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Abstract: The boron (Z = 5) element is unique. Boron-based (nano-)materials are equally unique.
Accordingly, the present special issue is dedicated to crystalline boron-based (nano-)materials and
gathers a series of nine review and research articles dealing with different boron-based compounds.
Boranes, borohydrides, polyhedral boranes and carboranes, boronate anions/ligands, boron nitride
(hexagonal structure), and elemental boron are considered. Importantly, large sections are dedicated
to fundamentals, with a special focus on crystal structures. The application potentials are widely
discussed on the basis of the materials’ physical and chemical properties. It stands out that crystalline
boron-based (nano-)materials have many technological opportunities in fields such as energy storage,
gas sorption (depollution), medicine, and optical and electronic devices. The present special issue is
further evidence of the wealth of boron science, especially in terms of crystalline (nano-)materials.

Keywords: benzoxaboronate; borane; borohydride; boron-based material; boron-treat steel;
boron nitride; boronate; carborane; metallacarborane; polyborate

1. Introduction

Boron (Z = 5) is one of the lightest elements of the periodic table, coming just before carbon
(Z = 6). It is also certainly the least well-known element with 2p valence shell. In comparison to the
very popular carbon, it has not attracted as much attention (despite more than two centuries of use),
but it has fascinated and exasperated generations of scientists. We, the contributors and editors of the
present special issue, are proud to belong to the current generation, and we are equally enthralled but
no longer exasperated.

Discovered in 1808, boron was isolated by Joseph-Louis Gay-Lussac (French chemist, 1778-1850)
and Louis-Jacques Thénard (French chemist, 1777–1857), and independently by Sir Humphry Davy
(English chemist, 1778–1829). The years that followed can be summarized by citing Grimes [1].
Boron “appeared normal—even boring—for a century following its isolation [ . . . ]. It behaved exactly as
expected, forming trivalent compounds [ . . . ], and everyone [ . . . ] believed that its simplest hydride had to
be BH3 [ . . . ]. It took the great German chemist Alfred Stock [(1876-1946)] to uncover the truth about the
boron hydrides [ . . . ]. Not until another half-century had passed did another towering scientist, William Nunn
Lipscomb [(American chemist, 1919–2011)], finally crack the mystery of the three-center-bonded polyboranes”.
Crystallinity of these polyboranes and the development of powerful characterization tools like X-ray
diffraction within the 20th century, among other factors, have allowed the recent great advances in
boron science.

Hosmane, in the preface of the book he edited, asks the question “what is boron?” and right after
gives the answer “the question itself may not seem very significant to many people” [2]. Boron is indeed
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little known. It may be confused with borax, which is the ore from which boron is extracted. This may
appear to be unfair in comparison to the reputation of carbon, but obviously boron has shown to be
versatile after two centuries of research and development. Let us again cite Hosmane [2]. “How many of
us know that a regular intake of boron can lessen the chance of prostate cancer? How many of us know that boron
plays a direct and critical role in combating cancer through a treatment called boron neutron capture therapy?”
Medicine is clearly a highly important and crucial area of application. In fact, boron—especially
boron-based compounds—have been widely used in many areas of application, including health
(e.g., fungicides, detergents, soaps, antiseptics, and cosmetics), nutrition (e.g., additives, fertilizers),
electronics, energy (e.g., nuclear energy, hydrogen storage, fuel cell), organic and inorganic chemistry,
catalysis, metallurgy, enamels, and ceramics.

Accordingly, the present special issue focuses on fundamentals and applications of crystalline
boron-based (nano-)materials, and aims at illustrating the recent great advances in boron science
through several examples.

2. The Journal Crystals, an Already-Identified Forum for Boron-Based (Nano-)Materials

Boron scientists have not waited for the present special issue to report their cutting-edge research
in this journal, Crystals. All of them are briefly cited hereafter, as they also illustrate the versatility of
boron and the importance of crystalline boron-based (nano-)materials in several areas of application.

