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Abstract: Nanoindentation is a well-stablished experiment to study the mechanical properties
of materials at the small length scales of micro and nano. Unlike the conventional indentation
experiments, the nanoindentation response of the material depends on the corresponding length
scales, such as indentation depth, which is commonly termed the size effect. In the current work,
first, the conventional experimental observations and theoretical models of the size effect during
nanoindentation are reviewed in the case of crystalline metals, which are the focus of the current
work. Next, the recent advancements in the visualization of the dislocation structure during the
nanoindentation experiment is discussed, and the observed underlying mechanisms of the size effect
are addressed. Finally, the recent computer simulations using molecular dynamics are reviewed as a
powerful tool to investigate the nanoindentation experiment and its governing mechanisms of the
size effect.
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1. Introduction

The size effect in material science is the variation of material properties as the sample characteristic
length changes. In the current work, the focus is on the size effect on the nanoindentation response
of crystalline metals. Nanoindentation is a well-stablished experiment to investigate the mechanical
properties of material samples of small volumes. During the nanoindentation, a very hard tip is
pressed into the sample, and the variation of load versus the penetration depth is recorded. In the
case of nanoindentation, the dependency of material hardness on the corresponding characteristic
length is termed as the size effect. The underlying mechanism of the size effect during nanoindentation
depends on the material nature. In the case of crystalline metals, the size effect is governed by
the dislocation-based mechanisms. The nanoindentation size effects in other materials such as
ceramics, amorphous metals, polymers and semiconductor materials are controlled by cracking,
non-dislocation-based mechanisms, shear transformation zones and phase transformations [1–4].

A very common size effect during the nanoindentation occurs in the case of the geometrically
self-similar indenter tips. The conventional plasticity predicts that the hardness should be independent
of the penetration depth. Experimental results, however, have shown that the hardness is a function
of indentation depth, which is commonly termed as the indentation size effect [4–22]. The common
size effect is the increase in hardness by decreasing the indentation depth. Most of the size effect
studies support this trend. However, few studies have shown the inverse size effects in which as
the indentation depth decreases, the hardness also decreases, which is commonly termed as inverse
size effects [4–7,9,10,23]. However, the inverse size effect is commonly attributed to the artifacts of
the experiment such as instrument vibration and the error in contact area measurements [4,8–10].
In addition to the size effect during the nanoindentation using a geometrically self-similar tip, another
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indentation size effect occurs in the case of a spherical indenter tip. However, the characteristic length
of this size effect is the indenter radius itself in a way that the hardness increases as the tip radius
decreases [14–18].

Besides the experimental observations, computer simulations have greatly contributed to
the investigation of the response of materials during nanoindentation. The common modeling
methods are finite element [24–41], crystal plasticity [42–50], discrete dislocation dynamics [51–62],
the quasicontinuum method [63–76] and molecular dynamics (MD) [77–88]. Going down from
simulations with larger length scales, i.e., finite element, to that of the smallest length scales, i.e., MD,
the simulation accuracy increases while the required resources hugely increases. The most accurate
method to model the nanoindentation experiment and investigate the underlying physics of the
indentation size effect is to model the sample as a cluster of atoms using MD simulation. Accordingly,
the MD simulation of nanoindentation can be envisaged as a pseudo-nanoindentation experiment in
which the sample is modeled with the accuracy down to the atomic scale.

In the current review, the focus is on the nanoindentation size effect in crystalline metals, in which
the deformation mechanisms are governed by the nucleation and evolution of the dislocation network.
The size effect trend in which the hardness increases as the indentation depth decreases is considered
in the current review. The aim of this study is to address recent advancements in experiments and
atomistic simulation to capture the underlying mechanisms of the size effect during nanoindentation.
To do so, first, the classical experimental observations and theoretical models of size effects during
nanoindentation are reviewed. Next, the interaction of size effects during nanoindentation with the
effects of grain size is summarized. The recent advancements for nanoindentation experiments with
the focus on various methods of dislocation density measurement are then reviewed. Advanced size
effect models, which have been proposed based on the recent experimental observations, are addressed
here. Finally, the atomistic simulation of nanoindentation is introduced as a powerful tool to
investigate the underlying mechanisms of the size effect during nanoindentation. The dislocation
nucleation and evolution pattern observed during the MD simulation of nanoindentation are also
summarized. The details and methodology of atomistic simulations, however, are beyond the scope of
the current work.

2. Classical Experimental Observations and Theoretical Models

The older generation of size effect observations during indentation have been reported usually
as the variation of hardness versus the indentation load (see, e.g., Mott, [5]) during the Vickers
microhardness experiment, which has a square-based diamond pyramid. In the early stages of the size
effect observations, however, the observed trends have been attributed to the experimental artifacts
such as sample surface preparation or indenter tip imperfections. Advancing the nanoindentation
techniques and load and depth sensing instruments, however, the obtained results show that the
indentation size effects are not artifacts of the experiment, and it has underlying physical mechanisms.
Figure 1 shows the common size effect trend for several nanoindentation experiments available in the
literature in which the hardness increases as the indentation depth decreases. In Figure 1, for each set
of experiments, the hardness is normalized using the hardness value at large indentation depths H0,
at which the hardness becomes independent of the indentation depth. To unravel the governing
mechanisms of the size effect during nanoindentation, the concept of geometrically necessary
dislocations (GNDs), which was introduced by Ashby [89], has been commonly adopted [11–14,90].
Ashby [89] stated that dislocations could be categorized into two groups. The first one, which is called
geometrically necessary dislocations (GNDs), is formed to sustain the imposed displacement for the
sake of compatibility. The second type, which is called statistically stored dislocations (SSDs), is a
group of dislocations trapping each other in a random way. The model proposed by Nix and Gao [13]
is a milestone in this family of models in which they predicted the size effect during nanoindentation
using a conical tip (Figure 2). In Figure 2, the SSDs are excluded; however, they contribute to the
indentation hardness. During the nanoindentation, the compatibility of deformation between the
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sample and indenter is guaranteed by the nucleation and movement of GNDs. Accordingly, the total
length of GNDs λG can be obtained based on the indentation depth h, contact radius ap, Burgers vector
of GNDs b and indenter geometry as follows (Nix and Gao [13]):

