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Abstract: A wavelet-based finite element method (WFEM) is developed to calculate the elastic
band structures of two-dimensional phononic crystals (2DPCs), which are composed of square
lattices of solid cuboids in a solid matrix. In a unit cell, a new model of band-gap calculation of
2DPCs is constructed using plane elastomechanical elements based on a B-spline wavelet on the
interval (BSWI). Substituting the periodic boundary conditions (BCs) and interface conditions, a linear
eigenvalue problem dependent on the Bloch wave vector is derived. Numerical examples show
that the proposed method performs well for band structure problems when compared with those
calculated by traditional FEM. This study also illustrates that filling fractions, material parameters,
and incline angles of a 2DPC structure can cause band-gap width and location changes.

Keywords: wavelet finite element method; band-gaps; phononic crystals; B-spline wavelet on
the interval

1. Introduction

On small scales, periodic compositions of structure with different material properties are termed
phononic crystals (PCs) [1]. Since the 1990s, there has been a great deal of work devoted to studies of
the PC band-gap and its mechanism [2,3]. The existence of a phononic band-gap where the propagation
of acoustic or elastic waves is forbidden exhibits a lot of potential applications, such as noise reduction,
acoustic filters, etc. [4]. The mechanism for tuning PC band-gap also possesses significant practical
applications in the design of vibrationless environments for high-precision mechanical systems [5].
However, the calculation results had a great influence on the studies of PC band-gap mechanism and
wave propagation characteristic. Therefore, a high-performance numerical method for studying the
band-gap mechanism becomes a significant topic of future studies.

In the search for complete band-gaps, many mathematical models are constructed to calculate
band-gaps (BGs) of two-dimensional phononic crystals (2DPCs), such as the plane-wave expansion
method (PWE) [6–8], multiple scattering theory (MST) [9], finite difference time-domain method
(FDTD) [10,11], lumped mass method (LM) [12], wavelet method [13,14], boundary element method
(BEM) [15–17], etc. However, when materials are anisotropic, nonlinear, or have large acoustic
mismatch, PWE requires a large number of plane waves to obtain a reliable band structure and results
are non-convergent for PCs composed of different media. The MST method exhibits many advantages
for BG calculation of PCs, such as possessing a faster convergence speed than PWE. However, the MST
method can only calculate specific arrays of spheres or cylinders, and the eigenvalue equation, although
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it is of small size but it is nonlinear, and its solution is complex. LM adopts the lumped mass matrix into
the discrete FEM stiffness matrix, which improves the calculation efficiency. However, this treatment
also brings troubles in its further application when the multi-field coupling is considered. Furthermore,
the simulation of a nonlinear medium using the frequency-domain method is faced with many
difficulties because frequencies re no longer conserved.

Time-domain methods are used for dealing with these problems, such as FDTD. However,
the accuracy of FDTD is reduced as the number of grids decrease. Some approaches to analyze
phononic crystals using the finite element method (FEM), and, firstly, given a detailed review on
theories and solution methods of plate/shell structures [18–22]. It should be pointed out that FEM
performs well for band-gap calculations of 2DPCs as compared with many time-domain methods.
FEM models of band-gap calculations give rise to an eigenvalue problem, which is usually solved
for the unknown frequencies ω with a real wave number k, in what is called the ω (k) technique.
Andreassen et al. [23] studied wave propagation in periodic materials with dissipation using ω (k)
formulation. Collet et al. [24] proposed an alternative formulation that wave heading and frequency are
adopted to scan the k-space and estimate the dispersion properties. Eatwell [25] derived the dispersion
relation for free waves in the plate and developed a method for studying a structure, in which
the exact positions of the stiffening ribs are subject to some degree of randomness. Hussein [26]
proposed a reduced Bloch mode expansion for fast periodic media band structure calculations and
maintained accuracy, while reducing the computation time. In [27], the solid-vacuum 2DPCs with
circular holes were investigated using FEM and it proved to be successful in the band structure
calculation. Rudykh et al. [28,29] studied wave propagation characteristics in deformed layered
media and reported a mechanism that can be used for tuning and controlling wave propagation
by deformation.

