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Abstract: We study analytically and numerically the second-harmonic generation in a
one-dimensional nonlinear acoustic metamaterial, composed of an air-filled waveguide periodically
loaded by clamped elastic plates. Based on the transmission line approach, we derive a nonlinear
dynamical lattice model which, in the continuum approximation, leads to a nonlinear dispersive wave
equation. By applying the perturbation method to the latter, we derive the analytical expressions for
the first- and second-harmonics, which are in excellent agreement with the numerical simulations of
the nonlinear dynamical lattice model. Apart from the case of dispersionless nonlinear propagation
and the Fubini solution, special attention is payed to the role of dispersion. In that regard, it is found
that, once dispersion comes into play, second-harmonic beatings in space due to phase-mismatch can
be identified. Our results provide many opportunities for the development of new periodic acoustic
structures featuring both nonlinearity and dispersion.

Keywords: acoustic metamaterials; locally resonant materials; nonlinear acoustic propagation;
higher harmonic generation
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1. Introduction

Phononic crystals and acoustic metamaterials have been widely popularized since the beginning
of the 21st century because of the exotic properties they offer, including subwavelength focusing,
cloaking, and extraordinary transmission among others [1]. These materials are composite structures
designed to tailor acoustic wave dispersion through Bragg’s scattering and local resonances. One of the
main properties of the phononic crystals and acoustic metamaterials is that—thanks to their periodic
structure—they exhibit phononic band gaps, namely ranges of frequencies where no propagation
occurs (i.e., linear acoustic waves are evanescent). The existence of band gaps has been studied in
theory and observed experimentally for the first time in periodic acoustic waveguides by Sugimoto [2]
and Bradley [3]. In 2000, Liu et al. [4] paved the way to acoustic metamaterials through phononic
crystals that exhibited spectral gaps with lattice constants two orders of magnitude smaller than the
relevant acoustic wavelength. The formation of band gaps in these acoustic metamaterials is based on
the idea of the inclusion of locally resonant structures. These, in turn, usually determine the properties
of acoustic metamaterials, rather than their composition.

Most of the works in the field of phononic crystals and acoustic metamaterials are restricted in the
linear regime, and they do not consider the nonlinearity of the medium. Nevertheless, as the amplitude
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of the wave excitation is increased, the response of the metamaterial becomes nonlinear. This may
give rise to different phenomena including, for instance, harmonic generation [5,6] and emergence
of solitons [7], namely robust localized waves propagating undistortedly due to a balance between
dispersion and nonlinearity. Nonlinear acoustic metamaterials are very good candidates to analyze
the combined effects of nonlinearity and dispersion, occurring, e.g., in the beating of higher generated
harmonics, because of mismatched phases or the existence of solitons [8,9].

In the context of electromagnetic (EM) metamaterials, there exist many works devoted to the
nonlinear behavior [10–14]. Typically, metamaterials can be realized or modeled by a quasi-lumped
transmission line (TL), with elementary cells consisting of a series inductor and a shunt capacitor, the
dimensions of which are much less than the wavelength of the operating frequency. The TL approach
is a powerful tool for studying nonlinear phenomena in EM metamaterials, such as soliton formation
and nonlinear propagation [11–14]. In the context of acoustic metamaterials, one may similarly employ
an acoustic circuit modeling, in which the voltage corresponds to the acoustic pressure and the
current to the volume velocity flowing through the waveguide, in order to characterize the nonlinear
propagation. On the other hand, the linear TL description of acoustic metamaterials has gained
considerable attention the last few years [15–19]. However, studies on nonlinear phenomena in such
settings are rather limited [9].

In this work, we consider an acoustic metamaterial composed of an air-filled waveguide,
periodically side-loaded by clamped elastic plates. For such a system, it is well known that the elastic
plates are incorporated as resonant elements and are considered to be in series in the electro-acoustic
analogy [15–19]. Nonlinear wave propagation in this dispersive structure is theoretically and
numerically studied. The paper is structured as follows. Based on the nonlinear transmission line
theory, in Section 2, we introduce the 1D nonlinear lattice model, and employing the continuum
approximation, we derive the nonlinear dispersive wave equation. Linear and nonlinear properties of
the model, namely the dispersion relation and the case of dispersionless nonlinear propagation,
are respectively studied in Sections 3 and 4. In Section 5, by applying a perturbation method,
we study the second-harmonic generation, while the effect of dispersion is studied in detail in Section 6.
Finally, in Section 7, we present our conclusions and discuss future research directions.