λG =
∫ ap

0

2πrh
bap

dr =
πaph

b
=

πa2
p tan(θ)

b
(1)

where tan(θ) = h/ap. In the next step, Nix and Gao [13] assumed that the plastic zone is a hemisphere
with the radius of ap. Accordingly, the density of GNDs ρG can be described as follows:

ρG =
λG

V
=

3h
2ba2

p
=

3
2bh

tan2(θ) (2)

where V is the volume of the plastic zone.
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Figure 1. Size effect during nanoindentation. The original experimental data have been reported
by De Guzman [12], Ma and Clarke [91], Poole et al. [92], McElhaney et al. [93], Nix and Gao [13],
Lim and Chaudhri [15], Liu and Ngan [94], Swadener [14], Bull [20], McLaughlin and Clegg [95] and
Rester et al. [96].
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Nix and Gao [13] further neglected the interaction between SSDs and GNDs and assumed that
the total dislocation density ρ is simply the summation of SSDs and GNDs densities, i.e., ρ = ρS + ρG,
where ρS and ρG are the SSD and GND densities, respectively. Finally, the Taylor hardening model
relates the dislocation density ρ to the indentation hardness H as follows [13]:

H = 3
√

3αGb
√

ρ = 3
√

3αGb
√

ρG + ρS (3)

where G is the shear modulus and α is a material constant. Accordingly, the variation of hardness
versus the indentation depth can be defined as follows:

H
H0

=

√
1 +

h∗

h
(4)

where H0 is the hardness due to SSDs and h* is the characteristic length that governs the dependency
of the hardness on the penetration depth. H0 and h* can be described as follows:

H0 = 3
√

3αGb
√

ρS (5)

h∗ =
81
2

bα2 tan2(θ)

(
G
H0

)2
(6)
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Figure 2. Axisymmetric rigid conical indenter. Geometrically necessary dislocations (GNDs) created
during the indentation process. The dislocation structure is idealized as circular dislocation loops
(after Abu Al-Rub and Voyiadjis [97]).

In the next step, Nix and Gao [13] connected the physical mechanism of indentation size effect
to the strain gradient plasticity model by defining the strain gradient during the nanoindentation
as follows:

χ ≡ tan(θ)
ap

(7)

Accordingly, the length scale for a strain gradient model can be obtained as follows:

l ≡ b
(

G
σ0

)2
(8)

where σ0 = H0/3.
Swadener et al. [14] extended the proposed model of Nix and Gao [13] to include the general

indenter geometry of h = Ar
n, where n > 1 and A is a constant. Accordingly, the total dislocation length

can be described as follows:

λG =
∫ ap

0

2πr
b

(
dh
dr

)
dr =

2πnA
b(n + 1)

an+1
p (9)
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Accordingly, the GND density can be described as follows:

ρG =
λG

V
=

3nA
b(n + 1)

an−2
p =

3nA(2/n)

b(n + 1)
h(1−2/n) (10)

Pugno [90] extended the framework proposed by Swadener et al. [14] for the indenter with the
general geometry by approximating the indentation surface as a summation of discrete steps due to
the formation of dislocation loops (Figure 3). Accordingly, the total GND length can be calculated
as follows:

λG =
Ω− A

b
=

S
b

(11)

where A and S are the summation of horizontal and vertical surfaces, respectively, and Ω = S + A
(Figure 3). The GND density can be described as follows:

ρG =
λG

V
=

S
bV

(12)

Accordingly, the size effect law can be described based on the surface to volume ratio of the
indentation domain.
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Figure 3. Approximating the indentation surface as a summation of discrete steps: A is the projected
contact area; Ω is the contact surface; and S = Ω− A.

Swadener et al. [14] also addressed the size effect during indentation using a spherical tip.
The geometry of the spherical tip was approximated by parabola, i.e., h = r2/2Rp. According to
Equation (10), ρG = 1/bRp, i.e., the density of GNDs is independent of penetration depth for a spherical
indenter. However, the size effect for a spherical indenter is governed by another characteristic length,
which is the indenter radius Rp. Using the similar methodology as Equation (4), the size effect for
spherical indenters can be described as follows:

H
H0

=

√
1 +

R∗

Rp
(13)

where R∗ = r/bρS. Figure 4 compares the theoretical predictions presented by Nix and Gao [13] and
Swadener et al. [14]. The results show that the theoretical model can capture the size effects for large
indentation depths and indenter radii. In the case of small depths and radii, however, the theoretical
models noticeably deviate from the experimental results.

Feng and Nix [98] also showed that the Nix and Gao model [13] cannot capture the size effect in
MgO during nanoindentation at lower indentation depths (Figure 5). They investigated three reasons
that may induce the Nix and Gao model [13] to break down at small indentation depths: indenter
tip bluntness, effect of Peierls stress and dislocation pattern underneath the indenter. They showed
that the first two reasons are not responsible for the observed discrepancies. In order to consider the
dislocation distribution beneath the indenter, they showed that the modified radius of the plastic zone
should be incorporated as follows:

Rpz = f ap (14)
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where f varies as the indentation depth increases. For a large indentation depths, f → 1 , the model
reduces to the Nix and Gao model [13]. Accordingly, the volume of plastic volume can be obtained
as below:

V =
2
3

πR3
pz =

2
3

π f 3a3
p (15)

The size effect model based on the modified definition of plastic volume is depicted in Figure 6,
which captures the size effect both at large and small indentation depths. Durst et al. [36] incorporated
the same method to modify the Nix and Gao model [13]. Instead of variable f , which is fitted using the
experiment (Feng and Nix [98]), they proposed that f is a constant. They incorporated f = 1.9 in their
work and showed that it can capture the size effects in single crystal and ultrafine-grained copper [36].
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In order to modify the Nix and Gao model [13], Huang et al. [99] proposed an analytical model
by defining a cap for GND density ρmax

G , which is a material constant. Accordingly, in the case of the
conical indenter, the local GND density can be defined as follows:

(ρG)local = ρmax
G if h < hnano (16a)
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(ρG)local =

{
ρmax

G for r < hnano
tan(θ)

tan(θ)
br for hnano

tan(θ) ≤ r ≤ ap = h
tan(θ)

(16b)

where hnano = tan2(θ)/
(
bρmax

G
)

is a nanoindentation characteristic length. The average GND density
can be obtained by averaging (ρG)local over the plastic zone volume, which is a hemisphere with the
radius of ap, as follows [99]:

ρG = ρmax
G

{
1 if h < hnano
3hnano

2h − h3
nano
2h3 if h < hnano

(17)

Crystals 2017, 7, 321 7 of 26 

 

= 1 if ℎ < ℎ3ℎ2ℎ − ℎ2ℎ if ℎ < ℎ 	 (17) 

 

 

Figure 6. Indentation size effect in polished MgO: (a) experimental results versus the modified Nix 
and Gao model presented by Feng and Nix [98] ( = 9.19	GPa;	ℎ∗ = 102	nm); (b) variation of  
versus ℎ (after Feng and Nix [98]). 

Based on the modified GND density, Huang et al. [99] developed a strain gradient plasticity 
model and captured the indentation size effect in MgO and Ir (Figure 7). The values of  for MgO 
and Ir are 1.28 × 10 	m  and 9.68 × 10 	m , respectively. 

 
Figure 7. Comparison between the indentation size effect captured using the strain gradient plasticity 
model developed by Huang et al. [99] using a cap for GND density versus the experimental results in 
Ir and MgO = 9.68 × 10 	m , = 1.28 × 10 	m . The original simulation and 

experimental data have been reported by Swadener [14], Feng and Nix [98] and Huang et al. [99]. 

3. Interaction of Size Effects during Nanoindentation and Grain Size Effects 

The interaction between the effects of grain size with indentation size effects have been 
addressed both theoretically and experimentally [100–108]. Here, the experimental and theoretical 
studies conducted by Voyiadjis and his coworkers [103–108] are discussed in more detail. Figure 8 
compares the response of single crystalline and polycrystalline Al during nanoindentation. In the 
case of single crystalline Al, the conventional size effects trend can be observed. In the case of 
polycrystalline Al, however, a local hardening can be observed, which is due to the effect of the grain 
boundary (GB). In order to capture the effect of GB, the theoretical model has been proposed by 
Voyiadjis and his coworkers [103–108] based on the concept of GNDs and the methodology 
developed by Nix and Gao [13]. Figure 9 depicts the effect of GB on the dislocation movement pattern 
during nanoindentation. Unlike the single crystalline metals, the GNDs movements are blocked by 
grain boundaries, which induce a dislocation pile-up against the GB. Accordingly, a local hardening 

Figure 6. Indentation size effect in polished MgO: (a) experimental results versus the modified Nix and
Gao model presented by Feng and Nix [98] (H0 = 9.19 GPa; h∗ = 102 nm); (b) variation of f versus h
(after Feng and Nix [98]).

Based on the modified GND density, Huang et al. [99] developed a strain gradient plasticity
model and captured the indentation size effect in MgO and Ir (Figure 7). The values of ρmax

G for MgO
and Ir are 1.28× 1016 m−2 and 9.68× 1014 m−2, respectively.
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3. Interaction of Size Effects during Nanoindentation and Grain Size Effects

The interaction between the effects of grain size with indentation size effects have been addressed
both theoretically and experimentally [100–108]. Here, the experimental and theoretical studies
conducted by Voyiadjis and his coworkers [103–108] are discussed in more detail. Figure 8 compares
the response of single crystalline and polycrystalline Al during nanoindentation. In the case of single
crystalline Al, the conventional size effects trend can be observed. In the case of polycrystalline
Al, however, a local hardening can be observed, which is due to the effect of the grain boundary
(GB). In order to capture the effect of GB, the theoretical model has been proposed by Voyiadjis
and his coworkers [103–108] based on the concept of GNDs and the methodology developed by
Nix and Gao [13]. Figure 9 depicts the effect of GB on the dislocation movement pattern during
nanoindentation. Unlike the single crystalline metals, the GNDs movements are blocked by grain
boundaries, which induce a dislocation pile-up against the GB. Accordingly, a local hardening is
induced in the nanoindentation response due to the GB resistance. The dislocation can move to the
next grain when the stress concentration induced by dislocation pile-up reaches a critical value, and the
nanoindentation response follows the conventional size effect pattern. Accordingly, the schematic of
effects of GB on the nanoindentation response can be divided into three regions (Figure 10). In Region I,
the indenter does not feel the GB, and the initial nucleation and evolution of GNDs govern the size
effect, which is similar to the response of a single crystal sample. Eventually, the dislocations reach
the GB at which their movements are blocked, and they pile-up against the GB, which leads to a local
hardening (Region II). The pile-up stress eventually reaches a critical value, and dislocations will
dissociate to the next grain; additionally, the nanoindentation response follows that of a single crystal
sample (Region III).
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Voyiadjis and Zhang [107] and Zhang and Voyiadjis [108] investigated the effects of GB on the
nanoindentation response of bicrystalline Al and Cu samples, respectively. They varied the distance of
indentation from the GB and compared the observed nanoindentation responses (Figure 11). The results
showed that the distance from the GB controls the depths at which different regions of hardening
occur in a way that the local hardening occurs at lower indentation depths for indentations closer to
the GB. As the indentation distance becomes large enough, the response becomes similar to that of a
single crystalline sample. Accordingly, Zhang and Voyiadjis [108] proposed a material length scale
that incorporates the effect of distance between the GB and indenter tip r based on the framework
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developed by Nix and Gao [13], Abu Al-Rub and Voyiadjis [97], Voyiadjis and Abu Al-Rub [109] and
Voyiadjis et al. [106] as follows:

l =
(

αG
αS

)2( bG
bS

)
Mr

 δ1re−(Er/RT)[
1 + δ2rp(1/m̃)

][
1 + δ3

( .
p
)q
]
 (18)

where dg is the average grain size, M is the Schmid factor, 1/m̃ and q are the hardening exponents,
δ1, δ2 and δ3 are the material constants calibrated using the nanoindentation experiment, Er is the
activation energy, R is the gas constant and T is the absolute temperature.
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Figure 11. Effect of grain boundary on the nanoindentation response of crystalline metals: (a) distances
between the grain boundary and indentations for Al bicrystal sample; (b) the effect of the distance
from indentation to the grain boundary on the nanoindentation response of the Al bicrystal sample;
(c) distances between the grain boundary and indentations for the Cu bicrystal sample; (d) the effect
of the distance from indentation to the grain boundary on the nanoindentation response of the Cu
bicrystal sample (after Voyiadjis and Zhang [107] and Zhang and Voyiadjis [108]).

