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Abstract: A new nonlinear optical (NLO) material, RbNa5Ca5(CO3)8, has been synthesized by
the hydrothermal method. The crystal structure is established by single-crystal X-ray diffraction.
RbNa5Ca5(CO3)8 crystallizes in the hexagonal crystal system with space group P63mc (No. 186).
The structure of RbNa5Ca5(CO3)8 can be described as the adjacent infinite [CaCO3]∞ layers
lying in the a-b plane bridged through standing-on-edge [CO3] groups by sharing O atoms
(two-fold coordinated) to build a framework with four types of tunnels running through the b-axis.
The Rb, Na, and [Na0.67Ca0.33] atoms reside in these tunnels, respectively. The measurement of
second harmonic generation (SHG) indicated that RbNa5Ca5(CO3)8 is a phase-matchable material,
which had SHG responses of approximately 1×KH2PO4 (KDP). Meanwhile, the results from the
UV-VIS diffuse reflectance spectroscopy study of the powder samples indicated that the UV cut-off
edges of RbNa5Ca5(CO3)8 is about 203 nm.

Keywords: carbonate; nonlinear optical crystal; UV; crystal growth

1. Introduction

UV nonlinear optical (NLO) crystals [1–8] have attracted widespread attention owing to their
significant roles in laser science and related technology. Although several crystals with excellent
nonlinear optical properties are well known, such as β-BaB2O4 [9], LiB3O5 [10] and CsB3O5 [11],
and part of which have been commercially manufactured and used worldwide, the design and
synthesis of new NLO materials with large macroscopic nonlinearities and wide transparency ranges
are still a particularly difficult challenge.

According to the anionic group theory [12–14], the NLO coefficient of crystals mainly originate
from a geometrical addition of the microscopic second-order susceptibility tensors of the anionic
groups. The [BO3]3- triangular groups with π-orbitals have been proven as favorite building units
for designing NLO materials due to their abilities to produce a large microscopic second-order
susceptibility and moderate birefringence. Numerous borates with the [BO3]3- structural unit have
been investigated [15–18]. Similarly, the same planar triangular [CO3]2- groups are considered to be
excellent NLO-active anionic groups as well. Recently, many excellent UV and deep-UV carbonate NLO
crystals have been synthesized, such as ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) [19], APbCO3F(A = Rb,
Cs) [20,21], K2.70Pb5.15(CO3)5F3 [22], Na8Lu2(CO3)6F2 [23], Na3Lu(CO3)2F2 [23], Na4La2(CO3)5 [24],
CsNa5Ca5(CO3)8 [24], and Na3Re(CO3)3(Re=Y, Gd) [25]. Lately Lin’s group confirmed that [CO3]2-

groups have a distinct advantage in birefringence and SHG effects in NLO crystals by theory calculation
in comparison with [BO3]3- group [26]. Thus, the [CO3]2- ion was selected as a basic structural unit

Crystals 2017, 7, 10; doi:10.3390/cryst7010010 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
http://www.mdpi.com/journal/crystals


Crystals 2017, 7, 10 2 of 9

to explore UV NLO materials. Additionally, it is well-known that the alkali metal and alkaline earth
metal are ideal compositions in UV NLO materials because there are no electron transitions in the
alkali metal-oxygen bond or alkaline earth metal-oxygen bond in the UV region [27,28]. Therefore, we
expect that combining the [CO3]2- groups with the alkali metal and alkaline earth metal will construct
new kinds of UV NLO materials.

In the present work, the Na2CO3–RbCl–CaCl2 systems were studied, attempting to synthesize
new non-centrosymmetric alkali and alkaline earth metal carbonate crystals. As a result, we have
successfully obtained a new acentric carbonate, RbNa5Ca5(CO3)8. It crystallizes in the hexagonal
crystal system, space group P63mc (No. 186), with a = b = 10.075(3) Å, c = 12.639(5) Å, Z = 2,
V = 1111.2(7) Å3. Herein its synthesis, crystal structure and some optical properties will be reported.