2. Electro-Acoustic Analogue Modeling

We consider low-frequency wave propagation in an acoustic waveguide periodically loaded
with elastic plates. The frequency range considered is well below the first cut-off frequency of the
higher propagative modes in the waveguide, therefore the problem is considered as one-dimensional.
The distance between the plates is d and the plates have a thickness h and radius r, as shown
in Figure 1a.

In order to theoretically analyze this system, in this work, we adopt the electro-acoustic analogy.
Using physical acoustics, one has to treat our setting by solving two nonlinear partial differential
equations for the pressure and velocity field coupled at specific points (where the resonators are
located) with a number of ordinary differential equations that describe the dynamics of the resonators
(in our case the clamped elastic plates). This kind of modeling is very hard to treat analytically and one
has only to rely on numerical simulations. On the contrary, one could use the electro-acoustical analogy
to derive a nonlinear discrete wave equation, describing wave propagation in an equivalent electrical
transmission line, which can be solved perturbatively in the continuum limit. Such an approach
provides an efficient way to treat the nonlinearity and greatly simplifies the problem, allowing for
straightforward analytical treatment by means of standard techniques that are used in other physical
systems. Then, in this work, the voltage v and the current i of the equivalent electrical transmission line
corresponds to the acoustic pressure p and to the volume velocity u flowing through the waveguide
cross-section, respectively.

Following the TL approach, we start our consideration with the unit-cell circuit of the equivalent
TL model of this setting. There are two different forms for the unit-cell circuit, as shown in Figure 1b
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and Figure A1 (see Appendix). Here, we only introduce the first one. The other circuit is introduced in
the Appendix [18,19].

Figure 1. (a) waveguide loaded with an array of elastic plates; (b) a corresponding unit-cell circuit of
the nonlinear model of elastic plates lattice.

The unit-cell is composed of two parts, one corresponding to the propagation in the tube and the
other one to the elastic plate. The resonant elastic plate can be modeled by an LC circuit, namely the
series combination of an inductance Lm and a capacitance Cm, given by

Lm =
ρmh

S
, Cm =

1
ω2

mLm
, (1)

where ρm is the plate density, S represents the cross-section area of the plate, while ωm = 2π fm is the
resonance frequency of the plate, with

fm = 0.4694
h
r2

√
E

ρm(1− ν2)
, (2)

where r is the radius of the elastic plate, E is the Young’s modulus and ν is the Poisson ratio [18,19].
We consider elastic plates made of rubber, with ρm = 1420 kg/m3, E = 2.758 GPa and ν = 0.34.
The part of the unit-cell circuit that corresponds to the waveguide is modeled by the inductance Lω

and shunt capacitance Cω; the linear parts of these elements are given by

Lω0 =
ρ0d
S

, Cω0 =
Sd

ρ0c2
0

, (3)

where ρ0 and c0 are, respectively, the density and the sound velocity of the fluid in the waveguide that
has a cross section S = πr2.

In this work, we consider the response of the elastic plate to be linear and the propagation in the
waveguide weakly nonlinear. This is a reasonable approximation, since the amplitudes used in this
work are not sufficient to excite nonlinear vibrations of the elastic plate [9,20]. Due to the compressibility
of the air, the wave celerity is a nonlinear term, cNL. Thus, we consider that the capacitance Cω is
nonlinear and depends on the pressure p. Approximating the celerity as cNL ≈ c0

(
1 + β0 p/ρ0c2

0
)
,

where β0 is the nonlinear parameter for the case of air (that is β0 = 1.2), the pressure-dependent
capacitance Cω can be expressed as

Cω = Cω0 − C
′
ω pn, (4)
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C
′
ω =

2β0

ρ0c2
0

Cω0. (5)

The inductance remains in the same form as in the linear part, Lω0 = Lω . Next, we will derive an
evolution equation for the pressure in the n-th cell of the lattice as follows.