4. Recent Experimental Observations and Theoretical Models

The fundamental assumption in the size effects model based on the density of GNDs following
the Nix and Gao model [13] is that the forest hardening is the governing mechanism. Accordingly, they
relate the size effect to the GNDs induced by the strain gradient, which enhances the nanoindentation
response. As described by Swadener et al. [14], Feng and Nix [98] and Huang et al. [99], the Nix and
Gao model [13] cannot capture the size effects at shallow indentation depths. Although different
methods of modifying the plastic zone volume [98] and assigning a GND saturation cap [99] solved
the model shortcomings to some extent, both methods are phenomenological in nature, and they are
using fitting procedures to solve the problem. Furthermore, these models still incorporate the forest
hardening mechanism to capture the relation between the material strength and dislocation density.

Uchic and his coworkers [110,111] introduced the micropillar compression experiment and
showed that the crystalline metallic samples show strong size effects even in the absence of any
strain gradients. They have tested pure Ni pillars at room temperature and showed that the
sample strength increases by decreasing the pillar diameter (Figure 12). In order to capture the
size effect in pillars, however, other hardening mechanisms, including source truncation, weakest
link theory and source exhaustion, have been introduced rather than the forest hardening mechanism
(see, e.g., Uchic et al. [112] and Kraft et al. [113]) In micropillars, the double-ended dislocation
sources become single-ended ones due to the interaction of dislocations with the pillar-free surfaces.
Accordingly, the pillar size governs the single-ended sources leading to shorter dislocation sources
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for smaller pillars. Consequently, decreasing the pillar size increases the sample strength, which is
commonly called the source truncation mechanism (Parthasarathy et al. [114]; Rao et al. [115]). Another
hardening mechanism is the weakest link theory (Norfleet et al. [116]), which describes that decreasing
the pillar size increases the strength of the weakest deformation mechanism and leads to the increase
in the sample strength. The third hardening mechanism is source exhaustion (see, e.g., Rao et al. [117]),
which states that the material strength increases when not enough dislocation sources are available to
sustain the applied plastic flow. In the case of pillars, dislocation starvation (Greer et al. [118]) is one of
the mechanism that can lead to the source exhaustion in a way that all the dislocations escape from the
pillar-free surfaces, leaving the sample without any dislocations. Accordingly, the sample strength is
controlled by source-limited activations.
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Figure 12. Response of pure Ni pillars during the uniaxial compression experiment at room temperature.
(a) Stress-strain curves for pillars with diameters that vary from 40 to 5 µm and a bulk single crystal
having approximate dimensions of 2.6 × 2.6 × 7.4 mm; (b) A scanning electron micrograph (SEM)
image of a pillar with the diameter of 20 µm at 4% strain; (c) A SEM image of 5 µm diameter pillar at
19% strain during a rapid burst of deformation (after Uchic et al. [111]).

In order to unravel the hardening mechanism at small indentation depths, the dislocation
microstructure should be monitored. Three experimental techniques of backscattered electron
diffraction (EBSD) [22,43,45,49,50,96,119–121], convergent beam electron diffraction (CBED) [95]
and X-ray microdiffraction (µXRD) [122–125] have been used so far to observe the dislocation
microstructure in metallic samples. These techniques can map the local lattice orientations with
high spatial resolutions. Accordingly, the Nye dislocation density tensor and the associated GND
density can be calculated. Due to the complex nature of these experimental schemes, the number
of works addressing the size effects during nanoindentation is very limited. Kiener et al. [119],
McLaughlin and Clegg [95] and Demir et al. [121] have reported anomalies regarding the description
based on the forest hardening mechanism and strain gradient theory to capture the size effects during
nanoindentation. Kiener et al. [119] indented the tungsten and copper samples using a Vickers indenter
and used EBSD to quantify the lattice misorientation. They incorporated the misorientation angle as
a represented parameter of GND density. They showed that the maximum misorientation angle ωf
increases as the indentation depth increases, while the nanoindentation hardness decreases (Figure 13),
which cannot be described based on the strain gradient theory and forest hardening mechanism.
McLaughlin and Clegg [95] investigated the size effects in a copper single crystal sample indented
by a Berkovich tip using CBED. They measured the total misorientation for two indentation loads
of 5 mN and 15 mN. It was observed that both the magnitude of the overall misorientation and the
neighbor-to-neighbor misorientations underneath the 15 mN indentation are significantly larger than
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underneath the 5 mN indentation. However, the hardness for indentation load of 5 mN is larger
than that of 15 mN. Again, McLaughlin and Clegg [95] showed that the models based on the strain
gradient theory and forest hardening mechanisms, such as Nix and Gao [13], are not applicable to the
shallow indentations. They attributed the observed size effects to the lack of dislocation sources at
lower indentation loads, which is similar to the source exhaustion mechanism.
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Demir et al. [121] investigated the size effects at low indentation depths incorporating the GND
density obtained using EBSD tomography. They conducted the nanoindentation test on a single crystal
Cu sample using a conical indenter with a spherical tip. Figure 14 illustrates the GND density pattern
for five equally-spaced cross-sections at four different indentation depths. The results show that the
assumption that the dislocations are homogenously distributed beneath the indenter, which has been
commonly incorporated in the literature, is not accurate. Furthermore, Demir et al. [121] obtained
the total dislocation density using the information obtained from 50 individual 2D EBSD sections at
different indentation depths. Figure 15 shows the variation of both dislocation density and hardness
as the indentation depth varies. As the results show, the density of GNDs increases as the indentation
depth increases. According to the forest hardening mechanisms and consequently the Nix and Gao
model [13], the hardness should also increase. However, as the results show, the hardness decreases
as the indentation depth increases. This means that the forest hardening mechanism breaks down
at shallow indentation depths, and the models developed based on the premise, i.e., Nix and Gao
model [13] and its relating models, are not valid in this region. Demir et al. [121] attributed the
observed hardening to the decreasing dislocation segment lengths as the indentation depth decreases,
which has a similar nature to the source truncation and weakest link theory mechanisms. One should
note that the conducted experiments solely consider the GNDs and not SSDs. Accordingly, the result
may not be dependable. However, Demir et al. [121] stated that the amount of imposed deformation
decreases by decreasing the indentation depth, and consequently, SSDs are not responsible for the
enhanced hardening at lower indentation depths.
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Feng et al. [125] incorporated the µXRD scheme and studied the evolution of defects in Cu single
crystal during nanoindentation indented using a Berkovich indenter. Feng et al. [125] stated that
the size effects are in line with the strain gradient theory and forest hardening mechanism even at
shallow indentation depths, which is in contradiction with the results reported by Kiener et al. [119],
McLaughlin and Clegg [95] and Demir et al. [121]. They observed that as the indentation
depth decreases, both GND density and hardness increases. However, unlike Demir et al. [121],
which obtained the GND density pattern below the indenter, Feng et al. [125] approximated the
strain gradient. Accordingly, the equation of total GND density depends on the radius of the plastic
zone, which was assumed to be the contact radius multiplied by a constant. Accordingly, the effect
of heterogeneity reported by Demir et al. [121] was not included in the methodology presented by
Feng et al. [125] to obtain the total GND density. In order to investigate whether the trend reported by
Kiener et al. [119], McLaughlin and Clegg [95] and Demir et al. [121] is accurate or the one presented by
Feng et al. [125], the meso-scale simulations, such as the atomistic simulation, should be incorporated.