2. Results and Discussion

2.1. Crystal Structure Description

RbNa5Ca5(CO3)8 is isostructural to CsNa5Ca5(CO3)8 and crystallize into a hexagonal crystal
system with a noncentrosymmetric space group of P63mc. The structure along the b-axis is shown
in Figure 1. The structure can be described as the adjacent infinite [CaCO3]∞ layers lying in the a-b
plane bridged through the standing [CO3] groups by sharing O atoms (two-fold coordinated) to build
a framework with four types of tunnels running through the b-axis. The Na, Rb, and [Na0.67Ca0.33]
atoms reside in these tunnels, respectively, where Na atoms are located in a seven-coordination
environment with Na–O bond lengths ranging from 2.369(6) to 2.546(3) Å, Rb atoms are located in
an eight-coordination environment with Rb-O bond lengths ranging from 2.900(6) to 3.439(5) Å and
[Na0.67Ca0.33] atoms are coordinated to nine O atoms with Na0.67Ca0.33–O bond lengths ranging from
2.432(2) to 2.960(5) Å. The C1, C2, and C4 atoms are coordinated to three O atoms to form planar
[CO3] triangles with C–O bond lengths ranging from 1.232(4) to 1.295(1) Å and O−C−O bond angles
ranging from 114.6(1)◦ to 122.7(7)◦. However, C3 are surrounded by three O7 and one O6 to form
a propeller-shape along c axis, which are caused by the split of O7. It is noteworthy that the [CO3]
groups in two successive [CaCO3]∞ layers present an opposite orientation (Figure 2a). According
to anionic group theory, this arrangement of [CO3] groups makes almost no contribution to NLO
susceptibilities. The macroscopic SHG effects, however, originated from the standing [CO3] group
along c axis. It is regrettable that the standing-on-edge [C3O3] and [C4O3] groups are almost arranged
oppositely to the c direction (see Figure 2b), which cancels the d33 contribution from [C4O3] group.
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Figure 2. The arrangement of [CO3]2- groups: (a) the flat-lying [CO3]2- groups (b) the standing
[CO3]2- groups.

2.2. TG Analysis

The thermal behavior of RbNa5Ca5(CO3)8 is shown in Figure 3. As shown in Figure 3,
RbNa5Ca5(CO3)8 is thermally stable up to about 600 ◦C. RbNa5Ca5(CO3)8 undergoes the weight
loss between 600 ◦C and 850 ◦C due to the release of five moles of CO2 (exp./th. = 25.03/24.97).
The decomposition reaction is:

RbNa5Ca5(CO3)8→2.5Na2CO3 + 0.5Rb2CO3 + 5CaO + 5CO2(g)

The reaction mechanism is confirmed by the residue PXRD. (See Figure S1 in the
Supporting Information).
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Figure 3. TG and DTA diagrams for RbNa5Ca5(CO3)8.

2.3. Diffuse-Reflectance Spectroscopy

As shown in Figure 4, UV-VIS diffuse reflectance spectra were collected for RbNa5Ca5(CO3)8 in
the region of 200–2000 nm. Absorption (K/S) data were calculated from the following Kubelka-Munk
function: F(R) = (1-R)2/2R = K/S, where R is the reflectance, K is the absorption, and S is the scattering.
In the (K/S)-versus-E plots, extrapolating the linear part of the rising curve to zero provided the onset
of absorption. Optical diffuse reflectance spectrum studies indicated that the optical band gaps for
RbNa5Ca5(CO3)8 was approximately 6.08 eV with UV cut-off edges of 203 nm.

2.4. NLO Properties

The curves of the SHG signal as a function of particle size from the measurements made on
ground crystals of RbNa5Ca5(CO3)8 is shown in Figure 5. Based on the rule proposed by Kurtz and
Perry, we can clearly see that the titled compound is phase-matching in the visible region. The KDP
sample is used as a reference. The measurement of second-harmonic signal for RbNa5Ca5(CO3)8 is
found to be about 1 × KDP.
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as a reference.