First, we note that the advantage of the considered unit-cell circuit is that the inductances Lω

and Lm are in a series connection and, thus, can be substituted by the inductance L = Lω + Lm

(see Figure 1b). Applying Kirchoff’s voltage law for two successive cells yields

pn−1 − pn = L
d
dt

un + Vn, (6)

pn − pn+1 = L
d
dt

un+1 + Vn+1, (7)

where Vn is the voltage produced by the capacitance of the elastic plates Cm. Subtracting the two
equations above, we obtain the differential-difference equation (DDE)

δ̂2 pn = L
d
dt

(un − un+1) + (Vn −Vn+1) , (8)

where δ̂2 pn ≡ pn+1 − 2pn + pn−1. Then, Kirchhoff’s current law yields

un − un+1 = Cω
d
dt

(pn) , (9)

with
un = Cm

d
dt

(Vn) and un+1 = Cm
d
dt

(Vn+1) . (10)

Subtracting Equation (10) and employing Equation (9), we obtain

un − un+1 = Cm
d
dt

(Vn −Vn+1) = Cω
d
dt

(pn) . (11)

Then, recalling that the capacitance Cω depends on the pressure (cf. Equation (4)), we express
Vn −Vn+1 as

Vn −Vn+1 =
Cω

Cm
pn =

Cω0

Cm
pn −

C
′
ω

Cm
p2

n. (12)

Next, substituting Equations (9) and (12) into Equation (8), we obtain the following evolution
equation for the pressure

δ̂2 pn = L
d
dt

(
Cω

d
dt

(pn)

)
+

Cω0

Cm
pn −

C
′
ω

Cm
p2

n. (13)

To this end, employing Equation (4), we can rewrite the above equation as follows:

δ̂2 pn − LCω0
d2 pn

dt2 −
Cω0

Cm
pn +

LC
′
ω

2
d2 p2

n
dt2 +

C
′
ω

Cm
p2

n = 0. (14)

In this article, we have numerically integrated the nonlinear lattice model, Equation (14), by using
the function ode45 of Matlab which is based on the Runge Kutta method, with an initial condition,
p1 = sin (ωt) at x = 0, where ω = 2π f is the angular frequency of the driver. For each simulation,
we ensure the validity of the Courant–Friedrichs–Lewy (CFL) condition, c dt

dx ≤ 1, where c is the phase
velocity, dt and dx are the time step and length interval, respectively. We also pay attention to the
length of the system, which should be long enough to avoid reflections in the analyzed signal.
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2.1. The Continuum Approximation

For our analytical considerations, we will focus on the continuum limit of Equation (14),
corresponding to n → ∞ and d → 0 (but with nd being finite); in such a case, the pressure becomes
pn(t)→ p(x, t), where x = nd is a continuous variable, and

pn±1 = p± d
∂p
∂x

+
d2

2
∂2 p
∂x2 ±

d3

3!
∂3 p
∂x3 +

d4

4!
∂4 p
∂x4 + O(d5), (15)

i.e., the difference operator δ̂2 is approximated by δ̂2 pn ≈ d2 pxx + d4

12 pxxxx. Keeping the O(d4)

derivative term, the PDE contains also the weak dispersion that originates from the periodicity
of the elastic plates array as we will see later on. Terms of the order O(d5) and higher are neglected,
and subscripts denote partial derivatives. This way, Equation (14), becomes the following PDE:

d2 pxx +
d4

12
pxxxx − LCω0 ptt −

Cω0

Cm
p +

1
2

LC
′
ω

(
p2
)

tt
+

C
′
ω

Cm
p2 = 0. (16)

It is also convenient to express our model in dimensionless form; this can be done upon
introducing the normalized variables τ and χ and normalized pressure p, which are defined as
follows: τ is time in units of ω−1

B , where ωB = πc0/d is the Bragg frequency; χ is space in units of
c/ωB, where the velocity is given by

c =
c0√

1 + α
, α =

hρm

dρ0
, (17)

and p is pressure in units of p0 = ρ0c2
0. Then, Equation (16) is reduced to the following

dimensionless form:

pττ − pχχ − γpχχχχ + m2 p = 2β0m2 p2 + β0

(
p2
)

ττ
, (18)

where parameters m2 and γ are given by

m2 =
α

1 + α

(
ωm

ωB

)2
, γ =

1
12

π2(1 + α). (19)

It is interesting to identify various limiting cases of Equation (18). First, in the linear limit
(β0 = 0, or p2 � 1), and in the absence of plates (m2 → 0, and without considering higher order
spatial derivatives), Equation (18) is reduced to the linear wave equation, pττ − pχχ = 0. In the
linear limit, in the presence of plates and in the long wavelength approximation (k→ 0, and without
considering higher order spatial derivatives), Equation (18) takes the form of the linear Klein–Gordon
equation [7], pττ − pχχ + m2 p = 0, with the parameter m playing the role of mass. Finally, in the
nonlinear regime, but when plates are absent, Equation (18) is reduced to the well-known Westervelt
equation, pττ − pχχ − β0

(
p2)

ττ
= 0, which is a common nonlinear model describing 1D acoustic

wave propagation [21].