5. Atomistic Simulation of Nanoindentation

The microstructural observations during the nanoindentation indicate some contradictions in
a way that both the increase and decrease in GND density have been reported as the indentation
depths decrease [95,119,121,125]. In order to shed light on these discrepancies and unravel the
governing mechanism of size effects during nanoindentation, one way is to model the sample
as a cluster of atoms. Molecular dynamics (MD) is a powerful tool that can be incorporated as
a pseudo-experimental tool to address the size effect during the nanoindentation. In the case of
crystalline metals, many different aspects of nanoindentation experiment, such as initial dislocation
nucleation and evolution pattern [79,81,83], the effect of surface step [80], effects of GB [84,88,126,127],
the effect of film thickness [128], the effect of substrate [129], the effect of residual stress [130], the effect
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of boundary conditions [85] and size effects during nanoindentation [86,87] have been investigated
using MD. Szlufarska [131] summarized the advances in atomistic modelling of the nanoindentation
experiment. She addressed the challenges of atomistic simulation of nanoindentation and how it can
increase the current understanding of nanoindentation [131].

During the MD simulation, Newton’s equations of motion are solved for all the atoms. Even for
nano-sized samples, the number of degrees of freedom is enormous, and massive parallel code should
be incorporated to integrate Newton’s equations of motion. The interaction of atoms with each
other is described using predefined potentials. In the case of crystalline metals, two potentials of
the embedded-atom method (EAM) (Daw and Baskes [132]) and modified embedded-atom method
(MEAM) (Baskes [133]) are commonly incorporated.

The indenter itself can be modeled as a cluster of atoms. However, the indenter is commonly
modeled as a repulsive potential to reduce the computational cost. Selecting an appropriate set of
boundary conditions to precisely mimic the considered phenomenon is an essential part of the MD
simulation. Up to now, four different sets of boundary conditions have been used to model the
nanoindentation experiment, which can be described as follows:

• Fixing some atomic layers at the sample bottom to act as a substrate, using the free surface for the
top and periodic boundary conditions for the remaining surfaces (see, e.g., Kelchner et al. [79];
Zimmerman et al. [80]; Nair et al. [128]).

• Fixing some atomic layer at the surrounding surfaces and using free surfaces for the sample top
and bottom (see, e.g., Medyanik and Shao [134]; Shao and Medyanik [135]).

• Using the free surface for the sample top and bottom, incorporating the periodic boundary
conditions for the remaining surfaces and putting a substrate under the thin film
(see, e.g., Peng et al. [129]).

• Incorporating the free surfaces for the sample top and bottom, using periodic boundary
conditions for the remaining surfaces and equilibrating the sample by adding some forces
(see, e.g., Li et al. [81]; Lee et al. [83]).

Yaghoobi and Voyiadjis [85] studied the effects of selected boundary conditions on the
nanoindentation response of FCC crystalline metals. They showed that the boundary conditions
may alter the plasticity initiation and defect nucleation pattern depending on the film thickness and
indenter radius.

In order to study the size effects using MD, indentation depth, indentation force, contact area
and dislocation length and density should be precisely obtained. In the case of hardness, unlike the
experiment, the precise contact can be obtained much more easily. To do so, the precise contact area
(A) should be captured to calculate the hardness. Saraev and Miller [136] proposed a method using a
projection of atoms that are in contact with the indenter to obtain the precise contact area. A 2D-mesh
is produced from the projections of atoms in contact with the indenter. The total contact area is then
calculated using the obtained 2D mesh. The indenter force can be derived from the repulsive potential
used to model the indenter. Voyiadjis and his co-workers [85–87] showed that the true indentation
depth h is different from the tip displacement d during nanoindentation. They developed the required
geometrical equations to obtain the precise indentation depth.