2.5. Relationship between Structure and NLO Properties

According to the anionic group theory, the dipole transition from the cations to the anionic group
([CO3] in this case) is the off-site transition. Its value is about one order smaller than the dipole
transition of the intra-atomic transitions within anionic groups. Thus, the main SHG coefficients have
largely depended on the [CO3] anionic group. Therefore, based on the anionic group theory, the
macroscopic second-order susceptibility χ (2) may be expressed by Equation (1):

x(2)ijk =
F
V ∑

p
∑

i′ j′k′
αii′αjj′αkk′β

(2)
i′ j′k′

(P), P = [CO3] (1)

where F is the correction factor of the localized field, V is the volume of the unit cell,αii’, αjj’ , and αkk’
are the direction cosines between the macroscopic coordinates axes of the crystal and the microscopic
coordinates axes of [CO3] groups, and βi’j’k’ is the microscopic second-order susceptibility tensors of an
individual group. The [CO3] is a planar group in point group D3h. Under the Kleinman approximation,
there are only two non-vanishing second-order susceptibilities β

(2)
111 = −β

(2)
122. The geometrical factor,

g, can be derived from Equations (1) and (2) may be simplified according to the deduction process
shown in ref [29]:

x(2)ijk =
F
V
· gijk · β

(2)
111([CO3]) (2)
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In case of nonspontaneous polarization, the structural criterion C is defined as:

C =
g
n

(3)

where n is the number of anionic groups in a unit cell.
Since the localized field (F) is dependent on the refractive index of crystal, for the convenience of

discussion, we assume that the carbonates in our discussion have similar refractive index. Hence, from
the Equations (2) and (3) we can see that the NLO coefficient x(2)ijk is proportional to the density of the
[CO3] group (n/V) and the structural criterion (C). According to the notation of Grice et al. [30],
the [CO3] groups in RbNa5Ca5(CO3)8 had two arrangements, flat-lying and standing-on-edge.
The flat-lying [CO3] groups in two successive [CaCO3]∞ layers present an opposite orientation, which
give almost no contribution to the C factor. The major contribution to the C factor is dependent on the
standing-on-edge [CO3] groups along the c axis. It is worth noting that the standing-on-edge [CO3]
groups exist as two sets of arrangements in the structure, among which two [CO3] groups are perfectly
aligned along the c direction and the other six [CO3] groups skew towards the c axis by about 16.6◦.
However, it is regrettable that two sets of the arrangement present the opposite direction, which have
negative contributions to the C factor. The accurately-calculated C factor for RbNa5Ca5(CO3)8 is 0.197.
Although the density of the [CO3] group in title compound is moderate, the small C factor eventually
results in the small macroscopic SHG effect.

In order to further illustrate how the macroscopic SHG responses affected by the arrangement
of the NLO-active groups and the density of NLO-active groups, we compared RbNa5Ca5(CO3)8

with KSrCO3F. In the KSrCO3F, the [CO3] triangles are all exactly parallel to each other, giving a
100% optimum. Although the density of [CO3] groups in the RbNa5Ca5(CO3)8 (0.0144) is larger
than that of KSrCO3F (0.0089), the C value of RbNa5Ca5(CO3)8 is only 0.197, which results in the
calculated value of (n/V) × C (Å-3) of RbNa5Ca5(CO3)8 (0.0028) is smaller than that of KSrCO3F
(0.0089). Therefore, the SHG value of RbNa5Ca5(CO3)8 is calculated to be 31.5% relative to KSrCO3F.
This result is approximately in accordance with the experimental value, which is 1/3, relative to
KSrCO3F for RbNa5Ca5(CO3)8. The calculation results were shown in Table 1 and the calculation
results are in good agreement with the SHG measurements.