3. The Linear Dispersion Relation

We now consider the linear limit of Equation (18) and the respective dispersion relation.
Assuming propagation of plane waves, of the form p ∝ exp[i(kχ − ωτ)], we obtain the following
dispersion relation connecting the wavenumber k and frequency ω

D(ω, k) = −ω2 + k2 − γk4 + m2 = 0. (20)

For D(ω, k) = 0, this is the familiar dispersion relation of the linear Klein–Gordon model. It is clear
that Equation (20) suggests the existence of a gap at low frequencies, i.e., for 0 ≤ ω < m, with the cut-off
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frequency defined by the parameter m. For m < ω < ωB, there exists a band, with the dispersion curve
ω(k) having the form of hyperbola, which asymptotes (according to Equation (20)) to unity, which is
the normalized velocity associated with the wave equation pττ − pχχ = 0. The term γk4 accounts for
the influence of the periodicity of the lattice (originating from the term δ̂2 pn) to the dispersion relation.
Although this term appears to lead to instabilities for large values of k, both Equations (18) and (20)
are used in our analysis only in the long wavelength limit where k is sufficiently small.

Since all quantities in the above dispersion relation are dimensionless, it is also relevant to express
it in physical units. In particular, taking into account that the frequency ωph and wavenumber kph in

physical units are connected with their dimensionless counterparts through ω = ωph/ωB and k =
kphc
ωB

,
we can express Equation (20) in the following form:

−ω2
ph + k2

phc2 − γ
k4

phc4

ω2
B

+ m2ω2
B = 0. (21)

Solving Equation (21) analytically with respect to kph, we can then determine the frequency
f = ωph/2π as a function of the wavenumber kph, and plot the resulting dispersion relation. The real
and imaginary parts of the dispersion relation are respectively plotted in Figure 2a,b for a metamaterial
composed of elastic plates made of rubber with thickness h = 2.78× 10−4 m and with a periodicity
d = 0.01 m. The dispersion relation features the band gap from 0 Hz to

(
m ωB

2π

)
Hz due to the combined

effect of the resonance of the plate and of the geometry of the system. The upper limit of this band
gap is found to be sufficiently smaller than the Bragg band frequency fB = c0/2d = 17163 Hz,
with c0 = 343.26 m/s. The propagating band has two parts: a strongly dispersive and a weakly
dispersive one. In the lower weakly dispersive region, there is a “quasi-linear” dispersion with the
slope a = c0√

1+α
(which is identical to the velocity c in Equation (17)), and the upper weakly dispersive

region is due to the periodicity of lattice. Both the periodicity of the system d and the thickness of
the elastic plates could influence the first cut-off frequency m and the slope a of the “quasi-linear”
dispersion, as shown in the Figure 2c,d. The first cut-off frequency m is inversely proportional to the
periodicity of the lattice d and proportional to the thickness of the elastic plates h, while the slope a of
the “quasi-linear” dispersion increases with the increase of d and the decrease of h. Due to periodicity,
the band structure of our system exhibits a Bragg band gap with an upper edge kd = π located
at 17.163 kHz. The lower edge of the gap, however, also depends on α (describing the impedance
mismatch and the filling fraction) and is located much lower at 1.988 kHz. Due to the dispersion
around this lower band gap edge, the 4th order spatial derivative term is needed to describe the system
in a good accuracy. To further illustrate the importance of the higher order dispersive term, in Figure 2a
we additionally show a curve corresponding to the case without it (γ = 0).