MD provides the atomic trajectories and velocities. However, the dislocation structure is an
essential part of the size effects’ investigation. Accordingly, a post-processing scheme should be
incorporated to capture the dislocation structure. In order to visualize the defects, several methods
have been introduced such as energy filtering, bond order, centrosymmetry parameter, adaptive
common neighbor analysis, Voronoi analysis, and neighbor distance analysis, which have been
compared with each other by Stukowski [137]. Furthermore, the Crystal Analysis Tool (Stukowski
and Albe [138]) can extract the dislocation structure from the atomistic data. The common-neighbor
analysis method is the basic idea of this code. The code is able to calculate the dislocations information
such as the Burgers vector and total dislocation length. To extract the required information, the Crystal
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Analysis Tool constructs a Delaunay mesh, which connects all atoms. Next, using the constructed
mesh, the elastic deformation gradient tensor is obtained. The code defines the dislocations using the
fact that the elastic deformation gradient does not have a unique value when a tessellation element
intersects a dislocation.

Voyiadjis and Yaghoobi [86] conducted large-scale MD simulation of Ni thin film during
nanoindentation using different indenter geometries of right square prismatic, conical and cylindrical
to investigate the proposed theoretical models for indentation size effects. First, Voyiadjis and
Yaghoobi [86] investigated the dislocation nucleation and evolution pattern during nanoindentation.
As an example, Figure 16 shows the dislocation nucleation and evolution for Ni thin film indented by a
cylindrical indenter during nanoindentation. The dislocations and stacking faults are visualized while
the perfect atoms are removed. The color of Shockley, Hirth and stair-rod partial dislocations and
perfect dislocations are green, yellow, blue and red, respectively. Figure 17 illustrates the dislocation
loop formation and movement along three directions of

[
1 0 1

]
,
[
1 1 0

]
and

[
0 1 1

]
.
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(see Durst et al. [36]). However, in the case of cylindrical indenter, the maximum value of  is nine, 
which is much larger than that of the self-similar indenter. 

Figure 18 compares the dislocation lengths obtained from atomistic simulation with those 
predicted by theoretical models of Nix and Gao [13], Swadener [14] and Pugno [90]. The results show 
that the theoretical predictions can accurately capture the dislocation lengths during 
nanoindentation. However, some discrepancies are observed, which can be related to the fact that 
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Figure 16. Defect nucleation and evolution of Ni thin film indented by a cylindrical indenter at different
indenter tip displacements of (a) d ≈ 0.70 nm; (b) d ≈ 0.86 nm; (c) d ≈ 0.96 nm; (d) d ≈ 1.02 nm;
(e) d ≈ 1.05 nm; (f) d ≈ 1.12 nm (after Voyiadjis and Yaghoobi [86]).

Voyiadjis and Yaghoobi [86] investigated the plastic zone size measured directly from MD.
The dislocation prismatic loops glide toward the bottom of the sample. Accordingly, Voyiadjis and
Yaghoobi [86] assumed that theses dislocation loops should not be considered as a measure of the
plastic zone size. Otherwise, the size of the plastic zone becomes unreasonably large. In other words,
the plastic zone size is determined based on the furthest dislocation that is attached to the main
body of dislocations beneath the indenter. It was assumed that the plastic zone is a hemisphere
with a radius of Rpz = f ac. They showed that f is a function of indentation depth. In the case of
the conical indenter, which is a self-similar indenter, the maximum value of f observed during the
nanoindentation simulation is 5.2, which is larger than those that have been previously proposed
(see Durst et al. [36]). However, in the case of cylindrical indenter, the maximum value of f is nine,
which is much larger than that of the self-similar indenter.

Figure 18 compares the dislocation lengths obtained from atomistic simulation with those
predicted by theoretical models of Nix and Gao [13], Swadener [14] and Pugno [90]. The results show
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that the theoretical predictions can accurately capture the dislocation lengths during nanoindentation.
However, some discrepancies are observed, which can be related to the fact that atomistic simulation
captures the total dislocation length including both geometrically necessary and statistically stored
dislocations, while the theoretical models only calculate geometrically necessary dislocations.
Furthermore, the dislocations that are detached from the main dislocations network as the prismatic
loops and leave the plastic zone around the indenter are not considered in the total dislocation length
calculations. Gao et al. [139] investigated the plastic zone volume size during the nanoindentation
in FCC and BCC metals using a spherical indenter. They showed that the plastic zone size is not
strongly influenced by the crystallographic orientation, crystal structure and the selected parameter
for indentation. Furthermore, they observed that the plastic zone sizes after indent are larger than
the values reported in the literature. These findings are in line with those reported by Voyiadjis and
Yaghoobi [86]. However, they showed that after the indenter retraction, the plastic zone shrinks, and its
size becomes closer with those reported in the literature (see Durst et al. [36]). Figure 19 shows the
plastic zone volume changes after indent and after retraction during nanoindentation of Ta. The plastic
zone coefficient f changes from 2.7 to 2.3.
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Yaghoobi and Voyiadjis [87] incorporated large-scale MD simulation of Ni thin films during
nanoindentation to investigate which size effect trend occurs during atomistic simulation, i.e., the one
reported by Kiener et al. [119], McLaughlin and Clegg [95] and Demir et al. [121] or the one presented
by Feng et al. [125]. They selected a conical indenter with an angle of θ = 60