Table 1. NLO Effects of KSrCO3F and RbNa5Ca5(CO3)8.

Crystals SHG coefficient
(×KDP)a

Structural
criterion C

densities of the
[CO3] (n/V) (Å-3) (n/V) × C(Å−3)

KSrCO3F
RbNa5Ca5(CO3)8

3.33
1

1
0.197

0.0089
0.0144

0.0089
0.0028

3. Materials and Methods

3.1. Reagents

Na2CO3 (99.8%), CaCl2 (99.8%), RbCl (99.8%) were purchased from Titan (Titan, Shanghai, China).

3.2. Synthesis and Crystal Growth

A mixture of Na2CO3 (2.12 g, 0.02 mol), CaCl2 (0.444 g, 004 mol), RbCl (2.42 g, 0.02 mmol) and
H2O (10.0 mL) was sealed in an autoclave equipped with a Teflon liner (23 mL) and heated at 220 ◦C for
five days, followed by slow cooling to room temperature at a rate of 3 ◦C/h. The reaction product was
washed with deionized water and ethanol, and then dried in air. Colorless hexagonal prism-shaped
RbNa5Ca5(CO3)8 crystals were obtained as a single phase in a yield of about 80% based on Ca.
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3.3. Single-Crystal X-Ray Diffraction

Single-crystal X-ray diffraction data were collected at room temperature on a Rigaku Mercury CCD
diffractometer (Rigaku, Tokyo, Japan) with graphite-monochromatic Mo Kα radiation (λ = 0.71073Å).
A transparent block of crystal was mounted on a glass fiber with epoxy for structure determination.
A hemisphere of data was collected using a narrow-frame method withω-scan mode. The data were
integrated using the CrystalClear program, and the intensities were corrected for Lorentz polarization,
air absorption, and absorption attributable to the variation in the path length through the detector
faceplate. Absorption corrections based on the multiscan technique were also applied. The structure
of RbNa5Ca5(CO3)8 was solved by the direct methods using SHELXS-97 [31]. During the refinement
for RbNa5Ca5(CO3)8, Na2 and Ca2 atoms were set to share the same sites, due to the large U(eq)
and R values when these sites were assigned as Ca atoms. To retain charge balance, the occupancy
ratios of Na/Ca were refined to be 0.67/0.33. Meanwhile, at this stage of refinement, the U(eq) of O(7)
atom appeared to be very high. Consequently, the oxygen atom O(7) was split with a scale factor of
0.67. All thermal parameters were satisfying. Additionally, all non-hydrogen atoms were refined with
anisotropic thermal parameters. The structure was verified using the ADDSYM algorithm from the
program PLATON [32], and no higher symmetries were found. Relevant crystallographic data and
details of the experimental conditions for RbNa5Ca5(CO3)8 are summarized in Table 2. (Database:
CCDC 1510695, These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/
retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033;
E-mail: deposit@ccdc.cam.ac.uk)) Atomic coordinates and isotropic displacement coefficients are listed
in Table S1 and bond lengths in Table S2 in the Supporting Information.

Table 2. Crystal data and structure refinement for RbNa5Ca5(CO3)8.

Formula RbNa5Ca5(CO3)8

Formula Mass(amu) 880.90
Crystal System Hexagonal
Space Group P63mc
a (Å) 10.075(3)
c (Å) 12.639(5)
A (◦) 90
γ (◦) 120
V (Å3) 1111.2(7)
Z 2
ρ(calcd) (g/cm3) 2.633
Temperature (K) 293(2)
Λ (Å) 0.71073
F(000) 864
M (mm−1) 3.600
θ (deg) 2.33–27.50
Rint 0.0442
R/wR (I > 2σ (I)) 0.0409/0.1015
R/wR (all data) 0.0413/0.1018
GOF on F2 1.117
Absolute Structure Parameter 0.00
Largest Diff. Peak and Hole (e/Å-3) 1.069 and –0.835

R(F) = Σ||Fo| – |Fc||/Σ|Fo|. wR(Fo
2) = [Σw(Fo

2 – Fc
2)2/Σw(Fo

2)2]1/2.