On the other hand, the red lines in the Figure 2a,b show the respective results (for the lossless
case under consideration) for the dispersion relation, as obtained using the transfer matrix method
(TMM) [3]

cos(kphd) = cos(
ωph

c0
d) + i

Zm

2Z0
sin(

ωph

c0
d), (22)

where Zm = i
(

ωphLm − 1/ωphCm

)
is the impedance of the plate for the lossless case in the long

wavelength approximation, and Z0 = ρ0c0/S the acoustic characteristic impedance of the waveguide.
Comparing the dispersion relation obtained by using TMM, with the one resulting from the continuum
approximation, Figure 2a,b, we find an excellent agreement between these two in the regime of low
frequencies, namely sufficiently lower to the Bragg frequency.
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Figure 2. (a) the dispersion relation of system analyzed in this work for the real wavenumber, in the
regime of low frequencies. The blue dashed line shows the results from the transmission line approach
(keeping up to the O(d4)), the red line represents the ones obtained using the transfer matrix method
and the black dash-dotted line stands for the dispersion relation obtained by using the transmission
line approach keeping only up to O(d2). The points in Figure 2a show the frequencies used later in
the simulations, 350 Hz and 400 Hz; (b) the dispersion relation of our system in the regime of low
frequencies for the imaginary part of wavenumber k. The blue dashed line shows the results from
the transmission line approach (keeping up to the O(d4)), the red line represents the ones obtained
using the transfer matrix method and the black dash-dotted line stands for the dispersion relation
obtained by using the transmission line approach keeping only up to O(d2). The points in Figure 2b
show the frequencies used later in the simulations, 300 Hz and 90 Hz; (c) the influence of the periodicity
d of the lattice on the first cut-off frequency m (m is not the resonance frequency of the elastic plates
fm, but in our system it is close to it) (blue line) and the influence of d on the asymptote of the quasi
linear part a (green dashed line); and (d) the influence of the thickness of the elastic plates h on the first
cut-off frequency m (blue line) and the influence of h on the asymptote of the quasi linear part a (green
dashed line).

4. Dispersionless Nonlinear Propagation

We now consider the nonlinear regime, without dispersion due to the periodicity of the lattice
and the resonance of the plates, i.e., the well-known Westervelt equation. As the large-amplitude wave
propagates, the amplitude of the fundamental component |p1|will decrease continuously as the energy
is transferred to the nonlinearly generated higher-harmonic components (|p2|, etc. ). The growth of the
higher harmonics is displayed in the pre-shock region which is defined by σ ≤ 1, where σ = x/xsh is a
dimensionless shock formation distance. The shock distance,

xsh =
ρc3

2π f βp0
, (23)

is proportional to the velocity and inversely proportional to the pressure amplitude and source
frequency for a fixed medium. Here, the source condition is p(0, t) = p0 sin ωt, where p0 = 0.04P0

(with P0 being the atmospheric pressure), and sin ωt is periodic in time with fundamental frequency
f = 400 Hz. If this initial state propagates in a dispersionless waveguide—cf. Figure 3—its shock
distance will be around 4 m. In the near source region, the pertinent Fubini solution has certain
asymptotic properties [21]. The amplitude of the second harmonic component increases linearly to the
propagation distance:

|p1|/|p0| = 1− 1
8

σ2 + O(σ4), (24)
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|p2|/|p0| =
1
2

σ + O(σ3). (25)

As shown in Figure 3, the numerical results (circles) are in a good agreement with the Fubini
solution (solid lines).
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Figure 3. Fubini solution, for the wave propagation in the waveguide without elastic plates,
with f = 400 Hz. Solid and dashed lines depict analytical results, while circles and squares depict
numerical ones. The black solid line and blue circles represent the fundamental component, while
the dashed green line and red squares correspond to the second harmonic component. The numerical
results have an excellent agreement with the Fubini solution.

5. Combining Dispersion and Nonlinearity: Perturbation Method

Now, we study the second-harmonic generation in the presence of the periodic array of the elastic
plates, namely in the presence of dispersion. Our analysis relies on the determination of approximate
solutions of Equation (18) by using a perturbative approach.

We now express p as an asymptotic series in ε

p = εp1 + ε2 p2 + ε3 p3 + . . . , (26)

where 0 < ε � 1 is a formal small parameter. Here, the introduced ε is the acoustic Mach number,
defined as ε = p0

ρc2 , where p0 is the amplitude of the incident wave. Then, substituting Equation (26)
into Equation (18), we obtain a hierarchy of equations at various orders in ε. Of particular importance
in our analysis are the equations at the first two orders, which are as follows.