The wavelet finite element method (WFEM) [30–32] has already developed into a new numerical
method in recent years. The WFEM, as a performance numerical approach using scale functions or
the nesting wavelet functions to replace the traditional polynomial as approximating a function to
analyze the dynamic problems. Since the BSWI scale functions have the analytical expression at all
levels, the element stiffness and mass matrices can be calculated conveniently [33]. Any functions on
the interval will be approximated completely due to the wavelets on a bounded interval have limited
dimension at all levels and the wavelet space. Cubic B-spline interpolating functions have sufficient
continuity when compared with the piecewise polynomial of traditional FEM. Thus, the wavelet-based
FEM can obtain a higher precision of solution than traditional FEM. Xiang et al. successfully
constructed classes of two-dimensional (2D) wavelet-based elements by using B-spline wavelets on the
interval [34–39]. In this paper, we employ BSWI plane elastomechanical plate elements to construct
a band-gap calculation model [34]. Zhang et al. developed the multivariable WFEM for structure
dynamical simulation and vibration analysis [40,41]. Furthermore, WFEM has been successfully
applied to damage detection field [42–44]. The wavelet Galerkin method has succeeded in being
applied to solve band structures of 2D photonic crystal [45] and 2D phononic crystals [46]. The wavelet
Galerkin method adopts the whole domain discretization with different type of partial differential
equations (PDEs) that fail to accommodate the complex solving domains [47]. Liu proposed a WFEM
model of 1DPC Euler beam and successfully computed the band structures [48]. Thus, developing
a new band-gap calculation model of 2DPCs based on wavelet-based FEM is significant.

In this paper, a new numerical formulation is introduced for computing the band structures of
2DPCs. The paper is organized as follows. After a brief introduction, the band-gap calculation model
of a unit cell is given based on periodic boundary conditions (BCs) and Bloch wave theorem, and then
discretization was carried out by WFEM in Section 2. The band structures and parameter influence
on wave propagation in 2DPCs are discussed in Section 3. Finally, some conclusions are presented in
Section 4.
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2. Theoretical Development

The band-gap of a periodic structure is usually calculated in the frequency domain by utilizing
unit cells and periodic boundary conditions (BCs). The same approach is followed in this paper to
investigate band structures of 2DPCs using wavelet-based FEM. A schematic of a 2DPC structure
whose unit cell consists of two materials A and B with the same thickness lies in the xy-plane as shown
in Figure 1a. The unit cell composed of a square B with length Lb embedded in square A with length
Lx and width Ly. The lattice constant is Lx. As shown in Figure 1a, the internal square B of the unit cell
forms section B and the rest of the unit cell is section A.
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Figure 1. (a) Schematic structure of 2DPC in the xy-plane whose unit cell consists of two material A
and B; and (b) discretized unit cell by BSWI elements with the nodes are partitioned vi, i = 1, · · · , 9.

When PCs vibrate harmonically with angular frequency ω, to analyze the dispersion in those
structures, use of the wave equation of a unit cell is sufficient to obtain band structures of the whole
structure. Since we study the free wave propagation, no external forces are applied to the structure.
The spatially-discretized governing equation of 2DPC is obtained as:(

K − ω2M
)

v = Dv (1)

where D denotes the frequency-dependent dynamic stiffness matrix, v is the vector of the nodal
displacements, ω is the angular frequency, and K and M are the global stiffness and mass matrices of
the unit cell, respectively.

Since a unit cell consists of nine BSWI4j plane elastomechanical plate elements, K and M are
formed by the superposition of KA,j (the superposition of BSWI4j plate element stiffness matrices
KeA ,j of section A) and KB,j (the superposition of BSWI4j plate element stiffness matrices KeB ,j of
section B), MA,j (the superposition of BSWI4j element mass matrices MeA ,j of section A), and MB,j

(the superposition of BSWI4j plate element mass matrices MeB ,j of section B). The detailed expressions
of BSWI plane elastomechanical plate elemental stiffness and mass matrices are shown in [34,35].
Expressions of The BSWI4j plane elastomechanical plate element stiffness and mass matrices KeA ,j,
KeB ,j, MeA ,j, and MeB ,j are:

Kei ,j =

[
Ke,i

1 Ke,i
2

Ke,i
3 Ke,i

4

]
(2)

Mei ,j = li
exli

eyρitΓ
0,0
1 ⊗ Γ0,0

2 (3)
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where:
Ke,i

1 = Ei/(1 − µi
2)
[
Γ1,1
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in which:  Te
1 =

{
ϕT

1 (ξ1)ϕT
1 (ξ2) · · · ϕT

1 (ξn+1)
}T

Te
2 =

{
ϕT

2 (η1)ϕT
2 (η2) · · · ϕT

2 (ηn+1)
}T

(12)

where i denotes two sections A and B; t, E, and ρ are the thickness, the Young’s moduli, and material
densities of the two sections A and B, respectively, Γa,k

2 (a, k = 0, 1) is similar to Γa,k
1 (a, k = 0, 1) if li

ex, dξ,
Te

1, and ϕ1 are replaced by li
ey, dη, Te

2, and ϕ2, respectively.
Due to the independent interpolation of displacements u and v, we can change the location of

elemental matrices for solving Equation (2) to:

Kei ,j =



Ke
1,1 Ke

1,2 · · · Ke
1,n2+2n Ke

1,(n+1)2
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2,1 Ke
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(13)

where:

Ke
a,k =

[
Ke,i

1a,k
Ke,i

2a,k

Ke,i
3a,k

Ke,i
4a,k

]
,
(

a, k = 1, · · · , (n + 1)2
)

(14)

In order to simplify the calculation, the nodes of the unit cell are divided to nine subvectors and
then Equation (1) can be rewritten as:

(
K − ω2M

)
v = Dv =

 d11 · · · d19
...

. . .
...

d19
T · · · d99


 v1

...
v9

 (15)
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According to the periodic BCs between the boundary nodes at x = Lx, y = Ly and at x = 0, y = 0,
the follow relationship can be established:

v1

v2

v3

v4

v5

v6

v7

v8

v9


=



v1

v2

v3

v4

v1eiky Ly

v2eikx Lx

v3eikx Lx

v3eiky Lx

v3ei(kx Lx+ky Ly)


(16)

where kx and ky denote the wave numbers. DOFs of boundary nodes are related to the wave numbers.
The inner degrees of freedom (DOFs) in v4 will be reduced using the follow dynamic consideration
matrix [49],

Dred = TT
1 DT1 − TT

1 DT2

(
TT

2 DT2

)−1
TT

2 DT1 (17)

where: T1 =

 In1 0n1,n2

0ni ,n1 0ni ,n2

0n2,n1 In2

 and T2 =

 0n1,ni

Ini

0n2,ni

, where n1 = 2(10m + 10n − 1),

n2 = 2(10m + 10n + 1) and ni is the inner DOFs of the unit cell. m and n are the numbers of elements in
x, y-directions. The matrices I and 0 are identity and zero matrices with the corresponding dimensions.
The final equation can be presented as the dispersion relation of the 2DPCs:

D
(
ω, kx, ky

)
= ΛT

L DredΛR = 0 (18)

where:

ΛR =



Im1 0 0
0 Im2 0
0 0 Im3

λyIm1 0 0
0 λxIm2 0
0 0 λxIm3

0 0 λyIm3

0 0 λxλyIm3


and ΛL =



Im1 0 0
0 Im2 0
0 0 Im3

λ−1
y Im1 0 0

0 λ−1
x Im2 0

0 0 λ−1
x Im3

0 0 λ−1
y Im3

0 0 λ−1
x λ−1

y Im3


(19)

where m1 = 2(11m − 1), m2 = 2(11n − 1), and m3 = 2, which represent a symmetric eigenvalue
problem relating k and ω for the discretized structure, whose solutions give WFEM estimates of
the dispersion relations for the continuous structure. Corresponding to each value of k, there will
be a discrete set of frequencies that occur in equal pairs. Each frequency will have an associated
eigenvector. This eigenvector defines the wave motion in the periodic section at that frequency.

Rectangular plate elements are used universally in engineering practice for the simplicity of the
formulation. Thus, the effectiveness compute of the band structures of 2DPCs with rectangular lattice
are very important. Different structures possess diverse BGs properties. A rectangular lattice with
Lx unequal to Ly has different BG characteristic to a square lattice. The process of band structure
calculations of these two lattices is basically the same, only a variation with different boundary
conditions and the value of wave vectors.
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3. Numerical Investigation

According to the formulation of two-dimensional BSWI plane elastomechanical elements with
a square lattice, which was provided in Section 2, a verification example is given. As shown in Figure 1,
the band structure of 2DPCs composed of epoxy (section A) and lead (section B) arranged in a square
lattice is studied, with a filling fraction f = 11% and the lattice constant Lx and Ly are fixed at 3 cm.
Table 1 shows the material parameters of lead and epoxy.

Table 1. Material properties.

Materials Density(ρ) (Kg/m3) Young’s Modules(E)1010 Pa Possion’s Ratios (ν)