◦
and a spherical

tip, which was used by Demir et al. [121]. Figure 20a presents the variation of the mean contact
pressure (pm = P/A), which is equivalent to the hardness H in the plastic region, as a function of
indentation depth h. In the elastic region, Figure 20a shows that pm increases as the indentation
depth increases. However, after the initiation of plasticity, Figure 20a shows that the mean contact
pressure, i.e., hardness, decreases as the indentation depth increases. Yaghoobi and Voyiadjis [87]
assumed that the plastic zone is a hemisphere with the radius of Rpz = f ac in which f is a constant.
They incorporated different values of f = 1.5, 2.0, 2.5, 3.0 and 3.5, which are chosen to investigate
the effect of plastic zone size on the dislocation density during nanoindentation. The dislocation
density ρ versus the indentation depth h is plotted in Figure 20b. The results indicate that as the
indentation depth increases, the dislocation density also increases for different values of f . Based on
the Taylor hardening model, since the dislocation density increases as the indentation depth increases,
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the hardness should also increase. However, Figure 20a shows that as the indentation depth increases,
the hardness decreases, while the dislocation density increases. The observed trend is in line with
the experimental observation of Kiener et al. [119], McLaughlin and Clegg [95] and Demir et al. [121].
In other words, the results show that the forest hardening model cannot capture the size effect in the
case of the simulated sample.
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Figure 18. Total dislocation length obtained from the simulation and theoretical models of Nix and
Gao [13], Swadener [14] and Pugno [90] in samples indented by the (a) cylindrical indenter; (b) right
square prismatic indenter and (c) conical indenter (after Voyiadjis and Yaghoobi [86]).
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Figure 19. Dislocation structure beneath the indenter during the indentation of Ta (100) surface at 0 K:
(a) after indent f = 2.7; (b) after retraction of the indenter f = 2.3 (after Gao et al. [139]).
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Figure 20. Large-scale atomistic simulation of a Ni thin film during nanoindentation: (a) variation of
the mean contact pressure pm versus the indentation depth h; (b) variation of the dislocation density ρ

versus the indentation depth h for different values of f (after Yaghoobi and Voyiadjis [87]).

Similar to the compression and tension experiments on micropillars of small length scales,
the observed results show that the forest hardening mechanism does not govern size effects in the
nanoscale samples during nanoindentation. To unravel the sources of size effects, the initial phases
of indentation should be studied. Yaghoobi and Voyiadjis [87] showed that the source exhaustion
hardening is the governing mechanism of size effects at shallow indentation depths. By increasing
the indentation depth, the dislocation length and density increase, as well, which provides more
dislocation sources. Furthermore, the source lengths increase, which reduces the critical resolved shear
stress. Consequently, the applied stress required to sustain flow during nanoindentation decreases,
i.e., hardness decreases as indentation depth increases.

The interaction between the effects of grain size with indentation size effects have been addressed
using MD [84,88,126,127]. However, the observed trends do not show a unified trend. Jang and
Farkas [84] incorporated MD simulation and studied a bicrystal nickel thin film with ∑ 5 (2 1 0) [0 0 1]
GB during the nanoindentation. It was shown that the GB induced some resistance to the indentation
due to the stacking fault expansion [84]. Kulkarni et al. [127] compared the response of the coherent
twin boundary (CTB) with that of ∑ 9 (2 2 1) tilt GB during nanoindentation using atomistic simulation.
They stated that unlike the ∑ 9 (2 2 1) GB, the CTB does not considerably reduce the strength of the
sample. However, unlike Jang and Farkas [84], they did not observe noticeable enhancement in
strength. In order to address the discrepancies observed related to the effect of grain boundaries
on the indentation response of FCC metals during nanoindentation, Voyiadjis and Yaghoobi [88]
investigated the nanoindentation response of bicrystal Ni samples using large-scale MD simulation.
They incorporated different symmetric and unsymmetric CSL GBs and two large and small samples
with the dimensions of 24 nm × 24 nm × 12 nm and 120 nm × 120 nm × 60 nm. The GBs are
located at a third of the thickness from the top surface. Voyiadjis and Yaghoobi [88] compared the
nanoindentation response of the bicrystal samples with the corresponding single crystal ones and
observed that the effect of GB on the governing mechanism of hardening depends on the grain size.
Figure 21 compares the effects of ∑ 11 (3 3 2)

[
1 1 0

]
on the nanoindentation responses of the small

and large samples. GB does not change the general pattern of size effects; however, it can contribute to
some specific mechanisms depending on the sample size. The size effects are initially controlled by the
source exhaustion mechanism during the nanoindentation. In the case of a small sample, Voyiadjis and
Yaghoobi [88] showed that the GB contributes to the dislocation nucleation and reduces the material
strength. In the case of a large sample, GB does not have any noticeable effect on the source exhaustion
mechanism. This is due to the fact that the total dislocation length of the bicrystal sample is close to that
of the single crystal sample. The forest hardening mechanism becomes dominant at larger indentation
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depths. In the cases of small samples, however, the responses of bicrystal and single-crystal samples
are similar in this region. It is worth mentioning that the dislocation movements are blocked by GBs
during nanoindentation in small bicrystal samples. However, the density of piled-up dislocation is not
enough to change the nanoindentation response. In the cases of large samples, the total dislocation
content is much greater than that of the small samples. Accordingly, the interaction of dislocations
and GBs plays a key role. Hence, the increase in bicrystal samples can be justified by blockage of the
dislocation movements according to the forest hardening mechanism. Moreover, the results show
that the total dislocation length in the upper grain is a better representative factor to investigate the
strength size effects in the case of the forest hardening mechanism. In other words, according to the
forest hardening mechanism, the dislocations in the plastic zone that are closer to the indenter are
the effective ones. Hence, in the cases of large samples, the most important role of GBs is to change
the pattern of the dislocation structure by blocking their movement, which increases the resulting
hardness at higher indentation depths. Voyiadjis and Yaghoobi [88] also investigated the effect of
GB on the dislocation nucleation and evolution during nanoindentation. For example, Figure 22
depicts the dislocation nucleation and evolution for the ∑ 3 (1 1 1)

[
1 1 0

]
bicrystal and its related

single crystal large samples. Figure 22 supports the underlying mechanism suggested by Voyiadjis and
Yaghoobi [88] to capture the effect of GB on the nanoindentation response of large samples. One should
note that the strain rates incorporated in the atomistic simulation are much higher than those selected
for experiments. Accordingly, the interpretation of the obtained results should be carefully handled.
The applied strain rate can influence both hardening mechanisms and dislocation network properties
(see, e.g., [140–144]). In other words, one should note that the observed mechanisms are not an artifact
of the high strain rates used in the atomistic simulation.
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Figure 21. Effect of ∑ 11 (3 3 2) grain boundary on the nanoindentation response of Ni thin film:
(a) small sample and (b) large sample (after Voyiadjis and Yaghoobi [88]).
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6. Summary and Conclusions 

