contact [33], we can calculate the indentation depth

δ =

(
3(1− ν2)

E
Fp√

d

)2/3

, (A1)

and the radius of the contact area

β =

(
3(1− ν2)

8E
dFp

)1/3

, (A2)

expressed as functions of the compressive applied force [34]. We note here that the applied force scales
as ∼δ3/2, this non-linear, power-law relation being only a purely geometrical effect: linear elasticity is
considered. Combining Equations (A1) and (A2), we obtain the following useful relation:

β =
1
2

√
δd . (A3)

Fp

d-δ

Fp

2 

d

Figure A1. geometry of the problem of two elastic spheres in contact under the action of an applied
compressive force.

For ν = 0.2647 and E = 150 GPa (see Table 2), we compute β and δ to be, respectively, of the order
of 1.4% and 0.01% of the sphere’s radius, in all cases.

The relation (A1) written appropriately allows for the determination of the effective contact
stiffness K defined as K = ∂Fp/∂δ. We find

K =
3
2

Fp

δ
=

(
3E2d

8(1− ν2)2

)1/3

F1/3
p . (A4)
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A linear chain of identical spheres in Hertzian contact can be described in the linear regime as
a mass-spring periodic array of lattice constant a = d, the masses being those of the spheres, i.e.,
m = 1

6 πρd3, and the springs having stiffness K given by (A4). The dispersion relation of such a chain is

f = f0 sin
kd
2

, (A5)

where f0 is the cut-off frequency denoting the upper frequency limit of the acoustic branch (see
Figure A2a) beyond which no modes exist (gap region extending to infinity). The cut-off frequency is
related to a chain’s characteristics through the relation

f0 =
1
π

√
K
m

=
1√
π3ρ

(
9
d4

E
1− ν2

)1/3
F1/6

p . (A6)

0

f
0

Gap

acous c 

branch

f

ka/π
1

(a)

0

f
0

Gapf

ka/π
1

(b)

localized 

mode

Avoided-crossing gap

0

f
0

Gapf

ka/π
1

(c)

S-like band

Avoided-crossing

 gap

Figure A2. (a) schematic representation of the dispersion relation for a periodic mass-spring array of
lattice constant a. The acoustic branch (solid line) is perfectly described, at the long-wavelength limit,
by a linear dispersion corresponding to an effective-medium propagation velocity ce f f = πa f0 (broken
line), while the cut-off frequency f0 delimits the lower frequency limit of the extended to infinity band
gap (shaded area); (b) as in (a) but with the presence of a localized flat mode which, after interaction
with the acoustic branch of the chain’s dispersion relation, gives rise to an avoided-crossing gap (shaded
area) below the cut-off frequency. Broken lines: the bands before hybridization; (c) modification of the
dispersion plot shown in (b) when absorption is taken into account (see text) leading to an S-like band
within the avoided-gap region, which corresponds to modes with complex wavenumber.

The dispersion relation (A5) is linear at the long-wavelength limit (dotted line in Figure A2a)
corresponding to a constant with frequency effective-medium velocity ce f f

ce f f = lim
k→0

2π f (k)
k

=
2π f0d

2
lim
k→0

sin kd
2

kd
2

= π f0d . (A7)

Thus, from Equations (A6) and (A7), we obtain

ce f f = d

√
K
m

=
1
√

πρ

(
9E

1− ν2

)1/3 ( Fp

d2

)1/6
. (A8)
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This last equation should describe the long-wavelength limit behaviour of a linear chain of
touching spheres under a static applied force Fp generating a Hertz-type elastic contact between
adjacent spheres. We can then write

log
ce f f

C =
1
n

log
Fp

d2 , (A9)

where

C = 1
√

πρ

(
9E

1− ν2

)1/3
and n = 6 , (A10)

in the case of Hertz contact, as it turns out after comparison to Equation (A8). Equations (A9) and (A10)
are of practical importance, when ce f f is deduced from the experimental results (as is the case here) in
order to confirm or reject a Hertz-type contact.

Finally, a last comment on the possible variants of the form that the dispersion plot can take,
worth pointing out at this point. We expect that a chain of touching spheres with elastic contact
between them due to an applied static force would present, in a good approximation, a dispersion
plot f (k) as the one shown schematically in Figure A2a. In practice, some deviations from this form
can also occur, such as the appearance of an avoided-crossing gap, after hybridization between the
acoustic branch mode and some flat localized mode. The latter originates from some resonances of the
scatterers (spheres) or even from those of a substrate used to support the chain. This is indeed the case
encountered here: the acoustic-branch frequency region is free of resonances localized in the spheres,
the first of them occurring at about ∼230 kHz for magnetic spheres of diameter d = 10 mm, but there
are some originating from the PVC substrate. Precisely, the first FP resonance occurs at about 35 kHz
and will therefore be visible in the acoustic branch region as schematically presented in Figure A2b.
When absorption is present in the system, this avoided-crossing gap will transform to an S-like band
(see Figure A2c) whose elastic modes exhibit a Bloch wavevector with a small non-zero imaginary part;
an analog is observed in the case of surface plasmons polaritons at a metal/insulator interface [35].
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