At the leading order, O(ε1), the resulting equation is

∂2 p1

∂τ2 −
∂2 p1

∂χ2 − γ
∂4 p1

∂χ4 + m2 p1 = 0, (27)

which possesses plane wave solution of the form

p1 =
1
2

exp(iθ) + c.c. ≡ cos(θ), (28)

where c.c. denotes complex conjugate, θ = ωτ − k(ω)χ is the phase, while parameters k and ω satisfy
the dispersion relation Equation (20). Next, we consider the equation at the order O(ε2),

∂2 p2

∂τ2 −
∂2 p2

∂χ2 − γ
∂4 p2

∂χ4 + m2 p2 = 2β0m2 p2
1 + β0

∂2 p2
1

∂τ2 . (29)
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Substituting Equation (28) into Equation (29), and using the identity cos2(θ) = (cos(2θ) + 1) /2,
we rewrite Equation (29) as follows:

∂2 p2

∂τ2 −
∂2 p2

∂χ2 − γ
∂4 p2

∂χ4 + m2 p2 =
(

m2 − 2ω2
)

β0 cos (2θ) . (30)

The solution of this equation is the sum of the general solution ph
2 of the homogeneous

equation and the particular solution pp
2 of the inhomogeneous equation, namely p2 = ph

2 + pp
2 ,

where the corresponding waves for these two solutions are the free and forced waves respectively;
these solutions read

ph
2 = ph

2(x = 0) cos(2φ) =
1
2

ph
2(x = 0) exp(i2φ) + c.c., (31)

pp
2 =

m2 − 2ω2

D(2ω, 2k)
β0 cos (2θ) =

1
2

m2 − 2ω2

D(2ω, 2k)
β0 exp(i2θ) + c.c., (32)

where 2φ = 2ωτ − k(2ω)χ, and k(2ω) is the wavenumber of the free wave at second harmonic
frequency. As long as 2k(ω) 6= k(2ω), which is the case in dispersive media, the forced and free waves
have different phase speeds, i.e., they are phase-mismatched. Since there is no second harmonic at
x = 0, we can set

ph
2(x = 0) = − m2 − 2ω2

D(2ω, 2k)
β0. (33)

Thus, the evolution of the second harmonic field p2 can directly be found as a combination of
Equations (32) and (31):

p2 = −2
m2 − 2ω2

D(2ω, 2k)
β0 sin

(
∆k
2

χ

)
sin(2ωτ − keffχ), (34)

where keff is the effective wave number,

keff = (2k(ω) + k(2ω)) /2, (35)

while ∆k is the detuning parameter that describes the asynchronous second harmonic generation,

∆k = k(2ω)− 2k(ω) = k2 − 2k1. (36)

Obviously, in the linear limit (β0 = 0), p2 turns to 0, i.e., the generated second harmonic is
due to the nonlinear effect. We can also find the second harmonic beatings in space, sin

(
∆k
2 χ
)

in
Equation (34). The position of the maximum of the beating can be related to the second-harmonic
phase-mismatching frequency as

xc(n) =
π

∆kn
=

π

|k(nω)− nk(ω)| . (37)

Therefore, as ∆k increases, the second harmonic beating spatial period, and also its maximum
amplitude, decreases.

6. Results

Now, we study numerically the role of dispersion on harmonic generation, in the 1D acoustic
metamaterial composed of elastic plates, and compare the numerical results to the analytical findings
of Section 5. There are two cases, corresponding to the propagating driver and evanescent driver,
which will be investigated separately below.
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6.1. Driving Frequency in the Pass Band