The current work reviews the size effect in crystalline metals during nanoindentation, with 
emphasis on the underlying mechanisms governing this phenomenon. The indentation size effects in 
crystalline metals including the variation of hardness versus the indentation depth for geometrically 
self-similar indenter tips and variation of hardness versus the indenter radius for spherical indenters 
are well documented and have been observed by many researchers. The size effects have been 
successfully captured using the concept of geometrically necessary dislocations (GNDs). 
Accordingly, the increase in hardness by decreasing the indentation depth is attributed to the increase 
of GNDs density, which leads to the enhanced strength according to the forest hardening mechanism. 
A similar methodology has been incorporated to capture the size effects in the case of spherical 
indenters as the indenter radius varies. Furthermore, a material length scale can be obtained for 
gradient plasticity models using the same methodology as ≡ ( ⁄ )  [13]. The presented 
mechanism defines the variation of hardness  versus the indentation depth ℎ  in the form of ( ⁄ ) = 1 + ℎ∗ ℎ⁄ , where  and ℎ∗ are the material constants. However, the conducted studies 
have shown that the developed relation cannot capture the reported size effect for small indentation 
depths. Furthermore, the coupling effects of indentation depth and grain size effects can be 
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Figure 22. Effect of ∑ 3 (1 1 1)
[
1 1 0

]
GB on the dislocation nucleation and evolution of large sample at

different indentation depths: (a) single crystal sample, h ≈ 0.88 nm; (b) bicrystal sample, h ≈ 0.88 nm;
(c) single crystal sample, h ≈ 1.15 nm; (d) bicrystal sample, h ≈ 1.15 nm; (e) single crystal sample,
h ≈ 1.44 nm; (f) bicrystal sample, h ≈ 1.44 nm; (g) single crystal sample, h ≈ 2.03 nm; (h) bicrystal
sample, h ≈ 2.03 nm; (i) single crystal sample, h ≈ 11.5 nm; (j) bicrystal sample, h ≈ 11.5 nm
(after Voyiadjis and Yaghoobi [88]).

6. Summary and Conclusions

The current work reviews the size effect in crystalline metals during nanoindentation,
with emphasis on the underlying mechanisms governing this phenomenon. The indentation size effects
in crystalline metals including the variation of hardness versus the indentation depth for geometrically
self-similar indenter tips and variation of hardness versus the indenter radius for spherical indenters
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are well documented and have been observed by many researchers. The size effects have been
successfully captured using the concept of geometrically necessary dislocations (GNDs). Accordingly,
the increase in hardness by decreasing the indentation depth is attributed to the increase of GNDs
density, which leads to the enhanced strength according to the forest hardening mechanism. A similar
methodology has been incorporated to capture the size effects in the case of spherical indenters
as the indenter radius varies. Furthermore, a material length scale can be obtained for gradient
plasticity models using the same methodology as l ≡ b(G/σ0)

2 [13]. The presented mechanism defines
the variation of hardness H versus the indentation depth h in the form of (H/H0)

2 = 1 + h∗/h,
where H0 and h∗ are the material constants. However, the conducted studies have shown that the
developed relation cannot capture the reported size effect for small indentation depths. Furthermore,
the coupling effects of indentation depth and grain size effects can be successfully captured using the
same methodology. The experimental results show that the grain boundary (GB) may enhance the
hardness by blocking the movement of nucleated GNDs. Accordingly, a new material length scale can
be obtained for nonlocal plasticity, which incorporates the effect of material grain size [108].

When it comes to the small indentation depths, some discrepancies and contradictory explanations
have been presented. The understanding of the underlying mechanisms of size effects during the
nanoindentation for shallow indentation depths is becoming more and more complete with the help of
extensive experimental and computational investigations. Up to now, three experimental techniques
of backscattered electron diffraction (EBSD), convergent beam electron diffraction (CBED) and X-ray
microdiffraction (µXRD) have been introduced to measure the dislocation density in metallic samples.
These methods have been incorporated to investigate the governing mechanisms of size effects during
nanoindentation for small indentation depths. However, two types of trends for the variation of
dislocation density have been reported as the indentation depth decreases. Some experimental
studies (see, e.g., [95,119,121]) have shown that the dislocation density decreases as the indentation
depth decreases, while the hardness increases, which is in contradiction with the conventional
size effect theory and its underlying hardening mechanism, i.e., the forest hardening mechanism.
The observed hardening as the indentation depth decreases has been attributed to the decrease in
the length of dislocation segments. On the other hand, some experimental observations validate the
conventional theory of size effects by reporting that the dislocation density increases by decreasing
the indentation depth, which increases the hardness according to the forest hardening mechanism
(see, e.g., [125]). In the case of small dislocation depths, more experiments need to be conducted
to study the nanoindentation size effects by measuring the variation in dislocation density during
the indentation and to test which trend is valid, i.e., the dislocation density increases or decreases
as the indentation depth decreases. Finally, the atomistic simulation can contribute to the better
understanding of the nature of size effects during nanoindentation at smaller indentation depths.
The atomistic simulations have investigated many aspects of the nanoindentation response of metallic
samples. The dislocation nucleation and evolution can be visualized during the nanoindentation,
which can be of great help to investigate the indentation size effect. The conducted simulations have
shown that the dislocation density decreases as the indentation depth decreases, while the hardness
increases (see, e.g., [87]). The source exhaustion is introduced as the governing mechanism of size
effects for shallow indentations where not enough dislocation content is available to sustain the applied
plastic flow. Accordingly, as the indentation depth increases, the dislocation density increases, and less
stress is required to sustain the plastic flow, which leads to lower hardness. Furthermore, the effect
of GB on the indentation size effect can be studied using atomistic simulations. The results have
shown that the GB may increase or decrease the indentation hardness depending on the grain size.
This is due to the fact that in the case of metallic samples with very fine grains, the GB contributes
to the dislocation nucleation, which provides more dislocations at shallow depths and decreases the
indentation hardness according to the source exhaustion mechanism. In the case of larger grain sizes,
on the other hand, the blockage of dislocation movements by GB enhances the hardness according to
the forest hardening mechanism.
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