2.1. Attractive Physical Properties

Borophosphates are intermediate compounds made from the system MxOy−B2O3−P2O5−(H2O),
where M is a transition metal like Fe. They are generally used as glasses, but borophosphates with
open frameworks have been shown to be of interest as magnetic materials. This is the case, for example,
for the new KFe[BP2O8(OH)] reported by Wang and Mudring [3]. It shows a three-dimensional
framework crystallizing in the monoclinic structure with a space group P21/c; it is formed by
alternating {BO3(OH)} and {PO4} tetrahedrons.

Another class of compounds that show particular magnetic properties is constituted of substituted
spirobiphenalenyl boron radicals (Figure 1). They are paramagnetic. Another of their physical
properties interested Pag et al. [4]. These radicals are indeed attractive molecular conductors for
optoelectronics, magnetooptics, and spintronics.
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properties. This was reported by Wang et al. [5], who especially worked on the single crystal structure
(trigonal calcite type, space group R-3c) and the band gap (3.62 eV) of GaBO3.

2.2. Attractive Chemical Properties

Boron hydrides (e.g., alkali borohydrides) are well-known as effective reducing agents.
Sodium borohydride (NaBH4) is certainly the most widely used in both organic and inorganic
chemistry. Potassium borohydride (KBH4) is an alternative. It was, for example, successfully used to
reduce the oxide layer forming on the surface of the intermetallic material MlNi3.6Co0.85Al0.3Mn0.3

used as a fuel cell anode. This work was reported by Chen et al. [6].
Alkali borohydrides are also of interest in the field of energy, especially as solid-state chemical

hydrogen storage materials. For this application, lithium borohydride (LiBH4) is more suitable than
the sodium and potassium counterparts, owing to the lightness of lithium (Mw = 6.94 g/mol) and
the highest gravimetric hydrogen density (18.5 wt % H). Destabilization of LiBH4 has been widely
investigated with the objective to decrease the dehydrogenation temperature, and Zavorotynska et al.’s
contribution concerns the solid solution LiBH4–LiCl [7]. Liquid-state chemical hydrogen storage is
also a possible application for alkali borohydrides, but NaBH4 is better than the lithium and potassium
counterparts in that case [8]. Other candidates for chemical hydrogen storage are boranes, the simplest
candidate being ammonia borane (NH3BH3). Sagan et al. [9], for their part, considered derivatives
with the following molecular structures: LiN(CH3)2BH3 and KN(CH3)2BH3.

The BH3 entity is not stable enough to exist in an isolated form. It exists as a dimer, which is
the diborane molecule B2H6. Otherwise, it can be stabilized by complexation with a Lewis base like
ammonia NH3 or tetrahydrofuran (CH2)4O, leading to the formation of a Lewis adduct. Accordingly,
BH3 is of key importance in molecular (organic) chemistry, as it can be used as protecting group of
a potential Lewis base. For example, one may cite the work reported by Mamat and Köckerling,
who used BH3 to protect a phosphane (Figure 2) [10]; another work belongs to Bourque et al. [11].
Both NaBH4 and a complex of BH3 were used for the synthesis of a maltolato compound; the former
was used as reducing agent, and the latter as Lewis acid.
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3. The Journal Crystals, a Key Forum for the Present Special Issue

The present special issue is constituted of nine review and research papers of high quality,
reporting different boron-based (nano-)materials for different possible areas of application. They are
briefly discussed hereafter.

3.1. Boranes and Borohydrides for Solid-State Hydrogen Storage

Owarzany et al. [12] present an overview on metal amidoboranes M(NH2BH3) with M = Li, Na,
K, Rb, Cs, Mg, Ca, Sr, Y, Al, and Zn. Amidoboranes constitute a constantly growing family of NH3BH3
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derivatives, especially investigated as solid-state chemical hydrogen storage materials. The authors
propose the most exhaustive survey of the amidoborane reported so far. Their crystal structures are
discussed first and in detail. Additional pieces of information are given based on nuclear magnetic
resonance, infrared, and Raman spectra. The authors also scan the synthesis paths, while giving
details about reactivity and selected properties, such as (among others) ionic conductivity, storage
capacity, and interatomic distance. The conclusion of the article points out the issues that hinder the
development and implementation of these chemical hydrogen storage materials.