Lead 11,600 4.08 0.369
Epoxy 1180 0.435 0.368

In order to verify the reliability of the wavelet-based FEM in band structure calculations of
2DPCs, a numerical example is studied. For the same structural and material parameters, we employ
nine (m = 3, n = 3) BSWI43 (the scaling functions of the tensor product BSWI for four orders at
the scale j = 3) plane elastomechanical elements (1922 DOFs), 900 (m = 30, n = 30) (7442 DOFs)
traditional plate elements and 441 plane waves (PWE) to calculate the band structures of 2DPCs,
respectively. The results are shown in Figure 2 and solid, dashed, dotted and star lines denote the
current formulation, 900 traditional plate elements and PWE method, respectively. As shown in
Figure 2, the results from WFEM are excellent as compared with those from the traditional FEM and
PWE method in the low-frequency region and nine BSWI43 elements can achieve the same accuracy as
that of the traditional FEM with much fewer elements and DOFs. For the results in the high-frequency
region, WFEM has a better convergence and higher stability than traditional FEM. The traditional FEM
has been successful in studying band structures of one- and two-dimensional PCs. Thus, WFEM can
be used to calculate the band structure of 2DPCs.
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Figure 2. Frequency band structures of wavelet-based finite element method (WFEM) (full lines),
traditional finite element method (FEM) (dots and dashed lines), and plane-wave expansion (PWE)
method (star lines).

Furthermore, band structures of 2DPCs with different materials and structural parameters are
investigated using the current formulation. Frequency band structures of 2DPCs with different
Possion’s ratios are studied and the results are shown in Figure 3, triangle lines correspond to ν = 0.2,
full lines to ν = 0.3, and dotted lines ν = 0.7, respectively. Frequency band structures of 2DPCs with
different filling fractions are investigated with results shown in Figure 4. As shown in Figure 4,
the first band-gap width is increased by increasing the filling fractions until reaching a maximum value
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4.09 kHz at f = 45%, and then to shrink, which are similar to Reference [50]. The comparison of the
dispersion relations with different Possion’s ratios in Figure 4 has shown that the material properties
have little influence on band structures. However, the band structure of a 2DPC with different filling
fractions leads to a dramatic change. Thus, the influence of filling fraction on the wave propagation in
2DPCs is much stronger than the material properties.
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Rectangular plates have very important application in practical engineering. Band structures of
different lattice forms are studied using the current formulation. We adopt a rectangular lattice with Lx

unequal to Ly to observe changes in the band structure. The following structural parameters are used:
Lx = 3 cm, Ly = 2 cm, La = Lb = 1.6 cm, and the filling ratio f = 43%. We also employ nine (m = 3, n = 3)
BSWI4j plane elastomechanical elements with j = 3 (1922 DOFs) and 20 × 20 (3362 DOFs) and 30 × 30
(7442 DOFs) traditional plate elements to calculate the band structures of 2DPCs, with the results shown
in Figure 5. Furthermore, band structures of 2DPCs with solid-vacuum mediums composed of square
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holes embedded in rectangular lattices are studied using current formulation. Structural parameters:
lattice constant Lx = 3 cm, Ly = 2 cm and La = Lb = 0.4, 0.5 and 0.6 cm. The results are shown in Figure 6
and full lines, star lines, and dotted lines correspond to La = Lb = 0.4, 0.5 and 0.6 cm, respectively.
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Finally, band structures of a 2DPC skew plate with different angles of inclination are investigated
using the current formulation with the results shown in Figure 7 and star lines, triangle lines, and full
lines corresponding to 30, 45, and 60 angles of inclination, respectively. According to the construction
of WFEM, the detailed expressions of stiffness and mass matrices are shown in [35,36].
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4. Conclusions

A numerical method for calculating band structures of 2DPCs is developed based on BSWI plane
elastomechanical plate element and corresponding model of the unit cell. The band-gap calculation
problem reduces to a quadratic or quartic polynomial eigenvalue problem after the application of
a dynamic condensation. This formalism corresponds to a classical ω (k) problem, where unknown
frequencies are calculated for real wave numbers. Numerical examples are conducted to verify the
accuracy and efficiency of the WFEM in band-gap calculation problems. It can achieve higher accuracy
than traditional FEM with fewer numbers of elements and DOFs usually in high frequency domain.
This study also indicates that different filling fractions and structural parameters can cause changes of
wave propagation characteristics in the 2DPCs. The band-gap calculation model of 2DPCs consists
of solid-vacuum mediums is also constructed using the current formulation. Two-dimensional (2D)
wavelet-based element is a useful tool to compute BGs of 2DPCs for reason of BSWI interpolating bases
possess character of continuity. Furthermore, the current method enriches the numerical simulation
methods to study the band-gaps mechanism and wave propagation characteristics of PCs.

Our work provides a means for calculating band structures of 2DPCs. Other two-dimensional
wavelet-based band-gap calculation models would be investigated in future studies by use of the
similar technique. However, because of the complexity of the tensor product wavelet technique, it is
difficult to extend the present method to solve PCs with three-dimensional (3D) periodicity. The usage
of the wavelet-based boundary element method might be a good choice to perform the wavelet-based
approximation equation.
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