

Supplementary Material: High-pressure reactivity of Kr and F₂ - stabilization of krypton in the +4 oxidation state

Dominik Kurzydłowski, Magdalena Sołtysiak, Aleksandra Dżoleva, and Patryk Zaleski-Ejgierd

1. Comparison of the performance of PBE, PBE+D3, and HSE06 methods	2
2. Structure parameters of Kr ₃ F ₂ , KrF ₂ , and KrF ₄	3
3. Structures parameters of Kr ₆ F, Kr ₄ F, Kr ₂ F, and KrF	4
4. Structures and ELF function for Kr ₆ F and Kr ₄ F at 150 GPa	5
5. Electronic band gaps of Kr _m F _n compounds at 150 GPa.	6
6. Comparison of F ₂ and Kr geometries.	6

1. Comparison of the performance of PBE, PBE+D3, and HSE06 methods

Figure S1. Comparison of the relative enthalpy of the ambient pressure *P42/mnm* structure of KrF2 with respect to the high-pressure *Cmcm* structure obtained with three different computational methods (PBE, PBE+D3, HSE06).

Figure S2. Comparison of the enthalpy change of the reaction KrF₂ + F₂ -> KrF₃ obtained with three different computational methods (PBE, PBE+D3, HSE06). The ambient pressure CCSD(T) value calculated with the use of data from Dixon et al. (ref. 55) is marked with a star.

2. Structure parameters of Kr $_3F_2$, Kr F_2 , and Kr F_4

Table S1. Structure parameters of the most stable polymorphs of Kr ₃ F ₂ , KrF ₂ , and KrF ₄ .

Compound Space group Pressure	a, b, c [Å]	α, β, γ [°]	Kr (x, y, z) Wyckoff site	F (x, y, z) Wyckoff site
Kr3F2 P1 (1) 0 GPa	4.3541	111.41	Kr1: 0.2187 0.7392 0.2300 (1a) Kr2: 0.6126 0.0227 0.8602 (1a) Kr3: 0.8249 0.4557 0.5997	F1: 0.0751 0.0006 0.3512 (1a) F2: 0.3624 0.4777 0.1087 (1a)
	6.8524	97.94		
	7.2714	99.37	(1a)	
KrF2 <i>Cmcm</i> (63) 50 GPa	6.04718	90	Kr1: 0.000 0.000 0.000 (4c)	F1: 0.1925 0.5223 0.0000 (8g)
	4.66210	90		
	4.48735	90		
KrF4 I4/m (87) 50 GPa	4.6205	90	Kr1: 0.000 0.000 0.000 (2a)	F1: 0.6451 0.8113 0.0000 (8h)
	4.6205	90		
	4.1139	90	. ,	. ,

P2/m (10)

150 GPa

2.2891

4.0543

90.16

90

3. Structures parameters of Kr₆F, Kr₄F, Kr₂F, and KrF

	-			
Compound Space group Pressure	a, b, c [Å]	α, β, γ [°]	Kr (x, y, z) Wyckoff site	F (x, y, z) Wyckoff site
Kr6F <i>P–1</i> (2) 150 GPa	4.8663	81.21	Kr1: 0.8152 0.6734 -0.090 (2i) Kr2: 0.1542 0.8086 0.6203 (2i)	
	4.9297	87.79	Kr3: 0.5825 0.0811 0.690 (2i) Kr4: 0.0564 0.2678 0.7507 (2i)	F1: 0.4326 0.4769 0.8226 (2i)
	7.3985	84.45	Kr5: 0.7089 0.1522 0.0272 (2i) Kr6: 0.6700 0.6105 0.5667 (2i)	
Kr₄F C2/m (12) 150 GPa	9.3271	90	Kr1: 0.7295 0.0000 0.3084	
	2.6789	134.09	(4i) Kr2: -0.0782 0.000 0.1456	F1: 0.0000 0.5000 0.5000 (2d)
	6.6300	90	(4i)	
Kr2F 14/mcm (140) 150 GPa	5.3779	90		F1: 0.0000 0.0000 0.2500 (4a)
	5.3779	90	Kr1: 0.3352 0.8352 0.0000 (8h)	
	4.4173	90	X- /	
KrF	3.9663	90		

Kr1: 0.7411 0.5000 0.7520

(2n)

F1: 0.2371 0.0000 0.7470

(2m)

4. Structures and ELF function for Kr₆F and Kr₄F at 150 GPa

Figure S3. (a) The *P*–1 structure of Kr₆F at 150 GPa; (b) the *C*2/*m* structure of Kr₄F at 150 GPa.

Figure S4. The ELF function at 150 GPa for: (**a**) the P–1 structure of Kr₆F; (**b**) the C2/m structure of Kr₄F; (**c**) the hcp structure of Kr. Yellow color depicts ELF values above 0.9, cyan – below 0.1, while magenta corresponds to values of 0.4.

5. Electronic band gaps of KrmFn compounds at 150 GPa.

Phase	Туре	Band gap	
Kr	Atomic	3.42	
Kr ₆ F		metallic	
Kr4F	(3D)	metallic	
Kr ₂ F	2D	metallic	
KrF	1D	metallic	
KrF ₂	Molecular (0D)	1.02	
KrF ₄		2.30	
F2		1.80	

Table S3. Calculated band gaps (in eV) for the lowest enthalpy structures of Kr_mF_n compounds at 150 GPa.

6. Comparison of F2 and Kr geometries.

Table S4. Comparison of the experimental and calculated (PBE method) crystal structures of α -F2and Kr at ambient pressure.

		Exp (ref. 67, 68)	PBE
F ₂	a (Å)	5.5	5.825 (+5.9 %)
	b (Å)	3.28	3.432 (+4.6 %)
	c (Å)	7.28	7.015 (-3.6 %)
	β (°)	102.17	102.55
	R(F-F)	1.49	1.428 (-4.2 %)
	R(F…F)	2.82	2.778 (-1.5 %)
Kr	a (Å)	5.638	6.396 (+13.4 %)

© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).