We [13] have also contributed to the special issue with an article dealing with the in situ
Synchrotron X-ray diffraction of boranes. Pristine ammonia borane (NH3BH3), hydrazine borane
(N2H4BH3), and two hydrazinidoborane derivatives (MN2H3BH3; M = Li, Na), hydrazine bisborane
(BH3N2H4BH3) and sodium triborane (NaB3H8) are analyzed. All are currently considered as potential
chemical hydrogen storage materials. The boranes were investigated over a wide range of temperatures
(80–300 K). Differences in crystal structures, the existence of phase transition, evolutions of unit cell
parameters and volumes, and variation of coefficients of thermal expansion can be observed. The main
results are presented and discussed.

Like Zavorotynska et al. [7] (cf. Section 2.2), Javadian et al. [14] investigated LiBH4. However,
their approach is much different. They consider the destabilization of LiBH4 via the combination
of two approaches; that is, chemical doping with another hydride (sodium alanate, NaAlH4) and
nanoconfinement into a mesoporous carbon aerogel with high specific surface area (689 m2/g).
The reciprocal is also true, because one may consider the destabilization of NaAlH4 by the presence
of LiBH4. In comparison to the pure and bulk parent materials, improved dehydrogenation and
rehydrogenation properties are reported, making the authors positively conclude on the viability of
the proposed approach.

3.2. Polyhedral Boranes and Carboranes

There are two review article contributions addressing boron-rich clusters, such as polyhedral
boranes and carboranes.

The first is proposed by Planas et al. [15]. The review summarizes the synthetic routes,
coordination chemistry, and properties of a series of carboranyl ligands containing N, O donors
(e.g., closo-carbonylmethylalcohols with nitrogenated aromatic rings) as well as of metal (e.g., cobalt,
iron, platinum, titanium) complexes of these N,O-type carborane ligands. The wealth of carborane
chemistry is particularly remarked. It is of even more importance that N,O-type carborane ligand-based
complexes show a variety of properties, such as those used in magnetic, chiroptical, nonlinear optical,
catalytic, and biomedical applications. It is worth citing the last sentence of the authors’ conclusion,
as it is true for all of the articles of the present special issue: “New developments are appearing constantly
and are limited only by our imagination”.

The second review by Avdeeva et al. [16] is substantial, with 85 pages about silver and copper
complexes with closo-polyhedral borane (10 or 12 boron atoms), carborane (1 carbon atom with 9 or
11 boron atoms) and metallacarborane (e.g., [3,3’-Co(1,2-C2B9H11)2]−) anions (Figure 3). Each of the
complexes is reported in terms of synthesis and crystal structures. They demonstrate a wide variety
of structural types, relating to both the metal coordination environment and coordination modes of
boron hydride anions, which is discussed in detail by the authors. This review paper is of fundamental
importance, with a major part dedicated to crystal structures and coordination chemistry.

3.3. Boronate Ligands and Derivatives

Sene et al.’s review [17] is about some of the key results on crystalline structures with boronate
and benzoxaborolate ligands (anions) that can be used as building blocks (Figure 4). The authors
emphasize the fact that such ligands “had up until recently hardly been looked into as possible building blocks
for materials applications”. With respect to these mentioned “materials applications”, the authors have
in mind coordination networks as well as metal organic networks (MOFs). The article is structured
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around crystal structures involving simple boronates and benzoxaborolates, spectroscopic signatures
in materials, and finally emerging applications like functional coordination polymers/networks with
temperature-dependent luminescent properties or promising magnetic properties and benzoxaborole
drugs (nanomedicine).
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3.4. Boron Nitride