3.4. Powder X-Ray Diffraction

X-ray diffraction patterns of polycrystalline materials were obtained on a Rigaku Dmax2500
powder X-ray diffractometer (Rigaku, Tokyo, Japan) by using Cu Kα radiation (λ = 1.540598 Å) at
room temperature in the angular range of 2θ = 5-65◦ with a scan step width of 0.05◦ and a fixed time

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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of 0.2 s. The powder XRD pattern for the pure powder sample of RbNa5Ca5(CO3)8 shows a good
agreement with the XRD pattern calculated from the single-crystal model (see Figure 6).
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3.5. Thermal Analysis

The TG/DTA scans were measured on a NETZSCH STA 449C (NETZSCH, Bavaria, Germany).
Reference (Al2O3) and crystal samples (5–10 mg) were enclosed in Al2O3 crucibles and heated from
room temperature to 1000 ◦C at a rate of 10 ◦C/min under a constant flow of nitrogen gas.

3.6. UV-VIS Diffuse Reflectance Spectroscopy

UV-VIS diffuse reflectance spectroscopy data were recorded at room temperature using a powder
sample with BaSO4 as a standard (100% reflectance) on a PerkinElmer Lamda-950 UV/VIS/NIR
spectrophotometer and scanned at 200–2000 nm. Reflectance spectra were converted to absorbance
using the Kubelka-Munk function [33,34].

3.7. Second-Harmonic Generation

Polycrystalline second-harmonic generation (SHG) signals were measured using the method
adapted from Kurtz and Perry. Since SHG efficiencies are known to depend strongly on particle
size, polycrystalline samples were ground and sieved into the following particle size ranges: 25–45,
45–62, 62–75, 75–109, 109–150, and 150–212 µm. The samples were pressed between glass microscope
cover slides and secured with tape in 1-mm thick aluminum holders containing an 8-mm diameter
hole. To make relevant comparisons with known SHG materials, crystalline KDP were also ground
and sieved into the same particle size ranges. The samples were then placed in a light-tight box
and irradiated with a pulsed laser. The measurements were performed with a Q-switched Nd:YAG
laser at 1064 nm. A cutoff filter was used to limit background flash-lamp light on the sample, and
an interference filter (530 ± 10nm) was used to select the second harmonic for detection with a
photomultiplier tube attached to a RIGOL DS1052E 50-MHz oscilloscope. This procedure was then
repeated using the standard nonlinear optical materials KDP, and the ratio of the second-harmonic
intensity outputs were calculated. No index-matching fluid was used in any of the experiment.

3.8. Scanning Electron Microscope (SEM)/Energy-Dispersive Analysis by X-Ray (EDX)

SEM/EDX analyses have been performed using a Hitachi S-3400N/Horiba Energy EX-250
instrument (Hitachi, Tokyo, Japan). EDX result reveals that the titled compound contain Rb, Na,
and Ca with the ratio of 0.9:4.8:5.2.
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4. Conclusions

In summary, RbNa5Ca5(CO3)8 with non-centrosymmetric structure, has been prepared under
a subcritical hydrothermal condition. The results from the UV-VIS diffuse reflectance spectroscopy
study of the powder sample indicated that the short-wavelength absorption edges of RbNa5Ca5(CO3)8

is about 203 nm. The SHG test shows that the compound exhibit SHG responses about one times
KH2PO4 (KDP). Our future efforts will be devoted to growing large crystals of RbNa5Ca5(CO3)8 to
further study their optical properties, such as refractive indices, the Sellmeier equations, second-order
NLO coefficients, and laser damage threshold.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/2073-
4352/7/1/10/s1.
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