We start by studying the case where both the fundamental component and the second harmonic
component are in the pass band. We numerically integrate the weakly nonlinear lattice model,
Equation (14), using an initial condition p1(x = 0) of a cosinusoidal form, and also determine
the spectrum of the solution by using the Fast Fourier Transform (FFT). Blue circles and red
squares in Figure 4 show the evolution of the amplitude of the fundamental and second-harmonic
components, respectively, as the wave propagates in the dispersive structure, as obtained numerically.
As shown in the last section, if the distance between two cells is very small (here, we choose
d = 0.01 m), the asymptote, a, in such a dispersive system will be very small—cf. green dotted
line in Figure 2c—thus, the shock distance has a very small value. This means that the higher-harmonic
generation process is achieved much closer to the source, compared to the Fubini solution (see Figure 3).
The second-harmonic component |p2| /|p0| no longer increases linearly because of the presence of
dispersion induced by the elastic plates. Notice that |p2| /|p0| develops beatings in space due to the
phase mismatch. The fundamental wave vector of our source k1 (frequency ω) generates a forced
wave 2k1 (frequency 2ω), while the free wave that our system allows to propagate is k2. The difference
between 2k1 and k2 (because of the dispersion relation) introduces a phase mismatch, which means
that the second harmonic generation is asynchronous. We can, therefore, clearly observe the beatings
in Figure 4, where the analytical solutions have an excellent agreement with the numerical ones.
This perfect agreement breaks down if we consider a driving frequency with a second harmonic higher
than 1 kHz, since the continuous dispersion relation, see Equation (20), deviates from the discrete
one. Additionally, since we have considered a weakly nonlinear regime, the agreement between
numerics and our approximation is found to break down for amplitudes larger than 10 kPa. When we
increase the frequency from 350 Hz to 400 Hz, ∆k decreases, xc increases, the second-harmonic
beatings spatial period—and also its maximum amplitude—increase, see Equation (34). During the
nonlinear propagation in the dispersive system, cumulative nonlinear effects generate harmonics of
the fundamental frequency, and we can control this process by tuning the dispersion relation with
either the properties of the array or that of the plates.
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Figure 4. Harmonic generation in the presence of dispersion in the case of a propagating driver.
Second harmonic develops beatings in space due to the phase mismatch. Circles and squares depict
numerical results, while solid and dashed lines correspond to the analytical (perturbative) findings.
Both |p1| / |p0| (upper) and |p2| / |p0| (lower) are in the pass band. (a) f = 350 Hz; (b) f = 400 Hz.
Numerical and analytical solutions are in excellent agreement.
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6.2. Driving Frequency in the Bandgap

When the driving frequency is in the band gap, its second harmonic may be located either in the
gap band (evanescent) or in the pass band (propagating). In the former case, the second harmonic is
damped, and its decay rate is given by the imaginary part of the dispersion relation. In the latter case,
the second harmonic is propagating through the structure. Both cases are analyzed below.

We start by studying the case where both the fundamental component and its second harmonic
are in the band gap. In this case, the dispersion relation does not support real solutions, so
the corresponding wave number is imaginary, namely k(ω) = ik

′′
1 , with k

′′
1 the imaginary part

of the wavenumber, given by the dispersion relation. When k
′′
1 is very large, for example at

f = 90 Hz, cf. Figure 5a, the fundamental component |p1| decreases exponentially very quickly,
namely |p1| ∝ exp[−Im(k)x]. The second harmonic component is generated at the beginning of the
structure but is very small. In this case, k(2ω) = ik

′′
2 , with k

′′
2 the imaginary part of the wavenumber

given by the dispersion relation for 2ω. The generated frequency 2 f = 180 Hz is still in the band
gap, the corresponding Im(k) is smaller than that of the fundamental frequency, but still very large.
Therefore, we can find a very small |p2| /|p0| at the beginning of the structure, which eventually
decreases to zero, see Figure 5b.
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Figure 5. Harmonic generation in the presence of dispersion in the case of a evanescent driver.
Blue circles and red lines depict, respectively numerical and analytical results. (a) f = 90 Hz,
|p1| /|p0| in the band gap; (b) f = 90 Hz, |p2| /|p0| in the band gap; (c) f = 300 Hz, |p1| /|p0|
in the band gap; (d) f = 300 Hz, |p2| /|p0| in the pass band. Numerical and analytical solutions are in
excellent agreement.

If the driving frequency is close to the first cut-off frequency, the frequency of the generated
second-harmonic will be in the pass band. In this case, |p1| /|p0| decays slowly during the propagation
because the imaginary part of k is very small, cf. Figure 5c, where f = 300 Hz, while the generated
second-harmonic component is propagating, cf. Figure 5d. We can also find the second-harmonic
beatings at the beginning due to the phase mismatch (the difference between 2k1 and k2). Comparing
to the result shown in Figure 4, the beating spatial period is smaller because of a bigger ∆k. The
fundamental component is evanescent and, therefore, there will not be phase mismatch for |p2| (only
k2 propagates), i.e., we can hardly observe the beatings for |p2| /|p0| after 0.4 m, as shown in Figure 5d.