Boron nitride is a non-oxide ceramic material of high interest. A first illustration of this is provided
by Matarin and Rimola [18]. By using computational methods (B3LYP-D2* periodic simulations), they
investigated the adsorption of molecules like water (H2O), ammonia (NH3), formic acid (HCOOH),
benzene (C6H6), and methane (CH4) onto boron nitride nanotubes showing defects derived from
monovacancies of boron and nitrogen atoms. Distinction is made between the aforementioned
polar (H2O, NH3, HCOOH) and non-polar (C6H6, CH4) molecules. It is shown that nitrogen-rich
boron nitride nanotubes are more reactive towards the adsorption of polar molecules (dictated by
dative interactions), whereas the adsorption of non-polar molecules (physisorption governed by,
e.g., π-stacking for C6H6) does not depend on the type of the nanotube. It is therefore concluded that
adsorption onto boron nitride nanotubes may be modulated by the presence of surface defects.
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published by MDPI, 2016.

Hexagonal boron nitride (h-BN; Figure 5) is principally used as lubricant in domains ranging from
metallurgy to cosmetics. According to Yuan et al. [19], h-BN has other properties that may open new
perspectives for engineering applications, for example, as a solid lubricant in aeronautics or as a perfect
substrate to graphene for electronic devices. Such promising developments require tailored h-BN
shapes displaying a high level of crystallization, ensuring its properties for the long term. This article
aims at giving an overview of the strategies (rapid thermal annealing, Li3N as crystallization promoter,
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and spark plasma sintering) developed by the authors to prepare highly crystallized supported thick
coatings and self-standing nanosheets. The advantages and limitations of the three strategies, as well as
the main achievements, are reported and discussed. As a concluding remark, the authors optimistically
expect the development of h-BN-based high performance devices in the future.

It is worth mentioning that boron nitride is the featured molecule of a special issue of a sister
journal; that is, Molecules MDPI [20]. The issue title is “boron nitride: synthesis and application”,
and is co-edited by one of the present co-editors, Philippe MIELE. This special issue is dedicated to
the most recent development on the synthesis and applications of boron nitride, including synthesis
of high-quality crystal, nanopowders, nanosheets, nanostructured and porous ceramic materials,
high-performance composites, and optoelectronic and electronic devices.
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In conclusion, we would like to thank all of the authors who have contributed to this special 
issue. We again thank the main/correspondence authors who accepted our invitation several months 
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Figure 5. Representation of the structure of hexagonal boron nitride, the nitrogen atoms are represented
in blue, and the boron atoms in pink.

3.5. Boron-Tread Steels

The last paper of the series falls in a different field. Through a research paper, Gao et al. [21] give
an overview of the use of elemental boron as an effective alloying element employed to increase the
hardenability of high strength low alloy steels. They particularly investigated the influence of boron
on initial austenite grain size and hot deformation behavior of boron microalloyed steels. Among the
various findings, the following one may be cited. Increasing the boron content of boron-tread steel
increases the peak and critical strain of dynamic recrystallization, indicating that boron addition can
delay the onset of dynamic recrystallization. We believe that the present work will give the reader
a wider view of the application prospects of boron and related boron-based materials.

4. Conclusions

The present special issue gives an overview of the current works dedicated to crystalline
boron-based (nano-)materials. Though the original review and research articles dedicate large
sections to crystallinity and crystal structures, the authors also give details about various aspects,
such as synthesis, spectroscopic signatures, physicochemical properties, and application prospects.
With respect to this last aspect, advanced technologies, such as energy storage, gas sorption (energy and
environment), biomedicine and nanomedicine, and optical and electronic devices are targeted.
We cordially invite the reader curious about science, and especially boron science, to dip into each of
the nine articles of the present special issue.

In conclusion, we would like to thank all of the authors who have contributed to this special issue.
We again thank the main/correspondence authors who accepted our invitation several months ago.
The present special issue is an important scientific contribution to the field of boron science, and we,
the contributors, have all been actors of this successful publication. “New developments are appearing
constantly and are limited only by our imagination” [15].

We wish all of the readers compelling reading.
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