7. Conclusions

In conclusion, we have theoretically and numerically studied the nonlinear propagation and
second-harmonic generation in 1D acoustic metamaterial composed of an air-filled tube with a
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periodic array of elastic plates. Based on the electro-acoustic analogy, we proposed the transmission
line approach to derive a nonlinear lattice model, which was analyzed by both numerical and
analytical techniques. Considering the continuum limit of the lattice model, we derived a nonlinear
dispersive wave equation, in the form of a nonlinear Klein–Gordon model, which reduces—at certain
limits—to other well-known acoustic wave models (such as the Westervelt equation). In the linear limit,
we derived from this model the dispersion relation which, in the low frequency regime, was found to
be in excellent agreement with the one obtained by the transfer matrix method. We have shown
that, during the nonlinear propagation, cumulative nonlinear effects generate harmonics of the
fundamental frequency. Dispersion introduces phase mismatch between at higher harmonics, which is
the responsible of the beating effect. We used a perturbative approach to study analytically the effect
of dispersion on the harmonic generation. Analytical and numerical results were found to be in
excellent agreement.

There are many future research directions that may follow these preliminary results. First, it would
be interesting to investigate if the combined effects of nonlinearity and dispersion may give rise to
the emergence of solitons in the system (i.e., nonlinear waves that propagate undistorted when
nonlinearity and dispersion are exactly counterbalanced). Second, taking into account the presence
of inherent losses in the metamaterial structures under consideration, a study of the interplay
between nonlinearity, dispersion and losses would be very relevant. It would also be interesting
to extend our work to higher-dimensional settings, as well as to study nonlinear propagation in double
negative metamaterials, waveguides periodically loaded with a combination of elastic plates and
Helmholtz resonators.

Acknowledgments: This work has been funded by the Metaudible project, Agence Nationale de la Recherche,
ANR-13-BS09-0003, co-funded by ANR and Fondation de Recherche pour l’Aéronautique et l’Espace (FRAE).
Dimitris J. Frantzeskakis (D.J.F.) acknowledges warm hospitality at Laboratoire d’Acoustique de l’Université du
Maine (LAUM), Le Mans, where most of his work was carried out.

Author Contributions: Vicente Romero-García (V.R.-G.), Georgios Theocharis (G.T.) and Olivier Richoux (O.R.)
conceived the idea. Jiangyi Zhang (J.Z.) performed the analytics and the numerics. J.Z., V.R.-G., G.T., O.R.,
Vassos Achilleos (V.A.) and D.J.F. participate in the discussions and writing the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix

Here, we analyze another variant of the unit-cell circuit, shown in Figure A1. Our purpose is to
show that this variant leads to the same DDE model, Equation (14).

Figure A1. A variant of the unit-cell circuit for the nonlinear elastic plates lattice model: short segment
of the waveguide before the elastic plate.

First, Kirchoff’s voltage law leads to the equations

pn−1 − pn = Lω
d
dt

un + Lm
d
dt

un+1 + Vn, (A1)

pn − pn+1 = Lω
d
dt

un+1 + Lm
d
dt

un+2 + Vn+1, (A2)
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which, when substracted, yield

δ̂2 pn = Lω
d
dt

(un − un+1) + Lm
d
dt

(un+1 − un+2) + (Vn −Vn+1) . (A3)

Then, Kirchhoff’s current law yields

un+1 − un+2 = Cω
d
dt

(
p
′)

, (A4)

where Cω depends now on p
′

(and not on pn) in this variant of the unit-cell circuit, where p
′

is given by

p
′
= pn + Lω

d
dt

un+1 = pn−1 −
(

Lm +
1

Cm
d2

dt2

)
d
dt

un+2. (A5)

Additionally, current and voltage in the capacitor Cm are connected by the equations

un+2 = Cm
d
dt

(Vn+1) , un+1 = Cm
d
dt

(Vn) . (A6)

Subtracting the two above equations, and using Equation (A4), we obtain

un+1 − un+2 = Cm
d
dt

(Vn −Vn+1) = Cω
d
dt

(
p
′)

. (A7)

Thus, Vn −Vn+1 is expressed as follows:

Vn −Vn+1 =
Cω

Cm
p
′
. (A8)

To this end, substituting the above results into Equation (A3) yields

δ̂2 pn = (Lω + Lm)
d
dt

(
Cω

d
dt

(pn)

)
+

Cω

Cm
pn. (A9)

Rearranging the terms, and recalling that the capacitance Cω depends on the pressure, we obtain
the following DDE:

δ̂2 pn − LCω0
d2 pn

dt2 −
Cω0

Cm
pn +

LC
′
ω

2
d2 p2

n
dt2 +

C
′
ω

Cm
p2

n = 0, (A10)

which is identical to Equation (14).
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